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ABSTRACT

The purpose of the system MOSES is the automatic recognition of objects in aerial images. In this system, a model based

structural image analysis is performed. Speci�c models are gained through the analysis of digital maps. The models are stored

in seantic networks. Image analysis is implemented as a search. To direct this search, one has to evaluate each state of the

analysis process. One part of the computed valuations is the model �delity, which is a measure for the goodness of match

between the choosen image primitives and the speci�c model. We present in this article the procedures used to compute the

model �delity for line segments and polygons.

KURZFASSUNG

Das System MOSES dient der automatischen Erkennung von Objekten in Luftbildern. Es f�uhrt eine modellbasierte, strukturelle

Bildanalyse durch, wobei spezi�sche Modelle der zu analysierenden Szene durch die Analyse von digitalen Karten gewonnen

werden. Die Modelle werden in semantischen Netzen gespeichert. Der Analysevorgang ist ein Suchvorgang, zu dessen Steuerung

Bewertungen des aktuellen Analysezustandes anzugeben sind. Ein Teil dieser Bewertungen ist die Modelltreue, die angibt, wie

gut die ausgew�ahlten Bildprimitiven zu dem vorgegebenen Modell passen. In diesem Artikel stellen wir die Prozeduren vor,

mit denen die Modelltreue f�ur Strecken und Polygone berechnet wird.

1 INTRODUCTION

Understanding of aerial images is one of the most challeng-

ing tasks in computer vision. Due to its complexity, a model

based analysis has been found to be mandatory since several

years, see e.g.(Agin, 1979), (Matsuyama and Hwang, 1990),

(McKeown et al., 1985), (Nicolin and Gabler, 1987), (San-

dakly and Giraudon, 1994), (Stilla, 1995). In our system

MOSES (Map Oriented SEmantic image underStanding)

(Quint and Sties, 1995) we too perform a structural, model

based analysis. We are interested in the recognition of objects

in urban environment using large scale aerial images.

2 MOSES

One of the main characteristics of the system MOSES is

that large scale topographical maps are used to automati-

cally re�ne the models used for image analysis. Thus the

object recognition process consists of three phases. The ar-

chitecture of our system is shown in Fig. 1. The generative

model contains domain independent, common sense knowl-

edge the system designer has about the environment. The

generic models in the map domain and in the image domain

are specialisations of the generative model and they re
ect

the particularities of the representations of our environment

in the map and image respectively. The models contain both

declarative knowledge, which describes the structure of the

objects, and procedural knowledge, which contains the meth-

ods used during the map and image analysis process. As a

repository for the models semantic networks (Findler, 1979)

are used, as implemented by the system ERNEST (Kummert

et al., 1993).

The generative model and the generic models are that part

of the system which is build by the system developer. The

models and scene descriptions decribed in the sequel are au-

tomatically build in analysis processes.

scene description

generative model

generic model generic model

scene description specific model

scene domain

map domain image domain

Figure 1: Architecture of the system MOSES

2.1 Map analysis

In the �rst phase, the generic model in the map domain is

used to analyse the map, which is available as a list of dig-

itized contours. The map analysis process is similar to the

image analysis process which will be described in a following

section. The result of the map analysis process is a descrip-

tion of the scene, as far as it can be constructed out of the

map data. The scene description is stored in a semantic net-

work. The nodes of the semantic network represent objects,

parts and subparts of the scene. They are described with

attributes, which in this case mainly contain their geomet-

ric properties. Links between the nodes represent relations

between the corresponding objects or parts. The part-of re-

lation describes the structure of the scene objects and along

a specialisation link properties are inherited.
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Figure 2: Detail of the part-of hierarchy of the speci�c model

2.2 Model building

In the second phase the scene description obtained after the

map analysis is combined with the generic model in the image

domain and results in the speci�c model in the image domain.

A detail of the speci�c model, representing building nr. 0235

and its parts as far as they are given in the map, is given in

Fig. 2. For each node (instance) in the scene description we

create in the speci�c model a new node (concept), which is

a specialisation of the corresponding concept in the generic

model in the image domain. This new concept inherits the

declarative and procedural knowledge of the concept in the

generic model.

The values of the attributes in the scene description after

map analysis are stored as restrictions for the corresponding

attributes of the newly created concepts. They serve as ini-

tial estimates while verifying these values in the image data.

The links between the instances in the scene description are

transfered accordingly into links between the new concepts.

Whilst the generic model in the image domain describes the

representation of an arbitrary scene in an aerial image in a

very general form, the speci�c model in the image domain

describes in a detailed manner that part of the world, which

is subject to the current analysis. The grade of detail depends

of course from the contents of the map.

2.3 Image primitives

Prior to the model based image analysis primitives are ex-

tracted from the image data. We work with large scale color

aerial images, which after digitization have a pixel size of 30

cm x 30 cm on the ground. As primitives serve line seg-

ments and regions. The line segments are extracted with

a gradient based procedure (Quint and B�ahr, 1994). The

regions are gained by segmenting the aerial image using a

Bayesian homogeneity predicate (Quint, 1996). The regions

and the line segments are combined in an attributed undi-

rected graph. The nodes of the graph are attributed with the

regions. Nodes corresponding to neighbouring regions are

connected with links. A link between two nodes is attributed

with the line segment(s) which build the border between the

corresponding regions. This feature graph is the database on

which the model based image analysis operates.

2.4 Image analysis

In the third phase the speci�c model in the image domain is

used to perfom the actual image analysis. The aim of this

phase is to verify in the image the objects found after the

map analysis and to detect and describe other objects of the

scene which are not represented in the map. For the later,

the context gained through the veri�cation of the map objects

will be helpfull.

The strategy followed in the analysis process is a general,

problem independent strategy provided by the shell ERNEST.

The analysis starts by creating a modi�ed concept for the goal

concept (expansion step). A modi�ed concept is a preliminary

result and it re
ects constraints for the concept that have

been determinated out of the context of the current analysis

state.

Following top-down the hierarchy in the semantic network,

stepwise the concepts on lower hierarchical levels are ex-

panded until a concept on the lowest level is reached. Since

this concept does not depend from other concepts, a corre-

spondence between him and a primitive in the data base can

be established and its attributes can be calculated. We call

this instantiation. Analysis now moves bottom-up to the con-

cept at the next higher hierarchical level. If instances have

been found for all parts of this concept, the concept itself

can be instantiated. Otherwise the analysis continues with

the next uninstantiated concept on a lower level. Thus, in

the analysis process top-down and bottom-up processing al-

ternate. After an instantiation, the acquired knowledge is

propagated bottom-up and top-down to impose constraints

and restrict the search space. As well, expansion and instan-

tiation alternate during the analysis.

Generally, while performing an instantiation it is possible

to establish several correspondences between a concept and

primitives in the data base. However, only one of these cor-

respondences leads to the correct interpretation. Since it

usually is not possible to ultimately decide at the lower levels

which correspondence is correct, all possible correspondences

have to be accounted for.

Thus, the image analysis is a search process, which can be

graphically represented by a tree. Each node of the tree rep-

resents a state of the analysis process. If in a given state sev-

eral correspondeces are possible, the search tree is splitted:

for each hypothesis a new node as successor of the current

node is created.

The analysis process continues with that leaf node of the

search tree, which is considered to be the best according to

a problem dependent evaluation. It is know that the problem

of �nding an optimal path in a search tree can be solved by

the A�-algorithm (Nilsson, 1982). Its application is possible

if one can evaluate the path from the root node to the current

node and if one can give an estimate for the valuation of the

path from the current node to the (not yet known) terminal

node containing the solution.
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Figure 3: Parameters used to describe a line segment

3 VALUATIONS

The functions which evaluate the states of the analysis are

very important since they are not only responsible for the

e�ciency of the search, but they are also decisive for the

success or failure of the analysis. We relate the valuation

of the search path to the valuation of the analysis goal in

the given state of the analysis. The valuation of the goal

is calculated considering the valuations of the instances and

modi�ed concepts already created and the estimates for the

valuations of the instances and modi�ed concepts which will

be created in the path from the current node to the solution

node.

When an instantiation is performed implicitly a hypotheses

of match is established between the concept, for which the

instantiation takes place and the chosen primitives from the

data base. Since we can not ultimately decide at the moment

the instantiation is performed, if it is the correct one, we are

working under uncertainty and we have to quantify our un-

certainty. Thus, at the level of each concept in the semantic

network, we have a dichotomous frame of discernment with

the events: the chosen primitives

� match

� do not match

to the concept (i.e. model).

The valuations computed for the instances and modi�ed con-

cepts in each state of the analysis are measures of our sub-

jective belief in these hypotheses. We embed the valuations

in the Dempster-Shafer theory of evidence (Shafer, 1976).

The di�erent valuations are combined and propagated in the

hierarchy of the semantic network to result in the valuation

of the analysis goal.

We impose the condition for a valuation to be a number

between 0 and 1. The higher the valuation is, the higher is our

subjective belief in the corresponding hypothesis. Since the

valuations are used to compare di�erent states of the analysis,

there is no need for absolute exactness of their values, but

only the relations in the ranking of the analysis states and

the corresponding valuations have to be preserved.

We evaluate two aspects for our hypotheses of match: the

compatibility and the model �delity. The compatibility evalu-

ates an analysis state considering the principles of perceptual

grouping. It is calculated based on geometric, topologic and

radiometric properties of the image primitives only. In this

category belong for example the goodness of �t of several

Figure 4: Neighbourhood function for the postion of line seg-

ments

line segments extracted from the image data to form an edge

of an object, the goodness of �t of several edges to form a

polygon, the compatibility of the polarity of edges to form

a polygon etc. The model �delity measures the goodness

of �t between the image primitives and the speci�c model

gained through the analysis of the map. Portraying it in sim-

pli�ed terms, one can say that the compatibility is a measure

for the ability of the chosen image primitives to form an ob-

ject, whereas the model �delity is a measure for the ability

to form exactly that object, which is predicted by the map.

We present in this article some of the measures used for the

evaluation of the model �delity.

4 MODEL FIDELITY

4.1 Model �delity for line segments

At the level of line segments we de�ne the model �delity with

help of a distance function between the image primitves and

the contours stored in the speci�c model after map analysis.

The distance functions results from a metric de�ned with help

of a set of square integrable funtions on the parametric space

for line segments.

We describe a line segment with the coordintes of its starting

point, its length and the angle between the line and positive

x{axis (see Fig. 3). Thus, a line segment si is represented

in the space S = (x; y; l; �) by the point si = (xi; yi; li; �i).

The coordinates of a line segment take values (x; y) 2 R2 , the
lenght of line is in l 2 R+ and the angle is in � 2 (��

2
; �
2
].

The space (x; y; l; �) is the cartesian product of the before

mentioned subspaces and is di�erent from R
n . For this rea-

son we do not use the euclidean distance between two points

in this space to calculate the distance between two line seg-

ments, but use instead a metric de�ned on an isomorphic

space of functions.

We de�ne an isomorphism by attaching each point si in the

space S a function ni(x; y; l; �) from the space of square inte-

grable functions L2
(S). We call this function neighbourhood

function. As a distance between two line segments si and sj
we now use the distance de�ned on the family of functions ni.

It is well known, that a distance de�ned with the expression:

dij =

�Z
S

�
ni(x; y; l; �)� nj(x; y; l; �)

�2
dx dy dl d�

� 1
2

(1)

induces a metric on L2
(S). If we choose the functions

ni(x; y; l; �) such, that their norm in the above given met-
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Figure 5: Position �delity as a function of d (Fig. 3)

ric is equal to 1, i.e.Z
S

�
ni(x; y; l; �)

�2
dxdy dl d�

!
= 1; (2)

the expression (1) simpli�es to:

dij =

�
2� 2

Z
S

ni(x; y; l; �)nj(x; y; l; �)dxdy dl d�

� 1
2

:

(3)

The distance dij decreases when the integral in eq. (3) in-

creases. If the neighbourhood functions are positive functions

the integral in eg. (3) takes values between 0 and 1.

We have formulated our search problem using as evaluations

of the nodes in the search tree merit functions and not cost

functions. The reason for this is pragmatic: it is more natural

to evaluate the goodness than the badness of a match. Thus,

we will not use the distance as given by equation (3) as a

measure of the model �delity, but only the integral in equation

(3):

mij =

Z
S

ni(x; y; l; �)nj(x; y; l; �)dxdy dl d� (4)

This integral equals to the cosinus of the angle between the

two versors ni and nj in the vector space L2
(S) and can

be thought of as a correlation measure between these two

versors.

The neighbourhood functions are chosen regarding the

physics of the image formation process and some heuris-

tics motivated by experience. We construct the function

ni(x; y; l; �) as a product of three functions de�ned on R
2 ;R+

and (��
2
; �
2
] respectively:

ni(x; y; l; �) = fi(x; y) gi(l)hi(�)

Since the parameters of the camera and the position of the

airplane at the moment the aerial image was taken are known,

we can determinate the transformation between the image

coordinates and the coordinates in the speci�c model (map

coordinates). Using this we transform the image primitives

into the map coordinate system. Assuming that the corre-

sponding contours are depicted in the map, there are several

error sources which are responsible for the fact that the line

segments extracted from the image will not overlap with the

map contours. These are for example inaccuracies in:

� the extraction of line segments from the image,

� the determination of the transformation parameters,

� the aquisition and digitization of the map data.

Subsuming all these e�ects, we can safely assume that the po-

sition of the image primitives is normally distributed arround

their "true" position as given by the speci�c model.

For this reason we use as a neighbourhood function fi(x; y)

for the position of the line segments a Gaussian shaped func-

tion. However, since we do not want to evaluate di�erently

the situations when a short line segment lies in the middle

of its model line or closer to the endpoints, our function is

constant along the length of the line. We choose for the

neighbourhood function fi(x; y):

fi(x; y) = Kxy exp

 
�
�
(x� xi) sin �i � (y � yi) cos �i

�2
2�2

!

for positions (x; y) between the endpoints of a line, i.e.

f(x; y) j (x � xi) cos �i + (y � yi) sin �i � 0 && (x �
xi) cos �i + (y � yi) sin �i � lig, and fi(x; y) = 0 other-

wise. The neighbourhood functions fi(x; y) and fj(x; y) for

the example of the line segments in Fig. 3 are displayed in

Fig. 4. The variance of the Gaussian is chosen equal to the

residual mean square error of the transformation.

For the part of the neighbourhood function, which depends

from the length of the line, we choose a function, which is

proportional to the square root of the lengh "inside" the line

and 0 "outside":

gi(l) =

�
Kl

p
l if l 2 [0; li]

0 otherwise

As we will see later, this choise penalizes image primitives

proportional to the ratio of their length and the lenght of the

model contour.

The considerations regarding the uncertainty of the position

of line segments applies also for small deviations of the an-

gle. Thus, the neighbourhood function for the angle is cho-

sen following similar re
ections. But, because the domain of

de�nition of the angle is an interval and because we want

a stronger penalization of large deviations of the angle, we

use a trigonometric function instead of the Gaussian shaped

function:

hi(�) = K� cos(� � �i)

The constants Kxy; Kl and K� are calculated imposing nor-

malization for each of the partial neighbourhood functions.

Thus we also assure the ful�llment of condition (2).

With this choise of neighbourhood functions, the integral for

the model �delity is separable into three terms: the position

�delity, the length �delity and the angle �delity. The integral

over the product of the neighbourhood functions for the po-

sition, i.e. the position �delity can generally not be expressed

in a closed form. However, if the angle between the two lines

is small or the parameter � is is in the same order of magni-

tude as the mean geometric distances between the two line

segments, which can be safely assumed in our situation, then

a good approximation is given by:Z
R2

fi(x; y)fj(x; y)dxdy =

p
��

li sin��
��

erf

�
u1 sin�� �A

�
p
2 + 2 cos��2

�
� erf

�
u2 sin�� �A

�
p
2 + 2 cos��2

��



where �� = �j��i; A = �(xi�xj) sin �j+(yi�yj) cos �j
and u1 and u2 are the u-coordinates of the endpoints of line

li in a coordinate system with origin in the starting point of

line lj and where the u-axis is the line lj . For the situation

shown in Fig. 3 the position �delity varies with a parallel

displacement of a line as a function of d as shown in Fig. 5.

The integrals over the neighbourhood functions for the length

and the angle of the line segments can be expressed in closed

form and result to:Z
R+

gi(l)gj(l)dl =
min(li; lj)

2

lilj

and Z �=2

��=2

hi(�)hj(�)d� = cos(�i � �j)

The length �delity amounts thus to the ratio of the lenght of

the shorter line to the lenght of the longer line. The angle

�delity is the cosinus of the angle di�erence of the two lines.

The total model �delity for line segments is given by the

product of the three components.

Usually, due to noise in
uence the visible contour of an ob-

ject in the image is broken and thus several line segments will

form that contour. In this case, the contour is constructed

step by step by adding another line segment until the con-

tour is completed. The A�-algorithm requires also an opti-

mistic estimate of the merit for future instantiations. Given

a partially instantiated contour an optimistic prediction for

the future instantiations is obtained when one elongates the

already instantiated contour until the model is completed.

The estimate of the model �delity for line segment for the fu-

ture instantiations is also computed with the above described

procedure for the predicted contours.

4.2 Model �delity for polygons

A di�erent approach for the model �delity is used at the hier-

archical level of polygons. Whilst at the level of line segments

the similarity in positon and orientation between the selected

image primitives and the model contour has been evaluated,

we evaluate at the level of polygons the similarity between

the shape of the polygon created by the image primitives and

the shape of the model polygon.

The corner points of the polygon in the image domain are

obtained as intersections of the choosen image primitives.

In the case where several image primitives form an edge of

an object, these primitives are replaced for the purpose of

the corner point calculation with a regression line. The er-

ror produced by the approximation with the regression line is

taken into account in the valuations of the compatibility. In

the case where no correspondence could be established be-

tween an edge of an object and an image primitive we make

a wildcard assignment to the current edge. In this case the

correspondig corner points are choosen to be the end point

of the image primitive assigned to the edge previous to and

the starting point of the image primitive assigned to the edge

after the wildcard-assigned edge. The wildcard assignments

however lead to a a penalization in the model �delity of the

line segments.

To not include position and orientation errors in our measure

we �rst transform the polygon in the image domain on the

model polygon. We take a similarity transformation between

the corresponding corner points of the two polygons and cal-

culate the transformation parameters such that the residual

mean square error is minimal. Since the scale of the image

and the map are known, we �x the scale parameter in the

similarity transformation to the known value.

The resulting minimal mean square error is a measure for

the similarity of the shapes of the two polygons. We gain

our subjective belief in the hypotheses of match between the

image polygon and the model polygon with help of a fuzzy

function:

pij(r) = exp

�
� r2

�2r

�
where r is the residual mean square error after the transfor-

mation and �r is a parameter whose value is determinated by

experiment. As experiments have shown the image analysis

process is robust with respect to this parameter.

5 Conclusion

We presented a method to derive a merit function for guid-

ing search in a model based image analysis system. The

Dempster-Shafer theory of evidence serves as a theoretical

background. To propagate valuations calculated at di�erent

levels of the hierarchical approach we have extended propos-

als found in the literature to suit our needs.

The derived merit function gives a common ground for the

comparison of paths developed further with paths abandoned

earlier in the search tree. The main di�culty in �nding a merit

function for informed search methods is to give an estimate

for the merit of the yet unknown path from the current node

to the solution node of the search tree. An important prop-

erty of the derived merit function is, that it is not necessary

to assign valuations to yet unknown instances and modi�ed

concepts. By explicitly modeling the lack of knowledge with

the methods o�ered by Dempster-Shafer theory, our formal-

ism provides in a natural way the required overestimate for

the merit of the yet unknown path from the current node to

the solution node of the search tree.

The experiments have shown that our merit function can

be used successfully to guide search with an "-A�-algorithm.

The merit function is robust with respect to the parameter

" and leads to a good solution for values of " up to a prob-

lem dependent upper bound. Higher values of the parameter

" lead to a considerable speed up and smaller memory re-

quirement of the analysis process. Several other factors also

contribute to the success of the analysis process, i.e. the val-

uations computed for the instances and modi�ed concepts at

the di�erent levels of the hierarchical model, although they

are not in the scope of this paper. For de�ning these valu-

ations we take advantage of having a speci�c model for the

objects to be recognized in the image. This speci�c model is

automatically build by our system through the analysis of the

available map of the scene. We plan to extend out system to

recognize objects in the image, which are not represented in

the map and for which a speci�c model is thus not available.
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