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Abstract. To analyse aerial images we are using a model based, struc-

tural, hierarchical process implemented in the system MOSES. Semantic

networks are used as modeling tools. In a three stage scheme, the models

are successively re�ned and for image analysis an automatically gener-

ated semantic network, specialized in the analysis of a concrete scene is

used.

In this article we present the merit function used to guide search in the

image analysis process. Relying on the Dempster{Shafer theory of evi-

dence we extend approaches from the literature to combine subjective

valuations at di�erent hierarchical levels. We show how a merit function

for informed search methods can be built using the induced basic be-

lief assignment for the goal concept of the analysis. Making use of the

capability of Dempster{Shafer theory to explicitly handle lack of knowl-

edge, our formalism leads to an overestimate of the merit for the search

path from the current node to the solution node. Experiments using the

described merit function in an "{A�{algorithm are presented.

1 Introduction

Image analysis is implemented in our system MOSES1 (Map Oriented SEmantic

image underS tanding) [1], [11] as a model based, structural approach. We are

using line segments gained from large scale color aerial images in a preceding

feature extraction step as primitives for the structural analysis process. Context

information is acquired from the German Topographic Base Map 1:5000.

Four di�erent models are used in MOSES. For representing these models we

use semantic networks as implemented by the shell for knowledge based analysis

ERNEST [8]. Three of the models are scene independent and are speci�ed by

the system developer. The fourth is speci�c for the scene to be analysed and

is generated automatically. It is the one actually involved in the task of image

analysis.

The most general of our scene independent models is the generative model,

which describes our environment in the scene domain. The knowledge contained

1 This research is funded by the Deutsche Forschungsgemeinschaft (DFG)



in this model is of declarative nature and is general, common sense knowledge

we have about our environment. This model is further re�ned, resulting in two

generic models: the generic model in the map domain and the generic model

in the image domain. Besides the common properties inherited from the gener-

ative model, they re
ect particularities of the representations in the map and

image domain. Both generic models contain methods necessary for performing

the analysis in their respective domain. These methods comprise functions for

feature extraction, for the calculation of attribute values from the image or map

data and functions for evaluating the preliminary and �nal analysis results.

The generic model in the map domain is used for map analysis. We gain

this way a description of the scene as far as it is represented in the map. By

combining this scene description with the generic model in the image domain we

automatically generate a new semantic network, the speci�c model. This model,

which is speci�c for the current scene, is used in the automatic image analysis

process.

In the analysis processes we use the task independent control algorithm pro-

vided by the shell ERNEST. With a combined top{down and bottom{up stra-

tegy over the part and concrete hierarchy of the semantic network, restrictions

are propagated and correspondences between primitives in the database and

concepts in the knowledge base are searched [6].

Thus, analysis can be graphically represented as a search tree in which each

node corresponds to a given state of the analysis. It is know that the problem

of �nding an optimal path in the search tree can be solved by the A�{algorithm

[9]. Its application is possible if one can evaluate the path from the root node

to the current node and can give an estimate for the valuation of the path from

the current node to the (not yet known) terminal node containing the solution.

2 Merit Functions for Informed Search Methods

Search methods which choose a path according to some information about the

prospects of �nding a solution at a node are called informed search methods.

The A�{algorithm belongs to this class of search methods and requires a merit

function composed of two parts:

f�(n) = g(n) + h�(n) : (1)

The term g(n) is the merit function of the path from the root node of the search

tree to the current node n, and h�(n) is an estimate for the merit of the path

from the current node to the terminal node which will contain the solution. The

A�{algorithm always expands the node with the highest value of the estimated

merit f�(n). The admissibility condition requires that the merit of the future

successful path is overestimated.

Because of the admissibility condition, the A�{algorithm will usually expand

many nodes not leading to the solution. An alternative is the "{A�{algorithm

[10], which relaxes the admissibility condition. Instead of the merit function (1),



the "{A�{algorithm uses:

f�(n) = g(n) + (1� ")h�(n) ; (2)

where " is a small factor and h�(n) is an admissible function. Clearly, f�(n)

may now underestimate the actual merit and one may miss the optimal solution

when using this function. However, loss of optimality is in the most unfortunate

case limited to "
1�"

percent of the merit of the best solution.

An approach to construct a merit function using the mutual information

between parts of the model and the image primitives is presented in [15]. In

[2], a probability based and a fuzzy based method for combining knowledge in

expert systems and deriving a merit function are presented. In systems based

on the shell ERNEST multicomponent judgment vectors have been used (see

e.g. [7],[13]).

Generally, one faces the problem to estimate the merit of the future successful

path appropriately. This is di�cult since one has very little knowledge about it:

at a given state of analysis, it is not known how many nodes the path from the

current node to the solution node will contain. Due to noisy image data it is

also not known, how many instances will have to be created until the solution

node is reached, since for example a line segment in the model may be broken

into several line segments in the image. The derived merit function has to be a

common ground for both the comparison of paths developed to the same level,

and for the comparison of paths advanced in the building of the solution with

paths abandoned earlier. And of course, it has to ful�ll the admissibility condition

of the A�{algorithm.

In our image analysis problem we relate the merit function to the analysis

goal. The valuation of the analysis goal is calculated considering the valuations of

already created instances and the estimates for the valuations of future instances.

We embed these valuations in the Dempster{Shafer theory of evidence and we

shall show how these valuations can be combined to achieve the valuation of the

analysis goal. An estimate for the merit of the future search path is obtained in

a natural way by modeling ignorance.

3 Propagation of Valuations in the Semantic Network

Like Bayesian approaches, the Dempster{Shafer theory of evidence [3],[14] aims

to model and quantify uncertainty by degrees of belief. Dempster's rule of com-

bination gives us a formalism for combining distinct pieces of evidence in the

same frame of discernment (so called parallel combination). However, in expert

systems one often also needs methods for propagating evidence along chains of

expert rules, i.e. from one frame of discernment to another.

Ishizuka et al. [5] provide a method for sequential combination, assuming

that the premises of the di�erent expert rules are mutually exclusive. A major

drawback of this approach is, that although the hypotheses established by the

expert rules are not necessarily mutually exclusive, the method does not take



into account the fact that one hypothesis may be con�rmed by di�erent prerequi-

sites of a rule. Ginsberg [4] developed a model for propagating belief through a

semantic network, but he limits his approach to dichotomous frames, i.e. frames

of discernment with only two events.

A quasi{probabilistic approach was introduced by Yen [16]. Extending Demp-

ster's original multi{valued mapping to a probabilistic mapping, he measures cer-

tainty degrees of expert rules by means of conditional probabilities. Yen's model

requires complete knowledge about all prior probability distributions. Propaga-

tion of belief along chains of expert rules is not obvious, since all the probabilities

necessary in the prerequisites of the follow{on rule are generally not known on

the basis of the belief masses calculated with the initial rule of the chain.

For our purposes we only postulate the existence of a basic belief assignment

for our frame of discernment. The belief in an event induced by this assignment

is a subjective measure assigned to the corresponding subset of the frame of

discernment; the existence of an underlying probability distribution is irrelevant

to our approach.

Let the frame of discernment be 
X = fx
1
; : : : ; xKg with attached basic

belief masses mX(�jEX ), where EX denotes some background evidential source.

Events Xj � 
X condition hypotheses Hi � 
H from the frame of discern-

ment 
H = fh
1
; : : : ; hMg. The beliefs for these hypotheses with respect to the

background evidential source have to be calculated.

Unlike in previous approaches where conditional probabilities or conditional

belief masses only for events occurring in expert rules are necessary, we require

the de�nition of a complete conditional basic belief assignment mHjX(HijXj) on

the frame of discernment 
H with respect to every subset Xj � 
X It has to be

mentioned that it eventually can be di�cult for the system designer to establish

the conditional belief assignments in the case of large frames of discernment

since a total number of (2K � 1)� (2M � 1) conditional belief masses has to be

speci�ed.

For propagating the belief masses in a hierarchical environment, i.e. for cal-

culating the basic belief assignment for a frame of discernment 
H with respect

to the evidential source EX , we use the equations:

mHX
(;jEX) = 0 (3)

mHX
(HijEX) =

P
Xj�
X

mHjX(HijXj)mX(Xj jEX ) :

It is easy to verify that the assignment induced by (3) satis�es the necessary

conditions to be a basic belief assignment. With known belief masses for the

frame of discernment 
H with respect to EX , we can calculate the belief for the

hypotheses Hj :

Bel(Hj jEX ) =
X

Hk�Hj

mHX
(HkjEX ) :

Equation (3) is formally similar to Yen's formula for sequential combination.

However, our conditional belief masses mHjX (HijXj) are not subject to other

restrictions than the one imposed by the conditions to be a belief mass. Espe-

cially, they also may be zero.



The approaches also di�er in the fact that in our combination formula (3), be-

lief massesmX(Xj jEX) for subsets of the frame of discernment are used whereas
in Yen's approach probabilities P (xj jEX ) for elements of the frame of discern-

ment are used. The use of belief masses has as a consequence that in (3) a term

containing the belief mass of the whole frame of discernment is added:

mHX
(HijEX ) =

X

Xj�
X

mHjX (HijXj)mX(Xj jEX ) +mHjX (Hij
X)mX(
X jEX) :

With mX(
X jEX) our lack of knowledge with respect to events from 
X is

modeled. Thus, to the belief mass of a hypothesis Hi also contributes a term

which stands for the belief we have exactly in Hi (not the total belief in Hi)

when we have no knowledge about events from 
X . The term mHjX (Hij
X)
can be considered to be a measure for our exact belief in Hi when it is known,

that no evidence at all is available from 
X . Propagation of ignorance is thus

possible. Also the propagation of evidence in a hierarchical environment over

several stages (chains of expert rules) is possible since output basic belief masses

of one stage can serve as input basic belief masses for the following stage.

Given several independent sources of evidence in 
X which condition hy-

potheses from 
H , we �rst perform sequential combination according to (3) for

each of the sources separately. Thereafter we use Dempster's rule of combination

to calculate the belief mass in 
H regarding all available sources of evidence.

Because of associativity, Dempster's rule is applied repeatedly on pairs:

mH(HijEX ; EY ) =

P
Hj\Hk=Hi

mHX
(Hj jEX )mHY

(HkjEY )

1�
P

Hj\Hk=;
mHX

(Hj jEX )mHY
(HkjEY )

:

3.1 An Example

We demonstrate the application of our approach for propagating the valuations

in the hierarchy of our semantic network by means of a simple example. The

contour of a building is represented in our generic model in the image domain

by the concept i polygon. This concept has a multiple part{link to a concept

i line. After the map analysis and the generation of the speci�c model, the

inner contour of the building shown in Fig. 1 is represented by the concept

i polyg0319. Its parts are the concepts i line0297, i line0304, i line0311

and i line0318. Due to the previous map analysis, their locations in the image

are approximatively known and stored in the semantic network.

As a �rst step in the analysis process correspondences between a concept and

one or more image primitives are established. Thereafter these correspondences

are evaluated. A correspondence is interpreted as a hypothesis of match between

a concept and an image primitive. We evaluate our belief in this hypothesis and

also the belief against this hypothesis.

At the level of line segments this belief is evaluated using a compatibility

measure between a line segment a and its model Li with help of a metric de�ned

on a parametric space for line segments [12]. The quantity mLi
(LjEa) measures



Fig. 1. Compatibility measures for a

line segment (white line) and its model

(dashed white line)

Fig. 2. Propagation of the line segment

compatibility measure in the valuation

of a polygon

our subjective belief in the hypothesis of match L. The quantity mLi
(LjEa)

measures our subjective belief in the hypothesis of erroneous match L. The sum

of these two quantities may be less than 1. The di�erence up to 1 is assigned to

m(
Li
jEa) and models our ignorance. We have thus established a basic belief

assignment on the frame 
Li
.

An example is given in Fig. 1, where these measures are displayed for an

image primitive (white line) with respect to its model (dashed white line). In

another search path, where for the same model another line segment k was

chosen (Fig. 2), the belief masses are: mL0297
(LjEk) = 0:961; mL0297

(LjEk) =

0:000743 and mL0297
(
L0297

jEk) = 0:038257 .

The belief assignments for the hypotheses established at the other lines are

calculated in a similar way. However, for the concepts which in a given ana-

lysis state are not yet addressed, we explicitly model our lack of knowledge by

assigning a vacuous belief function to the corresponding frame of discernment.

Thus, in the analysis state of the example of Fig. 2 the belief assignments for the

frames 
Lj
would be: mLj

(LjEx) = 0; mLj
(LjEx) = 0 and mLj

(
Lj
jEx) = 1 for

j 2 f0304; 0311; 0318g.

The hypotheses established at the level of line segments jointly are a source

of evidence for hypotheses at the decision level of polygons. Thus, the frame of

discernment 
fLig which conditions the event of match P or erroneous match P

in the frame of discernment 
P0319
at the polygon level is given by the Cartesian

product of the frames of discernment 
Li
, with i 2 f0297; 0304; 0311; 0318g.

Since the correspondence between a line model and a primitive is established

independently of the correspondence between another line model and a primitive,

we can calculate the belief mass for a joint event flig � 
fLig as a product of



the belief masses of its constituents li � 
Li
:

mfLig(fligjEk) =
Y

i

m(lijEk) : (4)

We also have to assign the conditional belief masses mP jfLig(pjflig), with
p � 
P . This is done by assuming that each hypothesis at line level contributes

with a fraction equal to the ratio between the length of the edge and the polygons

perimeter to a corresponding hypothesis at polygon level:

mP jfLig(pjflig) =

P
i
�PL(p; li) siP

i
si

; (5)

with si the length of the model line i linei. The function �PL(p; li) is a Kro-

necker{like function which takes the value 1 if the hypotheses p and li are in

concordance (for example if p is the hypothesis of match at polygon level and li
is the hypothesis of match at line level etc.) and takes the value 0 otherwise.

Substituting the assignments (4) and (5) in (3), we obtain for the belief

masses at the decision level of polygons induced by an instantiation which has

taken place at the level of lines for the example of Fig. 2:

mP0319 (P jEk) = 0:295 mP0319(P jEk) = 0:000228

In the analysis state of Fig. 2 only for the concept i line0297 an instanti-

ation has been performed. Having at this time no knowledge about the other

edges of the polygon, we choose for their belief assignment vacuous belief func-

tions, explicitly modeling our ignorance. As the analysis progresses, the vacuous

belief functions are replaced with the actual evidence calculated at line level.

After the propagation of the belief masses from the line level to the polygon

level these are combined using Dempster's rule of combination with belief masses

obtained from other, independent evidential sources for polygons.

4 An Evidential Merit Function

Various valuations are calculated for each instance and modi�ed concept created

during the analysis process. These valuations refer to two aspects: the compa-

tibility of a match and the reliability of the instances. The compatibility of a

match describes the quality of correspondence between the primitives extracted

from the image data and the model. An example for this is the line segment

compatibility described in the previous section. The reliability of the instances

is calculated regarding only the primitives extracted from the image data. Ex-

amples for the calculation of the reliability are a function which evaluates the

strength of a line through its mean gradient magnitude or a function which

evaluates the gradient angle consistency for the edges of a polygon. All these

valuations are propagated in the hierarchy of the semantic network according to

the presented method, �nally resulting in a basic belief assignment at the level

of the analysis goal.



Let S be the hypothesis at the level of the analysis goal that the instances

attached to concepts in the current node of the search tree match the model and

S be the hypothesis, that they do not match. For these hypotheses we obtain

after the propagation of the valuations the subjective belief masses m(SjfExgn)
and m(SjfExgn). They are with respect to the background evidential sources

fExgn of the instances in the current node n.

Our propagation scheme also provides us the measure m(
S jfExgn) which
models the lack of knowledge we have at the current search node. There are two

sources for this lack of knowledge. Firstly, besides our subjective belief in favor

and against a hypothesis of match there may remain an unassigned quantity.

This is often the case when an object has optional parts, where their presence

con�rms the hypothesis of match, but their absence does not necessarily deny

this hypothesis. And secondly, our formalism for propagating the belief masses

assumes a vacuous belief assignment for the (yet unknown) instances in the fu-

ture path. Part of this vacuous belief can support or deny at future instantiation

time the established hypotheses.

As a merit of the path from the root node to the actual node we use the

basic belief mass calculated at the level of the analysis goal for the hypothesis

S: g(n) = m(SjfExgn) = Bel(SjfExgn):
As an estimate for the merit of the path from the current node to the solution

node we choose: h�(n) = m(
S jfExgn): This assignment ful�lls the admissibility
condition overestimating the actual merit since only a part of m(
S jfExgn) will
be assigned in the future to the belief in hypothesis S.

The merit function f�(n) for the A�{algorithm �nally results in:

f�(n) = m(SjfExgn) +m(
S jfExgn) = 1�m(SjfExgn) = P l(SjfExgn):

Thus the plausibility computed at the level of the goal concept for the hypoth-

esis that instances of the current search node match the model is used as a

merit function for the A�{algorithm. When using the "{A�{algorithm, the merit

function results in:

f�(n) = "Bel(SjfExgn) + (1� ")P l(SjfExgn): (6)

The merit function (6) is used to direct search in our image analysis system.

Although the results depend of course from the scene to be analysed and from

the speci�c model of the scene, all the experiments show a tendency which will

be presented by the example of the scene in Fig. 3. After preprocessing, a total

number of 2591 image primitives (dark lines in Fig. 3) are presented to the model

based image analysis process. For 57 concepts of the speci�c model instances have

to be created.

Tests made for di�erent values of " show that for values " 2 [0:05; 0:3] the

instances belonging to the solution are identical. The instances belonging to the

solution for these values of " form the white polygons in Fig. 3. For higher values

of ", a slightly di�erent solution was found.

The total number of nodes and the number of leaf nodes of the search tree

are measures for the search e�ort. The smaller the value of ", the more the search



Fig. 3. Solution for " = 0:2. White lines:

solution; dark lines: image primitives.
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Fig. 4. Search tree characteristics as

a function of "

has a tendency to breadth: the number of nodes increases. The dependency of

the total number of nodes and of the number of leaf nodes from " is graphically

shown in Fig. 4. It is interesting to observe, that for values " 2 [0:2; 0:3] the

characteristics of the search path did not change. This behavior was also observed

for other scenes.

5 Summary and Conclusion

We presented a method to derive a merit function for guiding search in a model

based image analysis system. The Dempster{Shafer theory of evidence serves as

a theoretical background. We have extended proposals found in the literature

to suit our needs for propagating valuations calculated at di�erent hierarchical

levels of our model.

The derived merit function gives a common ground for the comparison of

paths developed further with paths abandoned earlier in the search tree. A pro-

perty of our merit function is, that by explicitly modeling the lack of knowledge

with the methods o�ered by the Dempster{Shafer theory for the yet unknown

instances and modi�ed concepts, our formalism provides in a natural way the

required overestimate for the merit of the yet unknown path from the current

node to the solution node of the search tree.

The experiments have shown that our merit function can be used success-

fully to guide search with an "{A�{algorithm. The merit function is robust with

respect to the parameter " and leads to a good solution for values of " up to

a problem dependent upper bound. Higher values of the parameter " lead to a

considerable speed up and smaller memory requirement of the analysis process.

Several other factors also contribute to the success of the analysis process,



like for example the valuations computed for the instances and modi�ed concepts

at the di�erent levels of the hierarchical model. For de�ning these valuations we

take advantage of having a speci�c model for the objects to be recognized. This

speci�c model is automatically build by our system through the analysis of the

available map of the scene. We are extending our system to recognize objects in

the image which are not represented in the map, i.e. for which a speci�c model

is not available.
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