Differential Equations in MuPAD 1:
An Object Oriented Environment

Marcus Hausdorf! and Werner M. Seiler?

! Institut fiir Algorithmen und Kognitive Systeme

Universitat Karlsruhe, 76128 Karlsruhe, Germany
Email: hausdorf@ira.uka.de
2 Lehrstuhl fiir Mathematik I
Universitat Mannheim, 68131 Mannheim, Germany
FEmail: seiler@euler.math.uni-mannheim.de
WWW: http://iaks-www.ira.uka.de/iaks-calmet/werner/werner.html

Abstract. We describe an object oriented programming environment for differential equa-
tions realised in the computer algebra system MuPAD. It serves as a convenient and highly
customisable basis for the implementation of sophisticated algorithms and facilitates the
interaction between application packages developed by different authors.

1 Introduction

There exist a lot of computer algebra packages for differential equations
implementing algorithms for many different tasks. As a simple example,
we may take the symmetry analysis of some field theory in physics. Thus
our starting point is a Lagrangian and the first step is the derivation of
the corresponding Euler-Lagrange equations. The second step consists
of setting up the determining system for the symmetry generators of
these equations. As these systems tend to be rather large and overde-
termined, one will probably need some simplification and completion.
As fourth step one might try to solve the determining system. In the
fiftth step one would like to use the found symmetry generators for a
symmetry reduction, preferably to some ordinary differential equations
which should finally be solved, too.

For each of these six steps there exist computer algebra packages.
However, they have usually been written by different authors. Further-
more, these authors may have had different tasks in their minds and
not necessarily precisely the sequence of steps described above. In any
case, chances are high that each of the authors implemented his/her



2 Marcus Hausdorf and Werner M. Seiler

own data structures for differential equations, as no computer algebra
system provides standardised ones.!

Using the output of one package as input for another one requires
usually to write some conversion routines between these different data
structures. This is not only a tedious and unpleasant task (requiring
some information about the interns of the used packages), the conver-
sion is also a time consuming process at runtime. This problem can be
largely avoided by using an object oriented approach.

In this report we will present an object oriented programming en-
vironment for differential equations realized within the domains pack-
age [3] of MuPAD [4,9]. Some years ago, we implemented a similar
environment in the computer algebra system Axiom [10,11]. In com-
parison, our MuPAD environment is much more user-friendly and many
methods are more efficient. Especially, it is now possible to completely
hide the usage of domains and categories, so that even users not fa-
miliar with object oriented programming can use applications packages
based on the domains.

The report is organised as follows. The next section gives a brief in-
troduction into object oriented programming in computer algebra, its
realization in MuPAD and an overview over our environment. Sects. 3
and 4 describe the functionality of the already provided categories and
domains, respectively. They also give some details on the implementa-
tion. Finally, we give some conclusions and an outlook in Sect. 5.

2 Overview

2.1 Object Oriented Programming in MuPAD

Object oriented programming in computer algebra has been pioneered
by AXI0M [7] (formerly called SCRATCHPAD) and is closely modelled on
an abstract algebraic approach to mathematics. Each object is element
of a domain (of computation) which in turn belongs to a category. For
example, in MuPAD the number 42 may be viewed as an element of the
domain Dom: : Integer which belongs (among others) to the category
Cat::Ring. In addition, there exists the possibility to define azioms,
but we will not need this here.

' Tn such a diverse field as differential equations this appears only reasonable, as for
different tasks different data structures may be optimal.



Differential Equations in MuPAD I: An Object Oriented Environment 3

Categories provide the possibility to define abstract data types.
Their primary task is to specify the methods (or procedures) which
each domain belonging to them must contain. For example, each do-
main in the category Cat::Ring must provide implementations for ad-
dition and multiplication of ring elements. A category may contain
default implementations for some methods which are inherited by its
domains (but the domains may overwrite the default and provide their
own implementation).

In our context, categories allow us to abstract certain operations
that are always needed in working with differential equations. Then we
can provide different concrete implementations in form of domains. An
algorithm may now be written in a generic form taking such a domain
as a parameter. This provides a simple mechanism to exploit special fea-
tures of certain classes of differential equations without implementing
the same algorithm several times.

For example, we may apply an algorithm sometimes to linear and
sometimes to nonlinear equations. But certain operations needed in the
algorithm can be performed much more efficiently for linear equations.
Classically, we could either implement the algorithm in its most gen-
eral form and thus renounce exploiting the linearity or write two differ-
ent versions of the algorithm. The first solution is inefficient for linear
equations and the second one is tedious and difficult to maintain. In an
object oriented environment, we simply develop two different domains
for linear and nonlinear equations, respectively. Then we implement
the algorithm only once in terms of domain methods and can still fully
exploit the linearity when the algorithm is applied to linear equations.

To be fair one should mention that object oriented programming
also introduces a certain amount of overhead, especially a higher num-
ber of procedure calls. The performance of the object oriented code will
usually be lower than that of a specialised version for linear equations.
The main advantages are thus for the programmer who obtains a code
that is easier to maintain and to reuse and also more flexible to use.

MuPAD provides the necessary tools for object oriented program-
ming within its domains package [3]. All categories are collected within
the library Cat, all domains within Dom. In order to address a specific
category or domain one uses the operator :: (a notation familiar to
C++ programmers). Thus the already mentioned category of all rings
is obtained with the call Cat: :Ring. The same operator :: is also used



4 Marcus Hausdorf and Werner M. Seiler

for methods (or procedures) within a domain. If DD is some domain
possessing a method method, it is called by DD: :method.

A category may have super categories — e.g. Cat::Field is a spe-
cialisation of Cat::Ring — from which it inherits all methods. Each
domain belongs to at least one category. In addition, it may inherit
from one super domain. Any domain may overwrite the inherited im-
plementation of a method.

All domains implemented within the domains package inherit from
Dom: :BaseDomain (and Cat::BaseCategory). This yields default im-
plementations of a number of basic methods for the generation and the
output of domain elements. If DD is a domain, one way to generate
an element of it is to call DD: :new(...) which can be abbreviated to
DD(...). What and how many arguments may be passed depends of
course on the domain DD. If wrong arguments are given, DD: :new will re-
port an error. By default, DD: :new calls the method DD: : convert; each
domain must provide an implementation of this method. It controls the
various ways elements of the domain can be generated. Furthermore, it
defines implicitly the internal representation of the domain elements.

For the output of a domain element the method DD: :print is used
(this is done automatically by MuPAD). By default, DD: :print just
calls DD: : expr which is to some extent the opposite of DD: :convert.
DD: :convert usually takes as arguments some basic MuPAD objects
and converts them to an element of DD, whereas DD: :expr takes an
element of DD and converts it to a basic MuPAD object which can be
printed on the screen.

2.2 Structure of our Environment

Our environment consists of two levels. The first one defines differential
variables; the second one differential functions. Both levels are specified
by a category and we provide a number of domains in both categories
(see Fig. 1). Every user can add own domains and still make full use of
the environment — as long as the “standards” set for the names and
for the semantics of the methods declared by the categories are obeyed.

The first level serves mainly as a user interface; the primary task of
its domains is to define the format of the used differential variables, i.e.
what are their names, how can they be entered, how does the output
look like. No real computations happen in these domains besides trivial



Differential Equations in MuPAD I: An Object Oriented Environment 5

Cat::DifferentialVariableCat

Dom:DifferentialVariable

Dom:RestrictedDifferentialVariable

Cat::DifferentialFunctionCat

Dom: :DifferentialExpression
Dom: :DifferentialPolynomial

Dom: :LinearDifferentialFunction

Fig. 1. Implemented domains and categories

ones like determining the order of a derivative. On the other hand, these
methods are constantly used and should therefore be rather fast.

The domains in the second level correspond to specific types of
differential functions like linear or polynomial ones. Each domain in this
category takes as first argument a domain from Cat: :DifferentialVa-
riable specifying the differential variables on which the functions may
depend. Besides standard arithmetical operations, the domains contain
a number of differential methods like total differentiations and some
simplification routines. Details will be given in the next two sections.

In a typical application of our environment, one first chooses a do-
main in Cat::DifferentialVariable. This tells MuPAD what are the
independent and dependent variables. Then one chooses a domain in
Cat::DifferentialFunction. Usually, this will declare some proper-
ties of the differential equations one is working with. With the following
input we set the arena for working with arbitrary differential functions
in the independent variables x,t and the dependent variable u.

— MuPAD
>> DV := Dom::DifferentialVariable([x,t],u);
>> DE := Dom::DifferentialExpression(DV);

[




6 Marcus Hausdorf and Werner M. Seiler

At first sight it might appear rather cumbersome to have to make
such explicit declarations, but in extensive computations this pays off
in form of much simpler in- and output. In addition, any procedure
for differential equations will need the information what are the inde-
pendent and dependent variables. In the traditional approach, these
are passed directly as arguments. In our environment it suffices to de-
fine once these domains and any object of them always carries all the
information in its datatype.

3 The Categories

The two basic categories underlying our environment are Cat::Dif-
ferentialVariable and Cat::DifferentialFunction. Both contain
default implementations for many methods. Typically, only a few low
level methods need to be written from scratch for implementing a new
domain in one of the categories. However, for efficiency reasons it might
often be worthwhile to overwrite some default implementations with
specialised versions.

3.1 Differential Variables

The main task of Cat::DifferentialVariable is to provide a stan-
dardised interface to access the data of differential variables. This in-
cludes especially (multi) indices, the type or the order of a differential
variable. The category distinguishes three different types of variables
(encoded in strings):

"Indep": This is the type of the independent variables. They play a
special role in total differentiations and similar operations and carry
only one index.

"Dep': This is the type of the dependent variables (or unknown func-
tions). They also carry only one index.

"Deriv": This is the type of the derivatives (of the dependent variables
with respect to the independent ones). They carry two indices, one
of them is a multi or repeated index.

In the literature, one can find two different forms of multi indices.
The classical multi index notation is mainly used for theoretical works.



Differential Equations in MuPAD I: An Object Oriented Environment 7

If there are n independent variables, a multi index g is an (ordered)
n-tuple p = [pt1, ..., ] where the entry p; denotes the number of dif-
ferentiations with respect to the i*® independent variable. The order ¢
of the corresponding differential variable is given by the length of the
multi index ¢ = |u| = p1 + -+ - + . In the second form which we will
call, in lack of a better name, repeated index the index I of a ¢'" order
derivative is a set of ¢ integers between 1 and n: I = (iy,...,4,) where
each integer 7, denotes a differentiation with respect to the 7,'" indepen-
dent variable. While in principle the order of the entries in I does not
matter, we will usually assume that they are ordered: 1; <iy--- <.

Domains in Cat::DifferentialVariable automatically support
both notations; the one internally used by a domain is given by the
entry notation returning either the string "multi" or "repeated".
The auxiliary methods m2r and r2m transform one kind of index into
the other one. We refer to the multi or repeated index as the “lower”
index of a differential variable; the “upper” index is used to enumer-
ate the independent and dependent variables. This reflects the usual
mathematical notation for a derivative:

olely
— I x
uﬂ_a(gjl)ﬂla(mn)un _ul’ll’lxngjn (1)
ptimes fhptimes

where we have assumed that there are n independent variables ', m de-
pendent variables u® and that g = [pq, ..., p,] is a multi index.

The following alphabetic list contains all the methods and entries
which must be implemented in any domain belonging to Cat::Dif-
ferentialVariable. For most of them, the category provides a de-
fault implementation; in fact, only six methods must be defined ex-
plicitly in the domain: index, either multiIndex (if notation returns
the value "multi") or repeatedIndex (if notation returns the value
"repeated"), notation, numIndVar, numDepVar and vartype. They
are marked by an asterisk in the list.

Methods in Cat::DifferentialVariable
allRepeated(mi): Returns a list of all possible realizations of a
given multi index mi as repeated index.
class(dv): Class? of a differential variable dv.

2 The class of a derivative with multi index g = [p1,...,un] is defined as the smallest
index ¢ such that p; # 0. For an ordered repeated index I = (i1,...,44) the class



Marcus Hausdorf and Werner M. Seiler

depVariables: Returns a list of all dependent variables.

derivativeOf(dvl,dv2): Checks whether the variable dv1 is a
derivative of dv2. If yes, the corresponding multi or repeated
index is returned (depending on the notation used by the
domain), otherwise the result is an empty list.

derivatives(q<,cl>): Lists all derivatives up to order q. If a
second argument cl is given, all derivatives of order q and
class greater than or equal to cl are returned.

diff(dv,x): “Normal” differentiation where all differential vari-
ables are treated as independent; compare with totalDiff
and see example in Sect. 4.1.

dim(q): Counts the dependent variables and the derivatives up
to order q.

dimq(q): Counts the derivatives of order q.

has(dv,x): Returns TRUE, if dv=x, and FALSE otherwise. Over-
loads the MuPAD function has.

indVariables: Returns a list of all independent variables.
*index (dv): Yields “upper” index of differential variable dv.

int(dv,1): Tries to integrates the differential variable dv with
respect to the independent variable 2*. If this is not possible,
FAIL is returned.

length(dv): Returns 1. Overloads the MuPAD function length.
m2r (mi): Computes repeated index for given multi index mi.
makeIndexList(q): Generates all multi indices up to order q.

*multiIndex(dv): Yields “lower” index of differential variable
dv in multi index notation.

multiRaise(mu,1i): Raises the entry i of multi index mu by 1;
i may also be a list of indices.

newMulti(t,i,mi): Generates a new differential variable of the
type t with index i and multi index mi.

newRepeated(t,i,ri): Generates a new differential variable of
the type t with index i and repeated index ri.

equals ¢;. For an independent variable we define the class to be 0; for a dependent

variable as the value of numIndVar.



Differential Equations in MuPAD I: An Object Oriented Environment

*notation: Returns used notation as a string: either "multi"
or "repeated'.

*numDepVar: Returns number of dependent variables.
*numIndVar: Returns number of independent variables.
order(dv): Computes the order of the differential variable dv.
orderly: Returns TRUE, if the domain uses an orderly ranking.”?

orderLex(dvl,dv2): Graded reverse lexicographic ranking of
the differential variables dv1 and dv2.

purelLex(dvl,dv2): Purely lexicographic ranking of the differ-
ential variables dv1 and dv2.

r2m(ri): Returns repeated index ri as multi index.

random(<g>): Returns a random differential variable. The op-
tional parameter q gives the maximal order; default is 6.

*repeatedIndex(dv): Returns “lower” index of differential vari-
able dv in repeated index notation.

repeatedRaise(mu,i): Includes the entry i in the repeated in-

dex mu; 1 may also be a list of indices.

totalDiff(dv,i): Total differentiation of dv with respect to
the independent variable with index i (alternatively i may
be an independent variable). Compare with diff and see the
example in Sect. 4.1.

*vartype(dv): Returns the type of the differential variable dv
(as string).

Methods in Cat::DifferentialVariable

As one can see, rankings of differential variables should also be im-
plemented in the domains in Cat::DifferentialVariable. Currently,
only the purely lexicographic ranking and a graded reverse lexico-

graphic ranking are implemented; the latter one is the default. Different
rankings can simply be imposed by overwriting the method _less. Note,

however, that the entry orderly should be adapted correspondingly.

Another caveat is that one must be careful with changing dynam-
ically the ranking in a domain DV in Cat::DifferentialVariable.
While of course any call to DV:: _less will use the new ranking, this

? A ranking of differential variables is called orderly, if variables of higher order are always

higher in the ranking than those of lower order.



10 Marcus Hausdorf and Werner M. Seiler

change might not be noted by domains for differential functions in the
variables of DV. Only newly constructed domains will definitely use the
new ranking.

3.2 Differential Functions

The basic category for differential functions is called Cat: :Differen-
tialFunction(DV). It takes as argument a domain DV from Cat: :Dif-
ferentialVariable. All domains belonging to this category represent
functions of the variables in DV. The various domains correspond typi-
cally to different types of functions, e.g. linear or polynomial ones.

Cat::DifferentialFunction is only a specialisation of the cate-
gory Cat::AbelianSemiGroup and not of Cat::Rng as one might ex-
pect. The reason is that we want to admit domains for linear functions,
but these can only be added and not multiplied without loosing their
linearity. This also makes difficulties with Jacobians. Normally, the Ja-
cobian is a matrix over the same domain. But MuPAD matrices can be
defined only over rings, so something special must be done for linear
functions. This problem is discussed in more detail in Sect. 4.4.

Any domain in Cat::DifferentialFunction(DV) should provide
(besides the arithmetical operations of a Cat: :AbelianSemiGroup) the
methods listed in the following table (sorted alphabetically). For most
of them a default implementation exists. Only the methods diff, has,
indets, solve and subsOne must in any case be newly implemented.
They are marked by an asterisk in the list. Concrete examples for the
use the methods can be found in the next section.

Methods in Cat::DifferentialFunction

autoreduce(sys): Autoreduction of the list sys of differential
functions. Note that reduction includes (total) differentia-
tions in contrast to simplification.

autosimplify(sys): Autosimplification of the list sys of differ-
ential functions. Note that simplification is a purely algebraic
operation, i.e. no derivatives of the functions in sys are used.

class(df): This is a simple lift of the corresponding method in
DV; it returns the maximal class of the highest order differen-
tial variables contained in the differential function df.



Differential Equations in MuPAD I: An Object Oriented Environment

*diff (df,x): Partial differentiation of the differential function
df with respect to the variable x. Compare with totalDiff!

diffSubs(df,dv=e): In a differential substitution not only the
differential variable dv but also all its derivatives are substi-
tuted by the expression e and its total derivatives.

eval (df,sol): Evaluates the differential function df for some
given functions. The list sol must have as many entries as
there are dependent variables, and each entry must be a func-
tion of the independent variables only. These functions (and
their total derivatives) are substituted in df for the differen-

tial variables.

*has(df,dv): Returns TRUE, if the differential variable dv effec-
tively occurs in the differential function df.

*indets(df<,DiffVars>): Returns a set with all the indetermi-
nates occurring in the differential function df. With the op-
tion DiffVars only those indeterminates are returned which

are elements of DV, i.e. no parameters (see the example in
Sect. 4.2).

isConst (df): Returns TRUE, if the differential function df does
not depend on any differential variable.

jacobian(sys): Computes the Jacobian of the differential func-
tions contained in the list sys.

jacobianType: This entry returns the data type of the Jacobian
matrices computed by the method jacobian (some MuPAD
matrix domain).

leader(df): Returns the leading derivative of the differential
function df. The ranking is implicitly defined by the method
_less of the domain DV.

linear: This entry returns TRUE or FALSE depending on whether
or not the functions represented by the domain are linear.

multiDiff (df): Computes with as few differentiations as pos-
sible several derivatives of the same differential function df.

multiSubs(df,dvi=el<,dv2=e2,...>): Substitutes the differ-
ential variables dv1,dv2,... by the expressions el,e2,...
in the differential function df using the method subsOne.

11



12 Marcus Hausdorf and Werner M. Seiler

order (df): Returns the maximal order of the differential vari-
ables effectively appearing in df.

polynomial: This entry returns TRUE or FALSE depending on
whether or not the functions represented by the domain are
polynomial.

*solve(df,dv): Tries to solve the differential function df for
the differential variable dv.

*subsOne(df,dv=e): Substitutes the expression e for the differ-
ential variable dv in the differential function df.

totalDiff (df,x):* Total differentiation of the differential func-
tion df with respect to the independent variable x. This im-
plies the use of the chain rule in contrast to partial differen-
tiations with diff.

Variables: This entry returns the domain DV.

Methods in Cat::DifferentialFunction

Of importance are here the distinctions made between autoreduction
and autosimplification and between partial and total differentiation. If
we are given a differential function ¢(x,u,p) where x represents the
independent, u the dependent variables and p the derivatives, then the
method diff computes the usual partial derivatives d¢p/0z, do/0u,
or d¢/dp. If ¢ depends in addition on some parameters a, diff can
also compute derivatives with respect to them. In contrast, the total
differentiation is defined only for independent variables. Using multi
index notation for the derivatives, it is given by

Z ap 2 pj+1 (2)

D¢

61;2

where p is a short hand for the derivative with a multi index pu where
all entries are zero except y; which is one (i.e. y; = d;) and p,;.
represents the derivative with a multi index given by p and p; raised
by one. Thus if we take ¢ = wu,, then d¢/dxz = 0 (and the result of a
corresponding diff call will be zero), as ¢ does not depend explicitly
on z. If we want to take into account the implicit dependency of u, on x,
we must use the total differentiation provided by totalDiff which uses
the chain rule and will return D,¢ = u,.

* A default implementation is provided only for the case that the domain is a ring.



Differential Equations in MuPAD I: An Object Oriented Environment 13

Autosimplification is a purely algebraic operation. Its main goal is
to eliminate all algebraic dependencies between the differential func-
tions in a given list. Here w,, and w, are considered as algebraically
independent, as they are distinct differential variables. Autoreduction
eliminates in addition differential dependencies. A simple application of
the chain rule yields D,(sin u;) = tz; cos u, so the functions ., cos u,
and sin u, are differentially dependent although they are algebraically
independent. autoreduce therefore eliminates u,, cosu, from the list
[y COS Uy, siN U, ], Whereas autosimplify leaves it unchanged.

autoreduce and autosimplify will furthermore try to put the
given list of functions in a kind of triangular form: each function in
the output should have a different leading derivative. Ideally, these lead-
ing derivatives are completely eliminated from all other functions. Note
that no general algorithm exists for the autoreduction or -simplification
of arbitrary differential functions. Such algorithms can be given only
for special classes of functions, e. g. for linear functions where autosim-
plification reduces to Gaussian elimination or for polynomials where
Grobner bases [2] can be used.

The default implementations of autoreduce and autosimplify in
Cat::DifferentialFunction apply a simple heuristic relying essen-
tially on the domain method solve. Each equation is solved for its
leading derivative and then this derivative is eliminated in all other
equations by substitution. This process continues, until no further elim-
inations can be performed. Obviously, for arbitrary differential func-
tions it cannot be guaranteed that one can always solve for the leading
derivatives and thus it is not sure that the remaining functions are
indeed algebraically (or even differentially) independent.

Finally, some words are necessary to explain the approach taken for
the implementation of the method subs. It is intended to free program-
mers from having to write code for argument checking and multiple sub-
stitutions each time they write a new domain belonging to Cat::Dif-
ferentialFunction. The categorical method multiSubs handles these
tasks; however, it uses for a single replacement the method subsOne
which has to be provided by each domain. Consequently, subs should
be defined in the domain as subs :=dom: :multiSubs. As the default
implementation in Dom: :BaseDomain overwrites any categorical one,
one cannot proceed this way directly in Cat::DifferentialFunction.



14 Marcus Hausdorf and Werner M. Seiler
4 The Domains

With categories alone one cannot perform any computations. There-
fore our environment provides already a number of instances, namely
two domains for differential variables and three domains for differen-
tial functions. The latter ones cover the three most important types of
functions: linear functions, polynomials and general expressions. The
distinction between polynomials and general expressions is of interest
for performance reasons. MuPAD possesses a special built-in data type
DOM_POLY for polynomials and executes both arithmetical and differen-
tial operations much faster for polynomials than for general expressions.

In the sequel we will briefly describe these five provided domains. As
their basic functionality is inherited from the categories, we will discuss
only those methods which are specific for a given domain. In addition,
we will give some indications on the underlying representation and the
implementation of some important methods.

4.1 Differential Variables

The main domain for differential variables is Dom: :DifferentialVa-
riable. It may be considered as the simultaneous implementation of
two different domains distinguished by the arguments they take. In the
first usage, Dom: :DifferentialVariable is given as arguments two
lists (if a list has only one entry, one may omit the list brackets) with
the names of the independent and the dependent variables, respectively.
In the second usage, a domain with indexed variables is generated. Here
one gives as arguments indexed identifiers like x[3] in order to obtain
the variables 1, x5, 3. Thus two different ways to generate a domain
with three independent and two dependent variables are

[ MuPAD

>> DV := Dom::DifferentialVariable([x,y,z],[u,v]):
>> IDV := Dom::DifferentialVariable(x[3],ul2]):
[

The two so generated domains DV and IDV differ especially in their
internally used representations: DV is based on repeated index notation
and IDV on multi index notation, as one can see from the following two
lines of output.



Differential Equations in MuPAD I: An Object Oriented Environment 15

[ MuPAD

>> DV::notation;
>> IDV::notation;

Output
"repeated"

"multi"

Dom: :DifferentialVariable supports several notations for the in-
and output of differential variables. One is of course the standard Mu-
PAD notation using diff. Alternatively one may use the D operator.
However, for most purposes the most convenient notation is a rather
condensed one mimicking the usual mathematical notation as good as
possible using only ASCII characters. Here dependent variables always
appear without arguments; for derivatives one uses the same symbols
as for the dependent variables but uses them now as function names
with a list of the independent variables with respect to which differen-
tiations occur as argument. Finally, one may use the generic methods
newMulti and newRepeated defined in Cat::DifferentialVariable
not requiring any knowledge of variable names. The following five input
lines all generate the same differential variable wu,, (we show the output
only once, as it is of course always the same).

— MuPAD
>> dv := DV(diff (u(x,y,z),x,y)):

>> dv := DV(D([1,2],u)):

>> dv := DV(u([x,y1)):

>> dv := DV::newMulti("Deriv",1,[1,1,0]):
>> dv := DV::newRepeated("Deriv",1,[1,2]):

Output

u(lx, y1)

As one can see, for better readability the output of Dom::Diffe-
rentialVariable uses always the condensed notation. If one wants to
convert back to one of the other input forms one can use the method
convert_to with the options "diff" and "D", respectively. The argu-
ments of the remaining two calls could be retrieved with the methods
vartype, index, multilndex or repeatedIndex, resp.



16 Marcus Hausdorf and Werner M. Seiler

[ MuPAD

>> DV::convert_to(dv,"diff");
>> DV::convert_to(dv,"D");

Output

diff(u(x, y, 2), x, y)

D([1, 2], w)

Finally, it is possible to obtain the output as TEX; all domains in
our environment are compatible with the MuPAD-TEX interface in the
generate library. Again a condensed notation is used and not full dif-
ferential quotients.

The following example shows the difference between the two meth-
ods diff and totalDiff: whereas the former one treats all differential
variables as independent of each other and thus returns either 1 or 0, the
latter one represents the total differentiation one needs for prolonging
differential equations and similar operations.

[ MuPAD
>> DV::diff(dv,x);

>> dvx := DV::totalDiff(dv,1);

>> ri := DV::derivativeOf(dvx,dv);
>> DV::r2m(ri);

Output

0
u(lx, x, y1)
[1]

[1, 0, 0]

As @ # uy,y, the first call returns 0. The second call adds a differen-
tiation with respect to x. This is demonstrated in the third line where
the “difference” between u,, and u,,, is computed as a repeated index.
If the domain IDV had been used for this example, the result would
have been the corresponding multi index, [1,0,0], as determined by
the auxiliary method r2m in the last line.

The internal representation of the domain Dom: :DifferentialVa-
riable is straightforward. It consists of five slots: (i) the type of the



Differential Equations in MuPAD I: An Object Oriented Environment 17

variable, (ii) the upper index, (iii) the lower index (or the empty list, if
no lower index exists), (iv) the order and (v) the class of the variable.
(iv) and (v) are not really necessary, however, it turned out that for
many computations it is advantageous to store this information in the
representation instead of computing it newly each time it is needed.
Especially, comparisons with respect to the graded lexicographic order
(our default ranking) are speeded up considerably.

The domain Dom: :RestrictedDifferentialVariable is typically
used for constructing coefficient domains of linear or polynomial func-
tions (see Sects. 4.3 and 4.4) or by domains representing solutions of dif-
ferential equations. It takes as first argument another domain in Cat: :
DifferentialVariable and imposes then some restrictions, specified
by the second argument, on the variables. A typical example for such
a restriction is that only independent variables are admitted.

Five different possibilities are provided for specifying the restriction.
They always take the form of an equality where the left hand side
denotes the type of restriction:

Types: Here one specifies the types of the differential variables which
are admitted. If several types are allowed, a set with their names
must be passed.

Order: If the order of the admitted variables is specified, then instead
of an equality one might also use an inequality. Thus it is possi-
ble to generate domains containing either only derivatives up to a
prescribed order or alternatively only derivatives of higher order.

InSet: In this case one specifies a set with all the differential variables
admitted by the domain.

OutSet: This is just the converse of the last case; a set with all the
variables not admitted is passed.

Crit: This represents the most general case where a criterion proce-
dure is passed. This procedure should take a differential variable as
argument and return TRUE or FALSE depending on whether or not
the variable belongs to the domain.

It is not possible to combine these options. If, for instance, one wants
to prescribe simultaneously the type and the order, one must write a
criterion procedure and use the last possibility. The actually imposed
restriction of a domain RDV :=Dom: :RestrictedDifferentialVari-
able(DV,...) can be retrieved with the method mode. Its possible
results are:



18 Marcus Hausdorf and Werner M. Seiler

["Indep'"]: RDV contains all the independent variables of DV.
["Less/Greater",ql: RDV contains all differential variables of order
less resp. greater than q (for example, in case of the restriction
Types={"Indep",'"Dep"} RDV: :mode returns ["Less",1]).
["General"]: All other cases.

4.2 Differential Expressions

Our most general domain for differential functions is called Dom: :Dif-
ferentialExpression(DV). It is essentially a lift of the basic MuPAD
type DOM_EXPR to the category Cat::DifferentialFunction and thus
allows for computations with arbitrary differential expressions.

In order to avoid the need to always explicitly generate a domain
DV belonging to Cat::DifferentialVariable, it is also possible to
specify the domain via one or two optional arguments. These options
contain essentially the arguments passed to the constructor Dom: :Dif-
ferentialVariable or Dom: :RestrictedDifferentialVariable, re-
spectively. Thus in the following example the domain DE represents
general differential expressions in the independent variables z,y, z, the
dependent variables u, v and their derivatives. In contrast, the domain
RDE represents only functions of the independent variables and conse-
quently the attempt to generate a function of the dependent variable u
yields an error. The automatically generated domain for the differential
variables can be retrieved with the method Variables.

[ MuPAD

>> DE := Dom::DifferentialExpression(Vars=[[x,y,z], [u,v]]):
>> RDE := Dom::DifferentialExpression(Vars=[[x,y,z], [u,v]],
>> Rest=[Types="Indep"]):
>> RDE: :Variables;

>> de := DE(sin(a*u([yl))*u([x,y]) " 2-exp(v([z])+b));

>> rde := RDE(u~2);

Output

Dom: :RestrictedDifferentialVariable(Dom: :DifferentialVariable(
[x, y, z1, [u, v]l), Types = Indep)

2
- exp(b + v([2])) + u(lx, y1) sina u(lyl))

Error: illegal arguments [(Dom::DifferentialExpression(
Vars = [[x, y, 2], [u, vl], Rest = [Types = "Indep"])): :newl;




Differential Equations in MuPAD I: An Object Oriented Environment 19

Besides the methods specified in the category Cat::Differential-
Function some basic MuPAD functions have been lifted to Dom: :Dif-
ferentialExpression. This includes eval,” normal, simplify, rad-
simp, combine and rewrite. For efficiency reasons, the default im-
plementations of many methods in Cat::DifferentialFunction have
been replaced by special versions.

The representation consists of two slots: the first one contains usu-
ally an element of the basic domain DOM_EXPR, the second one a set of
differential variables, i.e. elements of DV. All differential variables ap-
pearing in the differential expression are contained in this set. However,
in general the set will contain some further variables. While it is very
useful for many operations to have such a set stored in the representa-
tion, it turned out that it is inefficient to always eliminate redundant
variables (it is a rather expensive operation to check whether an element
of DOM_EXPR effectively depends on a given variable).

Note that this second slot also affects tests for equality. It is a well-
known problem in computer algebra that no normal representation
exists for general expressions, i.e. it is not always possible to decide
whether or not an expression is zero. In Dom: :DifferentialExpres-
sion it may furthermore happen that two expressions look equal, as the
have the same element of DOM_EXPR in their first slot (which determines
the output), but still a check for equality returns FALSE, as one of them
has redundant elements in the set in the second slot. In such cases the
domain method equal will return TRUE.®

While the first slot usually contains an expression, there exist a few
further possibilities. The simplest ones are that the differential expres-
sion is actually just a number (i. e. an element of one of the basic domain
DOM_INT, DOM_RAT or DOM_FLOAT) or an identifier (which is considered by
Dom: :DifferentialExpression as a parameter). In all these cases, the
second slot contains an empty set, thus we have a normal representation
for them. A differential expression may also consist just of a differential
variable; then the first slot contains this variable. The last possibility
is an element of the domain Dom: :DifferentialFunction(DV).

5 Note that called with one argument eval yields the lifted kernel function and with two
arguments the method specified in Cat::DifferentialFunction.

5 In general, it is a good strategy to use the domain method equal instead of the boolean
operator = in order to compare elements of domains without a canonical representation.



20 Marcus Hausdorf and Werner M. Seiler

This special domain is a (hopefully only temporary) hack around
a problem with the differentiation of undetermined expressions. If (us-
ing the domain DE of our example above) an expression of the form
F(x,y,z,u,v) is differentiated with respect to one of its arguments,
i.e. with respect to a differential variable, MuPAD uses its differential
operator D to represent the result. Unfortunately, it will try in subse-
quent computations repeatedly to simplify the result, although there is
obviously nothing to simplify. In larger calculations (especially in Lie
symmetry theory) this can waste surprisingly much computing time.

As an alternative, one may use the domain Dom::Differential-
Function(DV) to represent such expressions. Then the differentiation
is a completely formal operation (as it should be) and no subsequent
evaluation attempts will happen. A user will almost never work directly
with this domain, as Dom: :DifferentialExpression provides an in-
terface with the method arbFunction. The following example demon-
strates the difference in the execution times of a simple differentiation:
using internally Dom: :DifferentialFunction is usually between two
and three times faster.

| — MuPAD

>> del := DE(F(x,y,z,u,v)):

>> de2 := DE::arbFunction(F, [x,y,z,u,v]):
>> time(DE: :diff(del,x) $ i=1..100);

>> time(DE: :diff(de2,x) $ i=1..100);

Output

330

150

We can now provide concrete examples for some of the procedures
specified in the category Cat::DifferentialFunction. We start with
the method indets and demonstrate the meaning of the option DiffVar
for the expression de defined above. Without this option the parame-
ters a, b are returned, too; otherwise only the differential variables are
returned.

— MuPAD
>> DE::indets(de);
>> DE::indets(de,DiffVars);



Differential Equations in MuPAD I: An Object Oriented Environment 21

Output

{a, b, u(lyl), v([z]), u(lx, y1)}
{u(lyl), v([z]), ul(lx, y1D3}

Next we give an example for the computation of a Jacobian. We
wrote a special domain Dom: : SparseMatrix for representing Jacobians.
It has a number of particularities. As the name already indicates, it is
specialised to sparse matrices, as differential functions appearing in
applications are typically sparse, i.e. they do depend only on a small
subset of all possible differential variables up to a given order. Sec-
ondly, the columns of such matrices are labelled not by integers but
by differential variables. In the following MuPAD commands we first
define a system consisting of two differential functions, w,, — wu,, and
v, + Uppr + vU,. Then we determine its Jacobian jac and the domain
of jac. In the last line we extract all column labels of jac.

[ MuPAD

>> sys:=[DE(u([x,x])-u(ly,y]1)),DE(v([z])+v([x,x,x])+v*v([x]))]:
>> jac := DE::jacobian(sys);

>> SM := domtype(jac);

>> SM::allIndices(jac);

Output

| 1, 0, 0,1, v, v([x]) |
+- -+

Dom: :SparseMatrix(Dom: :DifferentialVariable([x, y, z], [u, v]),
Dom: :DifferentialExpression(Vars = [[x, y, z], [u, v]]),
(dvl, dv2) -> DVless(dv2, dvil))

[v([x, x, x1), ully, y1), u(lx, x1), v([z]1), v([x]), v]

One can see here how the columns are indexed by the occurring
differential variables sorted in descending order (the ranking determined
by the method _less of the used domain for differential variables —
compare with Sect. 4.1). Dom: :SparseMatrix has three parameters:
DV for labelling the columns, DE for the matrix entries and a boolean
function for ordering the elements of DV. In the case of Jacobians the



22 Marcus Hausdorf and Werner M. Seiler

columns are always ordered decreasingly with respect to the order _less
of the domain DV. Thus the first column of the matrix corresponds
always to the leading derivative.

The following three methods have in common that they require
several derivatives of the same differential function. In order to minimise
the number of differentiations needed to compute these derivatives, the
auxiliary procedure derivativeTree of the DETools library is used. It
determines for a given set of multi indices a tree whose leaves represent
the wanted derivatives. One can read off this tree in which order the
differentiations should take place. A simple heuristic algorithm is used
to determine the tree; it will be described in more detail in [1].

The method multiDiff takes a differential function and a list of
multi indices and returns the total derivatives of the function with re-
spect to the indices. eval substitutes functions (of the independent vari-
ables) for the dependent variables and their derivatives in a given dif-
ferential expression de. A typical use is to check whether the functions
form actually a solution of the differential equation de=0. eval uses in-
ternally multiDiff to determine the needed derivatives. The functions
given as arguments should be elements of a domain of differential func-
tions over the independent variables only (i.e. over Dom: :Restricted-
DifferentialVariable(DV,Types="Indep"). But in interactive calls
automatic conversions are performed, so that one can simply enter:

— MuPAD
>> DE::eval(de, [x" 2%y~ 2%z~ 2, x*y*z]) ;

Output

2 2 4 2 2
- exp(b+xy)+16x y z sin(2ax yz)

diffSubsis similar to eval but more general: it substitutes an arbi-
trary differential expression for a single dependent variable or derivative
and all of its derivatives.

| — MuPAD

>> DE::diffSubs(de,u([y]l)=u([z,z])+2*y"~2);

Output

2 2
- exp(b + v([z])) + u(lx, z, 2z]) sin(a (u(lz, z]) + 2y ))




Differential Equations in MuPAD I: An Object Oriented Environment 23

4.3 Differential Polynomials

Dom: :DifferentialPolynomial can be used to generate domains rep-
resenting differential functions which are polynomial in some or all
differential variables. In the simplest call the constructor takes only
one argument: a domain DV from Cat::DifferentialVariable. Then
one obtains a domain which represents classical differential polynomi-
als with constant coefficients, 1. e. functions which are polynomial in the
dependent variables and the derivatives and which do not depend at
all on the independent variables. The domain Dom: :Rational is used
as coefficient ring.

One may also explicitly specify a coefficient ring R as second argu-
ment of the constructor. If the ring R belongs to the category Cat::
DifferentialFunction, so that we have variable coefficients, its differ-
ential variable domain (obtainable with R: :Variables) must be of the
form RDV :=Dom: :RestrictedDifferentialVariable(DV,...) where
the dots stand for the chosen form of restriction (see Sect. 4.1). The
functions contained in the so generated domain are polynomial in all
differential variables of DV which are not admitted in RDV. The entry
coeffRing returns the domain R, while the entry constCoeff signals
whether constant coefficients are used.

For users unwilling to create domains for differential variables and
the coefficient ring it is also possible to obtain differential polynomials
in a way similar to that described in Sect. 4.2, by giving variables
and restrictions directly as right hand sides of the options Vars=[...]
and Rest=[...]. Here the restrictions apply to the coefficient ring; if
they are missing, constant coefficients with dependent variables and
derivatives in the terms are used.

The choice of the internal representation of Dom::Differential-
Polynomial requires some explanations of how polynomial arithmetics
is performed in MuPAD. The basic polynomial type is DOM_POLY. An
element of it consists of three operands: the expression representing
the polynomial, the list of variables and the domain of the coefficients.
Polynomials are created by a call of the kernel function poly with
these three arguments (if the the coefficient ring is omitted, DOM_EXPR
is the default). In order to utilise the fast polynomial addition and
multiplication provided by the MuPAD kernel, the variable lists and



24 Marcus Hausdorf and Werner M. Seiler

coefficient rings of the operands must coincide. If the variable set is
known a priori and if it is finite, this poses no problem.

In the case of differential polynomials, however, we have an infinite
number of variables. Thus the variable lists of polynomials must be
compared and adapted before adding or multiplying them and one loses
some of the benefits of the faster arithmetics. In order to decrease the
number of changes of the variable lists to a minimum, we chose the
following approach: the internal representation of an element of Dom: :
DifferentialPolynomial consists of three slots.

REP=poly |VARS|ORD
expr|VARSPR

The first slot contains the polynomial as an element of DOM_POLY
which in turn consists again of three slots as mentioned above. For the
variable list VARSP we take all differential variables up to the order
given by the third slot ORD. The slot VARS holds a superset of the set
of all differential variables effectively occurring in expr (similar to the
second slot in the representation of Dom: :DifferentialExpression).

The variable lists are adapted only before two polynomials are added
or multiplied. The values of ORD are compared. If the polynomials are
of different order, the one of lower order is converted into list repre-
sentation by the kernel function poly2list”. The auxiliary function
addZterms augments the exponent vectors by the necessary zeros (the
number of which is determined by the methods dim and dimq from
Dom: :DifferentialVariable); the result is changed back to a poly-
nomial by another call of poly. For the same reasons as in Sect. 4.2
no adaptation of the variable list is performed on the result, i.e. if a
variable is cancelled, it still appears in the list VARSP and the set VARS.
This might also lead to a too high value of ORD.

All the points mentioned in the previous section on normalised ex-
pressions thus also apply for differential polynomials. The removal of
superfluous variables from VARS, the determination of the correct value
for ORD and the truncation of VARSP via a further auxiliary method
remZterms can be enforced by the method normalPoly.

" Tt consists of a list of monomials, each of them again being a list of two elements: the
coeflicient (from the domain R) and the exponent vector, which is a list of integers where
each entry holds the degree of the corresponding element in the variable list.



Differential Equations in MuPAD I: An Object Oriented Environment 25

Dom: :DifferentialPolynomial is also a member of the category
Cat::Polynomial. There are two reasons why we do not use Dom: :
DistributedPolynomial or one of its descendants for the represen-
tation. Adaptations of the variable lists are done there before and
after each operation and we simply did not succeed in making this
domain work with differential variables. So a great deal of methods
had to be implemented in Dom: :DifferentialPolynomial anew, mak-
ing the code rather large. Currently, it works only with restrictions
possessing mode=["Less",q] or mode=["Indep"] (which is internally
treated as ["Less",0]). The case mode=["Greater",q] requires a com-
pletely different implementation, as the variable lists are now finite, and
for mode=["General"], certain methods, e.g. totalDiff, have to be
changed. Since these cases rarely turn up in applications, they have
been deferred until needed. The same applies for Dom: :LinearDiffe-
rentialFunction (see Sect. 4.4).

The convert routine of Dom: :DifferentialPolynomial takes ei-
ther one or two arguments; in the latter case, the first argument holds
the polynomial in dense list representation and the second argument
is the variable list. With the following commands, first a domain DP
is constructed which represents differential functions which are poly-
nomial in all derivatives and where the coefficients can be arbitrary
expressions in the independent and dependent variables (the order of
a dependent variable is 0). Then an element p of this domain is gener-
ated using a list notation. Of course, it would have been also possible
to enter p directly in standard MuPAD notation.

— MuPAD

>> DP := Dom::DifferentialPolynomial(Vars=[[x,y,z], [u,v]],
>> Rest=[0rder<1]):

>> p := DP::convert([[sin(u),[2,0,1]], [2*x+exp(y),[1,2,0]1]1],
>> [u([x1),u(lx,y1),v([z,21)1);

Output

2 2
sin(u) (v([z, 2]) u(lx]) ) + (2 x + exp(y)) (u(lx, y1) u(lxl))

If convert is given merely one argument, any MuPAD expression
that can be converted into a differential polynomial is allowed. Espe-
cially, Dom: :DifferentialPolynomial provides methods to convert to



26 Marcus Hausdorf and Werner M. Seiler

and from all other currently existing domains in the category Cat::
DifferentialFunction.

As arithmetical operations the methods of a (commutative) ring
have been implemented: _plus, negate and _mult. They use the re-
spective fast polynomial kernel operations as described above. All meth-
ods required by the category Cat::Polynomial (and some more) have
also been lifted from the corresponding polynomial functions. This
includes multcoeffs, mapcoeffs, coeff, lcoeff, tcoeff, nthcoeff,
nterms, l1term, nthterm, Imonomial, nthmonomial, mainvar, degree-
vec, degree, evalp as well as the methods for Grobner bases, gbasis
and normalf. If working with a monomial ordering other than the de-
fault DegreeOrder note that the variable list itself is ordered according
to how DV::derivatives returns its result. Currently, this means a
DegreelOrder ranking on the variables.

An important polynomial operation for many applications is pseu-
dodivision. It is used, for example, in (differential) algebra in the com-
putation of characteristic sets [8]. The procedure pseudoRemainder
takes as argument two differential polynomials f and ¢g and a differ-
ential variable y such that deg(f,y) > deg(g,y) > 0. It returns a list
[r,q,d, s] such that d°f = qg + r where d is the leading coeflicient of
g and deg(g,y) > deg(r,y). The procedure pseudoReduction(f,g,y)
computes a polynomial remainder sequence by repeatedly applying a
pseudodivision with respect to y. It returns the last element of this se-
quence, which is then free of y, and a list of all the leading coefficients
appearing in the divisions.

Finally, implementations for all the deferred methods of Cat::Dif-
ferentialFunction are provided. diff uses the operator for polyno-
mial differentiation Dpoly. solve can only solve for differential variables
appearing linearly (this can be checked by the method isLinear); in
all other cases, it returns FAIL. A completely new implementation is
given for totalDiff. It turned out that the approach via the Jacobian
taken in Cat::DifferentialFunction is inferior to working directly
on the list representation.

The following comparison of the execution times for the addition
and the total differentiation of two random polynomials in Dom: :Diffe-
rentialPolynomial and Dom: :DifferentialExpression,respectively,
demonstrates very clearly the usefulness of having a special domain for
differential polynomials.



Differential Equations in MuPAD I: An Object Oriented Environment 27

[ MuPAD

>> dpl:=DP::random(): dp2:=DP::random():
>> del:=DE(dp1l): de2:=DE(dp2):

>> time(DP::totalDiff (dpil,1));

>> time(DE: :totalDiff(del,1));

>> time(dpil+dp2 $ i=1..100);

>> time(del+de2 $ i=1..100);

Output

1680

5630

90

1300

The differences in the execution times are so drastic, because we are
dealing with rather large polynomials: dp1 is here of total degree 97 in
58 differential variables up to order 5 and consists of 18 terms; dp2 is of
degree 60 in 51 differential variables also up to order 5 and consists of
13 terms. For smaller examples and if differential polynomials of differ-
ing orders are treated the speedup is usually smaller due to overheads,
but nevertheless it is clearly worthwhile to use polynomial arithmetics
whenever possible.

4.4 Linear Differential Functions

Dom: :LinearDifferentialFunction is in many respects similar to
Dom: :DifferentialPolynomial but for linear instead of polynomial
functions. For the arguments exactly the same rules apply. The linear-
ity concerns only those differential variables which are not admitted in
the coefficients. As it is not preserved under multiplication, this domain
belongs only to the category Cat::LeftModule(R), where R denotes
again the coefficient ring, and not to Cat::PartialDifferentialRing
as all the other domains in Cat::DifferentialFunction.

Another difference lies in the behaviour of the method jacobian.
Usually, it returns a matrix whose entries are of the same type as the
differential function. For linear functions this is not possible, as the ma-
trix domains of MuPAD require a ring for the entries. In domains gen-
erated by Dom: :LinearDifferentialFunction the method jacobian



28 Marcus Hausdorf and Werner M. Seiler

computes the Jacobian only with respect to those variables in which
the functions are linear and returns a matrix over the coefficient ring R.

One must also be cautious with total differentiations. For constant
coefficients or if the coefficient ring has the restriction mode=["Indep"]
no problems arise. In all other cases, differentiation of the coefficients
may yield nonlinear terms in variables in which the function should be
linear. Hence for all other restrictions totalDiff returns an error.

Linear differential functions are finite sums with summands of the
form coefficient times differential variable and possibly one single ele-
ment of the coefficient ring to which we refer in the sequel as the inho-
mogeneity (or “right hand side”, if we think of differential equations).
Consequently, we let Dom: :LinearDifferentialFunction(DV,R) in-
herit its representation from the domain Dom: : FreeModule (R,DV) sup-
plying finite linear combinations of elements from DV over the ring R
and add an additional slot for the inhomogeneity. The representation
consists thus of one slot for storing a list containing all monomials in
the form [coefficient,variable] and one slot for the inhomogene-
ity. The presence of the latter makes it necessary to reimplement many
of the methods provided by Dom: : FreeModule.

The method convert either accepts a list of pairs consisting of an
element of the coefficient ring and a differential variable, optionally ex-
tended by a coefficient representing the inhomogeneity, or any expres-
sion that can be legally converted into a linear differential function.
For example, we can generate linear differential functions with variable
coefficients as follows:

[ MuPAD

>> LDF := Dom::LinearDifferentialFunction(Vars=[[x,y,z], [u,v]],

>> Rest=[Types={"Indep"}]):
>> 1f1 LDF: :convert ([[2#x,u([x])], [y,ul,3%z]);

>> 1£2 LDF: :convert (2*x*(u([y])+v([z]1)));

Output

3z+uy+ 2x u(lx])

2 x u(lyl) + 2 x v([=z])

In order to check whether or not a linear differential function pos-
sesses an inhomogeneity, the method isHomogeneous can be used; the
inhomogeneous term itself is extracted with inhomogeneity:



Differential Equations in MuPAD I: An Object Oriented Environment 29

[ MuPAD

>> LDF::isHomogeneous(1£1);
>> LDF::inhomogeneity(1£1);

Output

FALSE

The implemented arithmetical methods are those specified in the
category Cat::LeftModule(R): _plus, _negate and _mult, where the
latter means the scalar multiplication with elements of the ring R. Due
to the similarity of the internal representation with the one used by
polynomials, the polynomial methods mentioned in Sect. 4.3 are also
provided by Dom: :LinearDifferentialFunction. They differ slightly
from the corresponding MuPAD functions:

— lterm and nthterm directly return the corresponding differential
variable.

— coeff returns a list of all the coefficients of the linear differential
function given as argument; if a differential variable is passed as
second argument, the result is only its coefficient.

— In addition, the methods tterm and tmonomial for determining the
lowest term and monomial as well as terms returning a list of all
terms have been implemented.

Since no entry one exists in Dom::DifferentialVariable, it is not
possible to represent a constant term. Hence any method which should
return the constant term returns FAIL instead. Nevertheless, the in-
homogeneity counts as a term when determining their number with
nterms.

[ MuPAD
>> LDF: :nterms(1f1);
>> LDF::nthterm(1f1,3);

Output

FAIL




30 Marcus Hausdorf and Werner M. Seiler

Of the methods specified in Cat::DifferentialFunction, a new
version of totalDiff is provided; the above made restrictions on when
this procedure works apply. solve can solve only for those differential
variables in which the function is linear and returns FAIL otherwise.

The domain contains some additional methods written in view of

upcoming applications. These include the following ones:®

changeIndVars(1df,newVars,NewFrom01d<,LDF>): This method per-
forms a change of the independent variables in the linear differential
function 1df. The names of the new variables are given in the list
newVars and expressions of the new variables in terms of the old
ones in the list NewFrom01ld. The optional argument LDF specifies
the domain of the output, although there is a default one.

changeDepVars (1df ,newVars,01dFromNew<,LDF>): The same for the
dependent variables. Note however that for this method the old
variables have to be given in terms of the new ones.

makeMatrix, makeSystem: These methods convert between a list of lin-
ear differential functions and its coefficient matrix. The matrix do-
main is identical to the one used for the Jacobian (i.e. the domain
Dom: :SparseMatrix (DV,R)). Inhomogeneities of the functions are
ignored in the conversion.

As a simple example we consider a change of the independent vari-
ables in the linear function 1£2 introduce above. The second line shows
the automatically generated output domain.

— MuPAD
>> nlf2 := LDF::changelndVars(1£2,[X,Y,Z], [X=3*x,Y=y,Z=2+y]);
>> domtype(nlf2);

Output

2 X u(lyl) 2 X u([z]l) 2 X v([ZDD

Dom: :LinearDifferentialFunction(
Dom: :DifferentialVariable([X, Y, Z1, [u, v1),
Dom: :DifferentialExpression(Dom: :RestrictedDifferentialVariable(
Dom: :DifferentialVariable([X, Y, 2], [u, v]), Types = Indep)))
|

8 The first two methods have been supplied by Jay Belanger (Truman University).



Differential Equations in MuPAD I: An Object Oriented Environment 31

5 Conclusions and Outlook

In this report we presented a programming environment for differential
equations. We have not considered any serious application; but two
packages for the completion of systems of differential equations and for
Lie symmetry analysis built upon our environment will be described
in two further reports of this series [5,6]. Their implementations will
demonstrate some of the advantages and the flexibility of the object
oriented approach to computer algebra.

Most general purpose computer algebra systems do not really use
data types and even where they do, it is not very transparent to the
user. The other extreme is a strongly typed system like AX1OM where
the user must declare the type of each object (or must hope that the
system can infer the type which is often very time consuming). This
can be very inconvenient, especially if one just want to do some quick
computations. MuPAD ftries to combine these two approaches by distin-
guishing between basic types and the domains in the domains package.
The user can enter some expressions without bothering about their
types and perform all kinds of computations. But he can also work
in a strongly typed environment for more sophisticated tasks. Bridges
between the basic types and domains are provided by the methods
convert and expr which each domain should possess.

The topic of a fourth report [1] in this series will be a new MuPAD
library DETools. It allows users which are deterred by concepts like
categories or domains to use sophisticated methods like those contained
in the symmetry and the completion package; the library acts here as an
interface that automatically chooses appropriate domains. In addition,
it contains many others methods for solving, manipulating or visualising
differential equations. A lot of them are again based on the environment
described in this report.

All the categories and domains mentioned in this report will be
contained in the forthcoming release 2.0 of MuPAD. Unfortunately, our
environment cannot be used with the current version 1.4 of MuPAD due
to some changes in the language.

Acknowledgements

Eduard Niess (Universitat Karlsruhe) ported large parts of our ear-
lier AXIOM version of an object oriented programming environment



32

Marcus Hausdorf and Werner M. Seiler

for differential equations to MuPAD. Jay Belanger (Truman Univer-
sity) contributed some methods to Dom::LinearDifferentialFunc-
tion and reported a number of bugs. This article was written with
his EMuPAD package interfacing MuPAD and ETEX within the EMACS
editor. Finally, the authors would like to thank the MuPAD team at
Universitat Paderborn for their continuing support.

The second author is supported by Deutsche Forschungsgemein-

schaft. He thanks J. Calmet for his hospitality at the Institut fir Algo-
rithmen und Kognitive Systeme at Universitat Karlsruhe.

References

1.

2.

10.

11.

J. Belanger, M. Hausdorf, and W.M. Seiler. Differential equations in MuPAD IV: The
DETooLs library. In preparation.

D. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms. Undergraduate
Texts in Mathematics. Springer-Verlag, New York, 1992.

K. Drescher. Axioms, categories and domains. Automath Technical Report No. 1,
Universitat Paderborn, 1996.

B. Fuchssteiner et al. MuPAD — Mult: Processing Algebra Data Tool. Birkhauser,
Basel, 1993.

M. Hausdorf and W.M. Seiler. Differential equations in MuPAD II: A completion
package. In preparation, 2000.

M. Hausdorf and W.M. Seiler. Differential equations in MuPAD III: A Lie symmetry
package. In preparation, 2000.

D. Jenks and R.S. Sutor. AXioM — The Scientific Computation System. Springer-
Verlag, New York, 1992.

B. Mishra. Algorithmic Algebra. Texts and Monographs in Computer Science.
Springer-Verlag, New York, 1993.

W. Oevel, F. Postel, G. Riischer, and S. Wehmeier. Das MuPAD- Tutorium. Springer-
Verlag, Berlin, 2000.

J. Schii,, W.M. Seiler, and J. Calmet. Algorithmic methods for Lie pseudogroups.
In N. Ibragimov, M. Torrisi, and A. Valenti, editors, Proc. Modern Group Analysis:
Advanced Analytical and Computational Methods in Mathematical Physics, pages 337—
344. Kluwer, Dordrecht, 1993.

W.M. Seiler. Applying AXIOM to partial differential equations. Internal Report 95-17,
Universitat Karlsruhe, Fakultat fur Informatik, 1995.



