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ABSTRACT

In this article we present a homogeneity predicate for segmentation purposes. It is based on the probability of a pixels to ful�ll

the model assumptions for a region. For some practical relevant models, a closed formula for this probability is given. The

homogeneity predicate is used in a region growing procedure to segment colour aerial images. In this application, estimates

for the position of initial seed regions and the model type to be used are extracted from topographical maps.

KURZFASSUNG

In diesem Artikel wird ein Homogenit�atspr�adikat f�ur die Segmentierung von Bildern vorgestellt. Es beruht auf der Wahrschein-

lichkeit f�ur einen Bildpunkt, da� er den getro�enen Modellannahmen entspricht. F�ur einige praxisrelevante Modelle kann eine

geschlossene Formel zur Berechnung dieser Wahrscheinlichkeit angegeben werden. Das Homogenit�atspr�adikat wird in einem

Fl�achenwachstumsverfahren zur Segmentierung von Farbluftbildern verwendet. Sch�atzwerte f�ur anf�angliche Kristallisations-

punkte des Fl�achenwachstumsverfahrens und die zu verwendenden Modelle werden aus Karten gewonnen.

1 INTRODUCTION

Segmentation of images into physically meaningful regions is

one of the most often addressed problems in computer vision

literature. The periodically appearing review articles give a

good overview of the domain, see e.g. (Haralick and Shapiro,

1985),(Pal and Pal, 1993).

Haralick and Shapiro (Haralick and Shapiro, 1985) catego-

rize the di�erent segmentation procedures according to the

control algorithm they use, in:

� measurement space guided spatial clustering,

� region growing,

� spatial clustering and

� split and merge schemes.

In (Pal and Pal, 1993) the di�erent image segmentation tech-

niques are reviewed according to the used homogeneity pre-

dicate. It is made distinction between:

� gray level thresholding,

� iterative pixel classi�cation,

� surface based segmentation,

� segmentation of colour images,

� edge detection based approaches and

� methods based on fuzzy sets.

The method presented in the current article is a region grow-

ing scheme. As homogeneity predicate we use the a-posteriori

probability for the features of an image pixel to ful�ll an

a-priori model of a region. Similar approaches for the ho-

mogeneity predicate, embedded in di�erent segmentation

schemes have also been made in (Silverman and Cooper,

1988),(LaValle and Hutchinson, 1995).

In section 2 we describe our model assumptions. A closed

formula for calculating the probability of homogeneity is de-

rived in section 3. After a brief look at computational issues

in section 4, we give in section 5 an example for a simple,

planar model. Finally we show how the developed procedure

can be used for segmenting colour aerial images. Initial seed

regions for the region growing scheme and information on the

model type to be used are extracted from map knowledge.

1.1 Segmentation procedure

Our de�nition of segmentation follows (Pavlidis, 1977): it is

the partition of the image in pairwise disjunct regions Rr,

which, in their union cover the whole image. In order to

assign a pixel to a region, it must ful�ll two conditions:

� it must be neighbour with at least one other pixel of

the region (connectedness condition)

� a homogeneity predicate between the pixel and the re-

gion must evaluate to true (homogeneity condition)

We implement our segmentation procedure as a region

growing scheme: For each pixel of the image which is not

already marked as belonging to a region and which is neigh-

bour to at least one region a homogeneity predicate is tested.

The pixel is marked as belonging to the region for which the

tested predicate evaluates to true. The procedure stops when

all pixels are assigned to a region.

The homogeneity predicate is calculated using the a-posteriori

probability of a pixel for belonging to the current region. This

probability is calculated according to a model described in the

following section. We calculate the a-posteriori probability for

all regions, which the pixel is neighbouring. The homogeneity

predicate evaluates to true for the region with the highest

probability.

2 THE MODEL

2.1 Image formation

For simplicity of expression, we will call the quantities forming

the image light intensities. The presented scheme however is



not limited only to the segmentation of optical images, it can

also be applied to the segmentation of range images or other

types of images.

In an ideal image formation process the light intensities of

points in the scene form the intensity I(xk; yk) at pixel

(xk; yk) in the image. Because of degradation, the ,,true"

intensities I(xk; yk) are not observable, accessible are only

the gray values g(xk; yk) of the image. For simplicity we will

denote a location (xk; yk) only with its index k, e.g. instead

of g(xk; yk) we write gk.

We assume that the degradation is due to additive white noise

with a Gaussian probability density function (pdf) and zero

mean value. The noise is statistically independent from the

light intensities I(xk; yk). Nonlinearities due to saturation,

aliasing and quantization e�ects are neglected. Accordingly,

we have for the gray values in the image:

gk = Ik + n;

where n is a realization of the Gaussian white noise. This

leads for the a-posteriori pdf of the gray values in the image

to:

fg(gk j Ik) = 1p
2��

exp

�
� (gk � Ik)

2

2�2

�
;

where �2 is the variance of the Gaussian noise.

We also need a prior model for the light intensity I0 of the

pixel (x0; y0), for which the homogeneity condition is tested.

The prior model re
ects our expectations in the value of the

intensity I0 before the pixel was assigned to a particular re-

gion. Since a-priori we have no reason to believe that some

intensities are preferred, we assume a uniform density on the

bounded de�nition space DI . With �I = Imax � Imin, we

have:

fI(I0) =

�
1
�I

: I0 2 DI

0 : otherwise.

2.2 Region model

Our model for a region R is a parametric model. The ,,true"

light intensities of the pixels belonging to the same region

satisfy the equation:

I(xk; yk) =

JX
j=1

aj �j(xk; yk) (1)

with fk j (xk; yk) 2 Rg; aj 2 R.
The functions �j(x; y) are arbitrary, real-valued functions,

which are supposed to be known for a given region. How-

ever, it is not necessary that these functions are the same

for all regions in the image. In our task of map based seg-

mentation of aerial images, we choose the model of a region

( i.e. the functions �j(x; y)) according to knowledge gained

from maps.

The parameters aj ; j = 1; :::; J in equation (1) are unknown

and have to be estimated. However, as we will show later, if

we are interested only in the segmentation of the image and

not in the parametric description of the regions, the explicit

calculation of their values is not necessary. We assume that

these parameters are random variables over the set of regions

in the image and have an a-priori Gaussian pdf with meanmj

and standard deviation �j :

fa(aj) =
1p
2��j

exp

�
� (aj �mj)

2

2�2j

�
:

2.3 Homogeneity predicate

We now de�ne the predicate used for testing the homogeneity

condition. Let (xk; yk); k = 1; :::; K be the pixels already

marked as belonging to region Rr. Their (unmeasurable)

light intensities I(xk; yk) (or short Ik) ful�ll equation:

Ik =

JX
j=1

a
(r)

j �
(r)

j (xk; yk): (2)

We denote with (x0; y0) the pixel for which the homogeneity

predicate is tested in the current step. Its gray value is g0
and its light intensity is I0. The homogeneity predicate Hr

for pixel (x0; y0) and region Rr evaluates to true (Hr = 1),

if

I0 =

JX
j=1

a
(r)

j �
(r)

j (x0; y0): (3)

Otherwise, Hr evaluates to false (Hr = 0). According to this

de�nition, the conditional probability of the predicate Hr is:

PH(Hr=1 j a(r)j ; I0) =

8><
>:

1 : I0 =

JX
j=1

a
(r)

j �
(r)

j (x0; y0)

0 : otherwise.

PH(Hr=0 j a(r)j ; I0) and PH(Hr=1 j a(r)j ; I0) are comple-

mentary.

The random variables needed for testing the homogeneity

predicate according to equation (3) are unmeasurable. Ac-

cessible are only the gray values gk of the image. Hence,

we rede�ne our homogeneity predicate and consider the a-

posteriori probability PH(Hr = 1 j gk); k = 0; :::; K. We

call this expression probability of homogeneity. If the calcu-

lated value for the probability of homogeneity exceeds a given

threshold we take the decision, that pixel (x0; y0) belongs to

the region Rr

3 PROBABILITY OF HOMOGENEITY

To illustrate the dependencies between the di�erent random

variables which appear in the calculation of the probability of

homogeneity, we represent them in a Bayesian network (see

e.g. (Pearl, 1986)). The nodes of the network contain the

random variables. If there exists a direct causal in
uence of

one random variable on the behavior of a second one, an arc

of the graph leads from the node of the �rst variable to the

node of the second one. The strengths of the dependencies

are quanti�ed by conditional probabilities.

Consider the situation, where the homogeneity predicate for

pixel (x0; y0) and region Rr is tested. The region Rr =

f(xk; yk) j k = 1 : : : Kg already contains K pixels. The cor-

responding Bayesian network is given in Figure 1. The proba-

bility for the homogeneity predicate to evaluate to true given

the gray values of the image (i.e. the probability of homogene-

ity) is calculated considering the dependencies given in the

network. After successful predicate testing the Bayesian net-

work is updated since the number of pixels in the region has

increased. Each decision situation has its particular Bayesian

network.

The probability of homogeneity can be written as:

P (Hr=1 j fgkg; g0) =
P
�
Hr=1; fgkg; g0

�
P
H

P
�
Hr; fgkg; g0

� =
PZ

PN
:

(4)
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Figure 1: Bayesian network for a particular decision situation

The nominator PZ of equation (4) is calculated by margina-

lizing the joint probability distribution:

PZ =
X
a
(r)
j

X
I0

P (Hr=1; fa(r)j g; I0; fgkg; g0)

with j = 1; :::; J; k = 1; :::; K. Considering the de-

pendencies between the random variables in the Bayesian

network in Figure 1, the joint probability distribution

P
�
Hr; fa(r)j g; I0; fgkg; g0

�
of the random variables in the

network results to:

P
�
Hr; fa(r)j g; I0; fgkg; g0

�
= PH(Hr j fa(r)j g; I0)�

P (g0 j I0) P (I0)

� KY
k=1

P
�
gk j fa(r)j g

��� JY
j=1

P (a
(r)

j )

�
:

Using the probability density functions as given in section 2

and observing that for the pixels (xk; yk); k = 1; :::; K al-

ready assigned to region Rr equation (2) is ful�lled, the ex-

pression for PZ becomes to:

PZ=

Z
a
(r)
1

: : :

Z
a
(r)

J

Z
I0

PH(Hr=1 j fa(r)j g; I0) 1

�I
�

1p
2��

exp

�
� (g0 � I0)

2

2�2

�
1�p

2��
�N �

0
B@ NY

k=1

exp

0
B@�

�
gk �

�PJ

j=1
a
(r)

j �
(r)

j (xk; yk)

��2
2�2

1
CA
1
CA�

1�p
2��j

�J
 

JY
j=1

exp

 
� (a

(r)

j �mj)
2

2�2j

!
daj

!
dI0

Because PH(Hr = 1 j fa(r)j g; I0) = 1 only for I0 =PJ

j=1
a
(r)

j �
(r)

j (x0; y0), after calculating the integral with re-

spect to I0, the expression for PZ results to:

PZ =

Z
a
(r)
1

: : :

Z
a
(r)

J

1

�I

1�p
2��
�N+1

1�p
2��j

�N �
0
B@ NY

k=0

exp

0
B@�

�
gk �

�PJ

j=1
a
(r)

j �
(r)

j (xk; yk)

��2
2�2

1
CA
1
CA�

 
JY
j=1

exp

 
� (a

(r)

j �mj)
2

2�2j

!
daj

!
(5)

The results of the integrals in equation (5) can be expressed

in a closed form. The detailed calculation is given in (Quint,

1994). The integrals which appear in the denominator of

equation (4) are calculated in a similar way. One �nally ob-

tains for the probability of homogeneity:

P (Hr = 1 j fgkg; g0) = 1

fg0
p
2��

N
3
2

p
detC

(N + 1)
3
2

p
detC�

�

exp

�
N detCext

2�2 detC
� (N + 1) detC

�

ext

2�2 detC�

�
(6)

Being a probability, the values taken by expression (6) are in

the domain: P (Hr = 1 j fgkg; g0) 2 [0; 1].

In equation (6), the factor fg0 is de�ned as:

fg0 =
1

2
erf

�
g0 � Iminp

2�

�
+

1

2
erf

�
Imax � g0p

2�

�

where erf(x) is the Gaussian error function:

erf(x) =
2p
�

Z x

0

exp
�
�t2
�
dt:

Using images with eight bits per pixel, the minimal and max-

imal intensity values are: Imin = 0 and Imax = 255.

The elements of the matrices appearing in equation (6) are

given in Table 1. The matrix C = (cij) is J � J and com-

posed of the elements cij ; i; j = 1; :::; J given in Table 1.

The matrix Cext = (cij) is (J + 1) � (J + 1). The upper

left J � J submatrix of Cext is identical with the matrix C.

Column and row J + 1 respectively are composed of the el-

ements cj;J+1 given in Table 1. The matrices C�and C�
ext

are constructed in a similar way, but now the elements c�ij
from Table 1 are used. All matrices are symmetrical. For

computing the matrix elements cij , the summation has to be

done over the product of the functions �
(r)

i and �
(r)

j at all

pixel locations (xk; yk); k = 1; :::; N already marked as be-

longing to region Rr. In addition to this, for calculating c�ij
the summation is extended over the pixel (x0; y0) for which

predicate testing is under way.

4 COMPUTATIONAL ASPECTS

For calculating the probability of homogeneity for a regionRr

and a pixel (x0; y0), partial knowledge of the regions model

is necessary: the functions �
(r)

j have to be known for the re-

gion. However, this does not assume, that these functions are

the same for all possible regions of the image. The complete

model of a region is given if one also knows the coe�cients

a
(r)

j in the linear combination (2). These coe�cients could

be estimated from the gray values of the image. Since we are

only interested in the segmentation of the image and not in

the actual values of these coe�cients, in our segmentation



cjj =
1

N

KX
k=1

�
�
(r)

j (xk; yk)

�2
+

�2

N�2j
c
�

jj =
1

N + 1

KX
k=0

�
�
(r)

j (xk; yk)

�2
+

�2

(N + 1)�2j
j = 1; :::; J

cij =
1

N

NX
k=1

�
(r)

i (xk; yk) �
(r)

j (xk; yk) c
�

ij =
1

N + 1

NX
k=0

�
(r)

i (xk; yk) �
(r)

j (xk; yk) i; j = 1; :::; J

i 6= j

cj;J+1 =
1

N

NX
k=1

�
(r)

j (xk; yk) gk +
�2 mj

N�2j
c
�

j;J+1 =
1

N + 1

NX
k=0

�
(r)

j (xk; yk) gk +
�2 mj

(N + 1)�2j
j = 1; :::; J

cJ+1;J+1 =
1

N

NX
k=1

g
2
k c

�

J+1;J+1 =
1

N + 1

NX
k=0

g
2
k

Table 1: De�nition of the matrix elements used in the calculation of the probability of homogeneity

procedure the estimation is not done explicitly. The calcu-

lation of the probability of homogeneity can be performed

without knowing the actual values of the coe�cients a
(r)

j for

the current region.

It is possible to calculate the matrix elements given in Table 1

iteratively. One observes that after a successful assignment of

a pixel to a region, the matrix elements c�ij of the current step

will become the matrix elements cij of the next step. Thus,

for testing the homogeneity predicate, only the elements c�ij
have to be calculated. These elements can be calculated

iteratively using the elements cij from the previous step.

The computational complexity depends from the size of the

model used, i.e. from the number J of functions used in the

linear combination (2). The main e�ort spent in the calcu-

lation of the probability of homogeneity is for the calculation

of the determinant of a (J + 1) � (J + 1) matrix. Due to

iterative calculation the e�ort is independent from the size

(number of pixels N) of a region.

5 A SIMPLE EXAMPLE

To illustrate the usage of our approach with a simple example,

we assume that the image is composed part by part of planar

surfaces. Although this is a limitation, it can be used with

good approximation for range images of scenes with mostly

planar surfaces or even for light intensity images of objects

without textured surfaces. It is a reduction to the simplest

case of a polygonal approximation of surfaces, which is often

used in the segmentation of range images, see e.g. (Besl,

1988), (Silverman and Cooper, 1988).

In this case, the model functions for the regions to be seg-

mented are:

�1(xk; yk) = xk

�2(xk; yk) = yk

�3(xk; yk) = 1

and J = 3. According to the de�nitions given in Table 1 the

matrices C and Cext take the form:

C =

0
@ sx lxy mx

lxy sy my

mx my 1 + �2

N�2
3

1
A

Cext =

0
BBB@

sx lxy mx lxg
lxy sy my lyg

mx my 1 + �2

N�2
3

mg +
m3�

2

N�2
3

lxg lyg mg +
m3�

2

N�2
3

sg

1
CCCA

and the matrix elements are de�ned as follows:

sx =
1

N

KX
k=1

x
2
k +

�2

N�21
sy =

1

N

KX
k=1

y
2
k +

�2

N�22

sg =
1

N

KX
k=1

g
2
k lxy =

1

N

NX
k=1

xkyk

lxg =
1

N

NX
k=1

xkgk+
m1�

2

N�21
lyg =

1

N

NX
k=1

ykgk+
m2�

2

N�22

mx =
1

N

NX
k=1

xk my =
1

N

NX
k=1

yk

mg =
1

N

NX
k=1

gk:

The elements of the matrices C� and C�
ext

are computed

in a similar way. For these matrices, the summations in the

de�nition of their elements start with index k = 0.

To test the sensitivity of our approach with respect to degra-

dation with noise and with respect to violations of the model

assumptions, we have used a synthetic image. In the upper

left area of the image, the gray values rise from background

level with a constant slope of two gray values per column

until the middle column of the image. In continuation of the

�rst region, the gray values fall in region 2 with the same

slope until they reach background level. The gray values in

region 3, which is situated in the middle of the image, violate

the model assumptions: they depend upon a parabolic rule

from their position. In region 4, situated in the bottom of

the image, the gray values have a slope of 1:5 in both row

and column direction. Within each region absolute gray value

di�erences up to 200 occur.

The segmentation results for the synthetic image degraded

with Gaussian white noise of di�erent variances and for dif-

ferent parameter settings are given in (Landes, 1995). In

Figure 2, the segmentation result for the synthetic image de-

graded with Gaussian white noise with the variance �2n = 30



Figure 2: Segmentation result of the synthetic image de-

graded with Gaussian white noise with �2n = 30

is given. As model parameters we have used in this case:

m1 = m2 = 0; m3 = 128; �1 = �2 = �3 = 3 and �2 = 30.

We have used the value � = 0:8 as the decision threshold in

the homogeneity predicate testing.

Experiments have shown that the segmentation results for

regions for which the correct model was chosen are good up

to values for the standard deviation of the added noise which

are three times higher than the gradient of the gray values

within the region. At the left border of region 1 and the

right border of region 2 there appear inaccuracies which are

expected since the gray values of the two regions reach at

these borders background level. Model violations, as shown

with region 3 of the synthetic image, are partly tolerated.

It is mainly the parameter �2 which controls the amount

of noise or model violation tolerated by the segmentation

algorithm. For optimality, this parameter should be chosen

equal to the actual noise variance in the image. Choosing this

parameter smaller than the variance of the actual noise results

in a segmented image containing many single points rejected

by the algorithm. However, these points could be eliminated

in a following stage by morphological operations. Choosing

this parameter bigger than the variance of the actual noise

is more critical since in this case di�erent regions could be

merged in the segmented image.

6 AERIAL IMAGE SEGMENTATION

We are using the homogeneity predicate described in this arti-

cle for the segmentation of colour aerial images. The regions

gained this way are used together with line segments as prim-

itives in our model based aerial image understanding system

Moses (Quint and Sties, 1995).

As a control algorithm for the segmentation process a region

growing scheme is used. The process starts with a set of

initial seed regions. For all regions, pixels are sought which are

neighbour to at least one region and which are not yet marked

as belonging to a region. The probability of homogeneity

is calculated for these pixels and each of their neighbouring

regions. If this probability exceeds the decision threshold �,

the pixel is marked as belonging to the corresponding region.

If the initial regions cannot be extended any longer new seed

regions are chosen in areas with small gray value di�erences.

The digital images used in our project are acquired by scan-

ning aerial colour photographies and have a raster size of

30 cm� 30 cm on the ground. The image in Figure 3 shows

a part of the campus of University of Karlsruhe. The German

Topographic Base Map 1:5000 which is available in digital

form is used to gain estimates for the positions of initial seed

regions. In order to obtain stable values in the calculation

of the probability of homogeneity, seed regions should have

a minimum size. Experiments have shown, that an initial

region size of 5� 5 pixels is suitable.

Map knowledge is also used to choose the model for a given

region according to the known class of the objects. For the

segmentation of the image in Figure 3 we have used two

types of models: the planar model presented in section 5 for

regions corresponding to buildings, parking areas and streets,

and a Markov Random Field (MRF) model for wood and grass

regions. MRF approaches already have been used in previous

work (see e.g. (Cohen and Fan, 1992), (Herlin et al., 1994))

for the segmentation of textured surfaces.

In our approach we use a second order MRF model:

1X
l=�1

1X
m=�1

alm (I(xk � l; yk �m)� �k) = 0:

Since the light intensities Ik are unmeasurable they are re-

placed with the gray values at the corresponding pixel loca-

tion. Hence, the model functions �j(xk; yk) in equation (1)

are:

�j(xk; yk) = g(xk � l; yk �m)� �k

with l;m 2 f�1; 0; 1g excepting the pair (l;m) = (0; 0).

There are eight model functions and thus for the probability

of homogeneity determinants of 8�8 and 9�9 matrices have

to be calculated. For the parameter �k we use the local mean

of the gray values in the neighbourhood. The variance �2 of

the noise in the three channels of the images is estimated

using the method described in (Br�ugelmann and F�orstner,

1992).

For each channel we calculate the corresponding probability

of homogeneity. The value used for testing the homogeneity

predicate is obtained in analogy to the law of total probability

as a linear combination of the three probabilities of homo-

geneity. The factors in this linear combination are chosen

inverse proportional to the variance of the noise in the corre-

sponding channel.

Figure 4 gives the segmentation result of the aerial image of

Figure 3. Pixels belonging to the same region are marked in

Figure 4 with the same gray value. As a decision threshold the

value � = 0:8 was used. A number of 14 initial seed regions

were extracted from the map. After our segmentation the

image was divided in 86 regions. As one can observe, man

made objects like buildings, streets and walking ways, for

which the planar model was used, are segmented with good

accuracy. The MRF model provided good results in the area

with regular planted trees in the lower left corner of the image,

but di�culties arise in the wood area in the upper part of the

image. The gray values in this area are very inhomogeneous

and cannot be represented by the used model. As a result,

the wood area was splitten into several regions.

7 SUMMARY AND CONCLUSION

Our approach for a homogeneity predicate is based on the

a-posteriori probability for a pixel to ful�ll the model assump-

tions for a region. For some practical relevant models (poly-

gonal surfaces, MRF models) we have derived a closed for-

mula to calculate the probability of homogeneity. Using this



Figure 3: Aerial image Figure 4: Segmentation result

formula, the computational e�ort depends only from the size

of the model and is independent from the size of the seg-

mented region.

The homogeneity predicate is used in a region growing

scheme, but it can also be used in other control algorithms for

image segmentation or clustering. Experiments with synthe-

tical images have shown, that the most important parameter

of our approach is the variance of the noise in the image. For

segmenting aerial images, this variance is estimated using an

algorithm from the literature. Initial seed regions and the

model type to use is extracted from map data. The segmen-

tation results are good for non-textured areas and for areas

with regular texture. For irregular textured surfaces experi-

ments with higher order MRF-models will be performed.
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