Zur Erlangung des akademischen Grades eines
Doktors der Wirtschaftswissenschaften (Dr. rer. pol.)
von der Fakultdt fiir Wirtschaftswissenschaften

der Universitadt Fridericiana zu Karlsruhe

genehmigte Dissertation.

Methodology, Tools & Case Studies
for Ontology based
Knowledge Management

von

Dipl.-Wi.-Ing. York Sure

Tag der miindlichen Priifung: 19. Mai 2003
Referent: Prof. Dr. Rudi Studer
1. Korreferent: Prof. Dr. Karl-Heinz Waldmann
2. Korreferent: Prof. Dr. Robert Meersman

To my family.

Acknowledgements

This thesis is the result of my work as a research assistant at the Institute AIFB at the
University of Karlsruhe, Germany. Many people supported me and made the successful
completion of this thesis possible.

First of all, I would like to express my gratitude to my advisor, Prof. Dr. Rudi Studer.
His decent and goal-oriented management allowed freedom in my research and, at the
same time, gave me strong support. His trust in my abilities greatly enhanced my
performance in the projects we were working in.

I would like to thank Prof. Dr. Robert Meersmann (Free University of Brussels), who
was not only willing to serve on my dissertation committee as co-referent, but who
previously gave very valuable and stimulating feedback on my work as part of his
role as a reviewer for the On-To-Knowledge project. Furthermore, I thank Prof. Dr.
Karl-Heinz Waldmann (University of Karlsruhe), who was willing to serve on my dis-
sertation committee as co-referent, and also Prof. Dr. Wolffried Stucky (University of
Karlsruhe), and Prof. Dr. Thomas Liitzkendorf (University of Karlsruhe) who served
on the examination committee.

The On-To-Knowledge project provided a frame for my research. Thanks to Prof. Dr.
Dieter Fensel (University of Innsbruck), Prof. Dr. Frank van Harmelen (Free University
of Amsterdam), and Prof. Dr. Hans Akkermans (Free University of Amsterdam). It
would exceed the scope of these acknowledgements to mention every single project
partner. It was a great pleasure working with you and I have learned a lot from you.

The OntoWeb thematic network was a perfect training ground for my personal com-
munication and, of course, networking skills. Thanks to all active OntoWeb members
for their collaboration and support and particularly to our partners at the Free Univer-
sity Brussels (VUB). The group headed by Prof. Dr. Robert Meersman was our official
project partner for the portal workpackage and together we handled the distributed
development of an integrated portal.

Thanks to the “OntoTeam Karlsruhe” that consists of all my colleagues at the Institute
ATFB, the FZI and at Ontoprise GmbH, for providing a very fruitful and stimulating
working atmosphere — even after work. I would like to mention some of them who
influenced and enhanced my work.

Acknowledgements

Hans-Peter Schnurr (Ontoprise) provided the first stone on which this thesis was built,
viz. the baseline version of the methodology. He deserves special gratitude for teaching
me an unreplaceable “coolness in tricky business situations” and, of course, how to make
real good presentations. Priv.-Doz. Dr. Steffen Staab (AIFB) significantly improved my
scientific skills, e.g. by teaching me how to successfully write papers, and contributed
many ideas to my thesis. Priv.-Doz. Dr. Gerd Stumme (AIFB) accompanied and
supported me in the teaching tasks which are also an important part of the life at the
Institute ATFB.

With Raphael Volz (AIFB), Daniel Oberle (AIFB) and Jens Hartmann (AIFB) I shared
the ATFB workload in OntoWeb. While I typically covered the political and marketing
aspects, they actually implemented our ideas and maintained the OntoWeb.org portal.
Andreas Hotho (AIFB) was always a great help with hardware problems and especially
during the last days of this thesis he strongly supported me in keeping my personal
writing motivation on the required level.

Prof. Dr. Jiirgen Angele (Ontoprise) was always open to explain me tricky details of
F-Logic and Ontobroker. Henrik Oppermann (Ontoprise) never hesitated to discuss
with me about deep ontological foundations, e.g. by clarifying the meaning of concepts
like “Heideggern”. Alexander Madche (FZI) and Dirk Wenke (Ontoprise) initiated
the development of OntoEdit, which is now being continued by the constant efforts
of Dirk. Together with Siegfried Handschuh (AIFB), who invented and implemented
the OntoMat-Plugin-Framework, they provided the core technology for making the
implementation part of this work possible.

Gisela Schillinger and Susanne Winter were always helpful to minimize my adminis-
trative work and, not to forget, provided uncountable cups of coffee.

Numerous other people supported my work (among other things) with heavy imple-
mentation work. Particularly I would like to thank Séren Bergmann, Claus Boyens,
Jeen Broekstra, Tomasz Gonsior, Arjohn Kampmann, Stefan Lenhart, Andreas Maier,
Eddie Ménch, Borislav Popov, Heiko Rudat, Hans Trost and Markus Zondler.

My parents, Gudrun and Reinfried, and my sister, Katrin, receive my deepest gratitude
and love for the many years of support and especially for always believing in me.
Last, but not least, I thank my partner, Petra, and her son, Neil, for their love and
understanding that strongly encouraged me and, in the end, made this thesis possible.

May 2003, Karlsruhe
York Sure

vi

Contents

Acknowledgements
I Foundations
1 Introduction & Overview

1.1 Introduction L
1.2 Contributions of This Thesis.
1.3 Reader’s Guide L

Knowledge Management

2.1 Knowledge Transfero
2.2 Building Blocks of Knowledge Management
2.3 Knowledge Processeso
2.4 Knowledge Items & Meta Data

Ontologies & The Semantic Web

3.1 History & Foundations
3.2 Classification of Ontologies
3.3 Communication with Ontologies

On-To-Knowledge Methodology

Knowledge Meta Process

4.1 Developing and Deploying Knowledge Management Applications
4.2 Steps of the Knowledge Meta Process
4.3 Feasibility Study
44 Kickoff
4.5 Refinement
4.6 Evaluation Lo
4.7 Application & Evolutiono

11
11
12
16
16

21
21
25
27

29

31
31
32
34
37
42
46
50

vil

Contents

5 Knowledge Process 53
5.1 Steps of the Knowledge Process 53
5.2 Knowledge Creation & Import 54
5.3 Knowledge Capture o7
5.4 Knowledge Retrieval & Access L. 59
5.5 Knowledge Use 61

Il Tool Support 63

6 Requirements for OEEs 65
6.1 Motivation of Requirements (RL —~R5) 65
6.2 Ontologies in OntoEdit (R1) 68
6.3 Extensibility through the OntoMat Framework (R2) 71
6.4 Methodology Support (R3) 74
6.5 Dimensions of Collaboration (R4) 75
6.6 Theoretical & Practical Inferencing Issues (R5) 7

7 Kickoff Support 83
7.1 Competency Questions (and other Requirements) 83
7.2 Brainstorming Lo 86
7.3 External Support 90

8 Refinement Support 91
8.1 Documentation & Translation 91
8.2 Distributed Engineering Lo Lo 93
8.3 External Support L 98

9 Evaluation Support 101
9.1 Scalability Evaluation 101
9.2 Guidelines Evaluation 0L 104
9.3 Formal Evaluation 106
9.4 External Support 112

10 Application & Evolution Support 115
10.1 Storage & Versioning oo 115
10.2 External Supporto 116

IV Case Studies 119

11 On-To-Knowledge 121

viii

Contents

11.1 About the Project 122
11.2 Technical Architecture 123
11.2.1 OTK Tool Suite 124
11.2.2 OIL: Ontology Inference Layer for the Semantic Web 135

11.3 Configuration of Tools in the Case Studies 141
11.3.1 Tools @ Swiss Life L. 142
11.3.2 Tools @ BT o 143
11.3.3 Tools @ EnerSearch 143

11.4 Skills Management @ Swiss Life 144
11.4.1 Introduction 144
11.4.2 Feasibility Study 145
11.4.3 Kickoff 149
11.4.4 Refinement o 152
11.4.5 Evaluation, Application & Evolution 156
11.4.6 Main Lessons Learned @ Swiss Life 156

11.5 Community of Knowledge Sharing @ BT 158
11.5.1 Introduction 158
11.5.2 Feasibility Study 158
11.5.3 Kickoff & Refinement 160
11.5.4 User-Focused Evaluation 162
11.5.5 Application & Evolution L. 164
11.5.6 Main Lessons Learned @ BT 165

11.6 Virtual Organization @ EnerSearch 168
11.6.1 Introduction L 168
11.6.2 User-Focussed Evaluation 169
11.6.3 Main Lessons Learned @ EnerSearch 178

11.7 Overall Lessons Learned in On-To-Knowledge 179
12 OntoWeb 181
12.1 About the Thematic Network 181
12.2 SEmantic portAL (SEAL) of OntoWeb 183
12.2.1 Motivation for Semantic Portals 183
12.2.2 Web Information Integration 185
12.2.3 Web Site Management 186
12.2.4 Implementation of the OntoWeb Semantic Portal 187
12.2.5 Process Model oo 190
12.2.6 Future Directions L 194

12.3 Evaluation Efforts oL 196
12.3.1 Workshop Description L. 196
12.3.2 Travelling Domain Description 197
12.3.3 Engineering the Model with OntoEdit 199

ix

Contents

12.3.4 Main Lessons Learned in EON2002 209

12.3.5 Future Directions for EON Experiments 211

V Related Work & Conclusions 217
13 Related Work 219
13.1 Related Work on Methodologies 219
13.2 Related Work on Tools 221
13.3 Related Work on Case Studies 223

14 Conclusions 225
14.1 Summary 225
14.2 Impacts & Outlook L 227

VI Appendix 231
A OntoEdit Outside 233
B OntoEdit Inside 249
C DAML+OIL features supported by OntoEdit 253
D Example Ontology 257
Bibliography 285
Index 311

List of Figures

21

3.1
3.2
3.3

4.1
4.2
4.3

5.1
0.2
9.3

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

7.1
7.2
7.3
7.4

8.1

8.2
8.3

Two orthogonal processes with feedback loops

Different kinds of ontologies and their relationships
The Meaning Triangle oL
Communication between human and/or software agents

Relevant processes for developing and deploying KM applications
The Knowledge Meta Process,
CommonKADS worksheets for feasibility study

The Knowledge Process
Annotating documents with the OntoMat-Annotizer
Knowledge Retrieval with DOGMA in the OntoWeb Portal

Ontology development steps of the On-To-Knowledge Methodology . . .
Basic functionalities of OntoEdit
Modeling instances with OntoEdit
Plugin architecture of OntoEdit
Overview of the “methodology plugins”
Overview of “external plugins”
Overview of the “collaboration plugins”
Overview of the “inferencing plugins”

Capturing competency questions with OntoKick
Traceability of concepts with OntoKick
Example mind map about thiswork
Support discussions with Mind20nto

Inserting multi-lingual external representations for concepts and rela-

tions with OntoFiller o
Client-Server architecture of OntoEdit
Locked trees in OntoEdit

xi

List of Figures

xii

9.1 Generating ontologies with OntoGenerator
9.2 Combinations of OntoClean meta-relations
9.3 Ideal taxonomy structure L.
9.4 Implementation of OntoClean in OntoEdit
9.5 Deriving inconsistencies with the OntoClean Plugin
9.6 Visualizing ontologies in the Visualizer Plugin

10.1 Storing and versioning ontologies with the Sesame Plugin

11.1 OTK technical architecture
11.2 The query interface of QuizRDF
11.3 Provision of navigational structures with Spectacle
11.4 Ontology development with OntoEdit
11.5 Features of the Knowledge Control System
11.6 The result of a comparison of two ontologies with OntoView
11.7 Sesame: repository for ontologies and data
11.8 OntoExtract: Automatic ontology generation
11.9 OntoWrapper: Information extraction
11.10The layered language model of OIL
11.110IL illustration o000
11.12Covering of tools @ Swiss Life case study
11.13Covering of tools @ BT casestudy
11.14Covering of tools @ EnerSearch casestudy
11.15Roadmap for Skills Management @ Swiss Life
11.16Skills management prototype
11.17Competency questionnaire @ Swiss Life
11.18The skills management competency questionnaire in OntoKick
11.19Mind map of skills @ Swiss Life
11.20Communities of knowledge sharing with OntoShare @ BT
11.21Mind map @ BT
11.22EnerSEARCHer (free text)
11.23EnerSEARCHer results
11.24 QuizRDF (ontology based),
11.25Spectacle (ontology based) L
11.26How relatively often did users give (W)rong, (R)ight or (N)o answers
with each tool?o
11.27What relative average amount of time needed users for (W)rong, (R)ight
or (N)o answering of one single question?

12.1 SEAL conceptual architecture
12.2 The OntoWeb Semantic Portal

List of Figures

12.3 Publishing workflow in the OntoWeb portal (i) 192
12.4 Publishing workflow in the OntoWeb portal (i) 193
12.5 MindMap of the travelling domain 200
12.6 Concept hierarchy 201
12.7 Relationships of Flight L. 202
12.8 Relationships for Plane 202
12.9 Relationships of Accomodation 203
12.10“Abstract” vs. “concrete” concepts 203
12.11Relationships of City 204
12.12Instances of City and Attraction, 205
12.13Instances of Means of transport and Three Stars Hotel 205
12.14Instances of Flight and Trip 206
12.15Transitive relationships Lo 206
12.16Inverse relationshipso oo oo 207
12.17Disjoint concepts oL 207
12.18General axioms Lo e e 208
12.19Inferencing with Ontobroker in OntoEdit 209
12.20Switching axioms off in OntoEdit 209
A.1 The main GUI of OntoEdit 234
A2 FileMenu 235
A3 Insert a URL. 235
A4 Create anew ontologyo 236
A5 Search for a specific concept 236
A.6 Concept context menu L. 237
A7 Insert anew concept 237
A.8 Edit selected concept / concept properties 238
A9 Relation context menu 239
A.10 Insert new relation 239
A .11 Context menu for instances 241
A.12 Editing an instanceo 242
A 13 Relation axioms tab 242
A.14 Disjoint concepts tab oL 243
A .15 Identification tabo 244
A16 Metatada tabo L 244
A7 View menu 245
A.18 Options for plugins 246
A19 Tools menu (1) o 246
A.20 Plugin management during runtime 247
A21 Tools menu (i) oo 247

xiii

List of Figures

xXiv

List of Tables

2.1 Dimensions of knowledge transfer 12
2.2 Approaching the Knowledge Process — two extreme positions 17
4.1 Technology-focussed evaluation framework 47
5.1 Degrees of formal and informal knowledge 95
6.1 Summary of the requirements for Ontology Engineering Environments . 67
7.1 OntoKick characterization 84
7.2 Mind20nto characterization 87
8.1 OntoFiller characterization 92
8.2 Client-Server Framework characterization 93
9.1 OntoGenerator characterization 102
9.2 OntoAnalyzer characterization 105
9.3 OntoClean Plugin characterization 107
10.1 Sesame Plugin characterization 115

XV

List of Tables

Xvi

Part |

Foundations

“All men by nature desire knowledge.”
— Aristotle

1 Introduction & Overview

Overview

In this part we provide the foundations of the presented
thesis. We start with an introduction and an overview
about the contributions. The following Chapter 2 introduces
“knowledge” as a central concept and illustrates the combi-
nation of knowledge management and ontologies. This part
ends with Chapter 3 where the concept “ontology” is ap-
proached in the scope of this work. Current trends of using
such ontologies for KM motivate the need for the core con-
tributions of this work, viz. an advanced methodology, tools
and case studies for ontology based KM.

This chapter starts with an introduction and motivation in
Section 1.1. Next, the contributions of this work are summa-
rized in Section 1.2. The chapter ends with a reader’s guide
that sketches the overall structure of the work in Section 1.3.

1.1 Introduction

This thesis combines the topics knowledge management and ontologies. The driv-
ing force for combing the two topics is the growing importance of knowledge for so-
cieties and their economies. Both topics are now briefly introduced to motivate the

contributions of this thesis described in the next section.

Our society changed from being an industrial society to being a knowledge society.
This shift of paradigms enforced enterprises to act no longer based on purely tayloris-
tic principles but rather as “intelligent enterprises” (cf. (Quinn, 1992)). Knowledge

became the key economic resource, as Drucker pointed out:

“The basic economic resource — the means of production — is no longer

capital, nor natural resources, nor labor. It is and will be knowledge.”
(Drucker, 1993)

1 Introduction & Overview

This so-called “post-industrial revolution” (cf. (Jacques, 1996)) focussed the view on
knowledge as “intellectual capital” (cf. (Stewart, 1997)) that is a mission critical re-
source. Therefore, companies should have the same interest in managing their knowl-
edge as in managing capital investment and working relationships (¢f. (Edvinson &
Malone, 1997)).

Knowledge management (KM) was born as significant corporate strategy to meet
the new challenges. The history and the current status of KM is sketched by Kay:

“Knowledge management as an approach to business management has had
a tumultuous history. It was born as a hip buzzword, was shunned as a
second cousin to business process reengineering, and was for a time hijacked
by software vendors. Despite this circuitous path, knowledge management
s now well on the way to becoming a necessary component of every bottom-
line-oriented company’s long-term business strategy.”

(Kay, 2003)

The main goal of typical current KM initiatives is to enable a better knowledge shar-
ing. Drivers for the introduction of knowledge management were e.g. the potential for
reduction of (i) costs for duplication of efforts, (ii) loss of knowledge when key people
leave a company and (iii) time needed to find correct answers. This has led to many
efforts for capturing, storing and making knowledge accessible. But, as Davenport and
Prusak mention, sharing knowledge requires a common language:

“People can “t share knowledge if they don’t speak a common language.”
(Davenport & Prusak, 1998)

Successful KM strategies consist of building blocks for organization, people, technology
and corporate culture (cf. (Albrecht, 1993; Schneider, 1996a), we will elaborate more
on that in Section 2.2). In such a context, knowledge sharing is not only a matter of
communication between people, but also between people and technology and between
technology, i.e., e.g., software agents that communicate with people or each other.
More general, agents (human and software agents) need to share their knowledge and
require a common language. Thus, we generalize the quotation from above to “Agents
can’t share knowledge if they don’t speak a common language”.

Ontologies were exploited in Computer Science to enhance knowledge sharing and
re-use (cf., e.g., (Gruber, 1993; Fensel, 2001)). Firstly, they provide a shared and
common understanding of knowledge in a domain of interest. Secondly, they capture
and formalize knowledge by connecting human understanding of symbols with their
machine processability. As such, ontologies act as a common language between agents.

1.1 Introduction

The use of ontologies for knowledge management offers therefore great advantages.
Numerous applications already exist (cf., e.g., (Sure & Schnurr, 2003)).

Common knowledge management applications make use of available technology that
was originally developed for the World Wide Web, e.g. the now very popular corporate
intranets. Similar to the Web they provide access to a large amount of information
contained in documents, databases etc. and suffer from the same weaknesses, e.g.,
among others,

(i) searching information often leads to irrelevant information,

(ii) extracting information is left to the burden of humans since software agents
are not yet equipped with common sense and domain knowledge to extract such
information from textual representations and they fail to integrate information
distributed over different sources,

(iii) maintaining weakly structured text sources is a time-consuming and difficult
task when such sources become large (cf. introduction of (Davies et al., 2002b)).

To overcome such weaknesses of the current Web, Berners-Lee and others envisioned
the Semantic Web:

“The Semantic Web is an extension of the current web in which information
s given well-defined meaning, better enabling computers and people to work
in co-operation.”

(Berners-Lee et al., 2001)

The Semantic Web extends the Web by adding machine-processable meta-information,
aka meta data, to documents. The meta data explicitly define what the document is
about. Thereby, ontologies provide the schema for meta data to make them re-usable
and define their meaning.

The vision of the Semantic Web is now beginning to become reality. The vision (i)
evolved into a research area, (ii) attracted numerous researchers and industrial mem-
bers, and (iii) reached already a large visibility, e.g. by the “First International
Semantic Web Conference (ISWC 2002')”, held 2002 in Sardinia, Italy (cf. (Hor-
rocks & Hendler, 2002)).

The ideas and technologies of the Semantic Web have a large influence on current
trends in knowledge management, e.g. visible in the subtitle (and, of course, the con-
tributions) of the “13th International Conference on Knowledge Engineering

"ISWC 2002, see http://iswc2002.semanticweb.org/

1 Introduction & Overview

and Knowledge Management (EKAW 20022) — Ontologies and the Semantic
Web”, held 2002 in Sigiienza, Spain (cf. (Gomez-Pérez & Benjamins, 2002)).

EKAW 2002, see http://babage.dia.fi.upm.es/ekaw02/

1.2 Contributions of This Thesis

1.2 Contributions of This Thesis

The work presented in this thesis is mainly the result of research performed within the
EU project On-To-Knowledge?® and its “spin-off” thematic network OntoWeb*. In a
nutshell, we will present some Semantic Web methods and technologies and show how
they can be applied to practical knowledge management in corporate intranets and in
the Web.

We tackle the following research questions:

1. How do ontology based applications evolve?

a) What are the relevant processes for engineering and using these applica-
tions?

b) What methodologies do already exist and how can they be integrated,
adopted and extended?

2. How can the engineering of ontology based applications be supported
by tools?

a) What are the requirements for such tools?
b) What kind of tool support is available?
3. How can methodology and accompanying tools be applied to real prob-
lems?
a) What kind of problems are tackled?
b) How are they solved?

c) What are the lessons learned?

The contributions of this thesis cover a broad spectrum of aspects related to practical
ontology based knowledge management. With respect to the questions raised above
we provide the following answers:

1. Methodology: We present the novel On-To-Knowledge Methodology for in-
troducing and maintaining ontology based knowledge management applications.
Unlike most other (similar) methodologies, the On-To-Knowledge Methodology is
independent of specific domain knowledge to make it as re-usable as possible. We
distinguish two processes that should be kept separate in order to achieve a clear

SEU 1ST-1999-10132 project On-To-Knowledge, see http://www.ontoknowledge.org/
*EU IST-2000-29243 thematic network OntoWeb, see http://www.ontoweb. org/

1 Introduction & Overview

identification of issues: whereas the first process addresses aspects of introducing
a new KM application into an enterprise as well as maintaining it (the so-called
“Knowledge Meta Process”), the second process addresses the handling of the
already set-up KM solution (the so-called “Knowledge Process”). Our main focus
lies on the Knowledge Meta Process which includes the engineering of ontologies
as part of knowledge management applications. We offer a detailed description
of steps necessary to develop and employ ontologies.

2. Tool support: We implemented numerous specialized tools that support the
ontology engineering steps of the Knowledge Meta Process. Our tools fulfill
major requirements that rise in the area of ontology engineering, wviz. support
for (i) ontology languages, (ii) flexible extensibility, (iii) methodology support,
(iv) collaboration, and (v) inferencing. The tools were realized as extensions to
the already existing ontology engineering environment OntoEdit, which provides
basic functionalities for ontology engineering.

Taken together, the On-To-Knowledge Methodology and its accom-
panying tool support provide an advanced framework for engineering
ontology based applications that is highly re-usable for different kinds
of domains.

3. Case studies: We applied the On-To-Knowledge Methodology and the tools in
several case studies, viz. the three different knowledge management case studies of
the On-To-Knowledge project and the development of the portal for the OntoWeb
thematic network. All case studies provide real world experiences and show
different aspects of ontology based knowledge management applications.

The scenarios and implementations range

(i) from corporate intranets to the Web,
(ii) from industry to academia, and

(iii) from prototypes to productive systems.

Thus, we present the application of the On-To-Knowledge Methodol-
ogy and its accompanying tool support in a large spectrum of practical
scenarios for ontology based knowledge management applications.

Our approach has already been successfully taken up by other projects, as we
will show at the end of the work in the outlook.

To illustrate the tool support for the On-To-Knowledge Methodology, we develop step
by step a comprehensive example ontology about the topic of this thesis in Part III.

1.3 Reader’s Guide

1.3 Reader’s Guide

To help with the reading of this work, every chapter is pre-
ceded with a brief introductory overview that is accompanied
by a small icon like this paragraph. Each overview explains
how the chapter is structured and how the work presented
fits in the overall structure.

Overview References: If existent, we will give references to existing
publications that form the basis for a chapter.

Part | provides the Foundations for this thesis. In this chapter the contributions
of this thesis are motivated and introduced. “Knowledge” and how knowledge can
be transferred is approached before the building blocks of knowledge management
(KM) are described to show the diversity of relevant aspects for applying KM. The
concept “ontology” in the scope of this work is illustrated. Current trends of using
such ontologies for knowledge management, coined in the vision of the Semantic Web,
motivate the need for advanced methodologies, tools and case studies as presented in
the following parts. At the end we present a working definition for ontologies that
covers the scope of this work.

Part Il introduces the On-To-Knowledge Methodology as the methodological
background for this work. The methodology is a process-driven approach for devel-
oping, deploying and using ontology based knowledge management applications. The
methodology consists of two main processes: the “Knowledge Meta Process” (KMP)
for developing and deploying such applications and the “Knowledge Process” (KP) for
using them. Ontology engineering is a major part of the KMP.

Part Il desribes Tool Support for supporting the application of the On-To-
Knowledge Methodology. It starts by motivating and identifying main requirements for
tools that support ontology engineering, viz. ontology engineering environments (OEE).
Following up, we introduce OntoEdit as an instance of such OEEs and subsequently
show how OntoEdit meets the introduced requirements: (i) support for ontology lan-
guages, (ii) flexible extensibility, (iii) methodology support, (iv) support for collabora-
tion between domain experts and/or ontology engineers, and (v) usage of inferencing
capabilities. This work mainly contributed to fulfilling the last three requirements.
We will present in detail the specialized tool support for steps of the Knowledge Meta
Process.

Part IV illustrates in several Case Studies how the methodology and tools pre-
sented before are applied in different scenarios. On the one hand, three case studies

1 Introduction & Overview

of the On-To-Knowledge project represent a broad spectrum of use cases in corporate
intranets. Firstly, there are three industry sectors involved: insurance, telecom and en-
ergy. Secondly, the partners come from three countries with different cultures. Thirdly,
they are facing various aspects of knowledge management problems, (i) “Skills Manage-
ment”, (ii) “Communities of Knowledge Sharing” and (iii) “Virtual Organization”. On
the other hand, the Semantic Portal of the thematic network OntoWeb illustrates the
application of the presented work in the World Wide Web. All case studies provide real
world experiences and show different aspects of ontology based knowledge management
applications.

Part V depicts Related Work on methodologies, tools and case studies and sum-
marizes the main contributions in Conclusions before it ends with a presentation of
already visible impacts of this work and future outlook.

Part VI contains additional material in an Appendix, e.g. more detailed illustrations
of OntoEdit’s technical features.

10

2 Knowledge Management

This chapter begins by approaching the concept “Knowl-
edge” and how knowledge can be transferred in Section 2.1.
The next Section 2.2 describes the building blocks of knowl-
edge management (KM) to show the diversity of relevant
aspects for applying KM. In Sections 2.3 and Section 2.4
we argue for a shift from document oriented KM towards
a knowledge item oriented point of view and introduce two

Overview knowledge processes that are the backbone of the methodol-
ogy presented in Part II.

References: The last two parts of this chapter are mainly
based on (Staab et al., 2001).

2.1 Knowledge Transfer

What is knowledge? Davenport and Prusak suggest the following working definition:

“Knowledge is a fluid mix of framed experience, values, contextual infor-
mation, expert insight and grounded intuition that provides an environment
and framework for evaluating and incorporating new experiences and infor-
mation. It originates and is applied in the minds of knowers. In organiza-
tions, it often becomes embedded not only in documents or repositories but
also in organizational routines, processes, practices and norms.”
(Davenport & Prusak, 1998)

Thus, knowledge can be incorporated by individuals or organizations. Polanyi adds
another dimension, the concept of tacit knowledge:

“...] that we know more than we know how to say [...]”

(Polanyi, 1958; 1974)

11

2 Knowledge Management

Extending this point of view, knowledge can be implicit, i.e. tacit, or explicit, as intro-
duced by Nonaka and Takeuchi (¢f. (Nonaka & Takeuchi, 1995)). Sharing knowledge
requires considering different dimensions of knowledge transfer. Nonaka and Takeuchi
stress that, on the on hand, implicit knowledge is difficult to communicate and to for-
malize, it is “stored in the heads of persons” and therefore known as embodied knowledge.
On the other hand, explicit knowledge is easily to communicate, it can be formalized
on different levels, it can be stored on different media, e.g. in documents or databases,
and is therefore called disembodied knowledge. A core concern for knowledge manage-
ment is to support the transformation of knowledge in different processes as shown in
Table 2.1 (¢f. (Nonaka & Takeuchi, 1995)).

Table 2.1: Dimensions of knowledge transfer

To
Implicit knowledge | Explicit knowledge
Implicit knowledge Socialization Externalization
Fr
o Explicit knowledge | Internalization Combination

We will briefly explain the four processes for transferring knowledge:

e Implicit knowledge is transferred directly between persons by socialization, i.e.
through one’s own receptions, practical experiences and, most important, build-
ing of own internal mental models.

e Implicit knowledge can be made explicit, e.g. formalized, by externalization,
i.e. articulation of implicit knowledge by using explicit concepts, metaphors and
models.

e Explicit knowledge is embodied again by persons through internalization. E.g.
learning by doing supports the creation or extension of internal mental models
of persons.

e Explicit knowledge is enriched through combination, i.e. by systemizing, cate-
gorizing, ordering and combining concepts.

2.2 Building Blocks of Knowledge Management

In recent years knowledge management (KM) has become an important success fac-
tor for enterprises. Increasing product complexity, globalization, virtual organiza-

12

2.2 Building Blocks of Knowledge Management

tions or customer orientation are developments that ask for a thorough and system-
atic management of knowledge — within an enterprise and between several cooper-
ating enterprises. Obviously, a holistic KM approach is a major issue for human
resource management, enterprise organization and enterprise culture — nevertheless,
information technology (IT) plays the crucial enabler for many aspects of KM. As
a consequence, KM is an inherently interdisciplinary subject. This is e.g. reflected
by KM conferences that address numerous aspects of KM (¢f. (Schnurr et al., 2001;
Reimer et al., 2003)).

We will now briefly introduce the main building blocks of knowledge management, viz.
culture, organization, technology and people (cf. (Albrecht, 1993; Schneider, 1996a)).

Culture

Successful enterprises develop their own culture, that guides their thinking and be-
having (c¢f. (Nonaka & Takeuchi, 1995)). Enterprise culture includes values, norms,
social contexts, knowledge and skills which are shared and accepted by most members
of the organization (c¢f. (Schnyder, 1989)). Probst et al. (cf. (Probst et al., 1998;
1999)) emphasizes that internal barriers hindering knowledge management to be effec-
tive are often grounded in the culture of enterprises, e.g. if a request for knowledge
from external sources like other departments is seen as incompetency of employees.
However, changing culture is a rather expensive and time consuming task. But in the
end the reason for success or failure of introducing KM might be the culture of an
enterprise.

Organization

The organization of enterprises consists of its internal processes and structures. Since
knowledge is now seen as basic economic resource (c¢f. (Drucker, 1993)), knowledge
intensive processes, e.g. research & development and education, gain ever more at-
tention. They must be supported and continuously improved in order to achieve an
improvement in productivity (¢f. (Davenport et al., 1996)).

Knowledge management needs similar to traditional organizational units as accounting
or human resource a well-defined place in the organizational structure with its own
budgets, responsibilities and rights (¢f. (Davenport et al., 1996)). Many companies
created new jobs dedicated to this task such as Chief Information Officers (CIO),
Chief Knowledge Managers (CKM) and Chief Knowledge Officers (CKO).

While CIOs are mainly responsible for I'T strategy, development of systems and general
IT management, the CKMs and CKOs are truly responsible for making knowledge
management systems and processes an integral part of the daily work. Typically they

13

2 Knowledge Management

have, among others, the following organizational and technological responsibilities (cf.
(Tiwana, 2000)):

¢ Organizational responsibilities

— Identifying knowledge gaps

Creating a culture of knowledge sharing
— Creating appropriate metrics

— Developing communities of practice

— Diffusing best practices

— Training and Education

— Making knowledge management a part and parcel of routine work
e Technological responsibilities

— Building directories (e.g. skills and knowledge directories)

— Creating channels for exchange of documents and other codified forms of
explicated knowledge

— Supporting group work
— Providing tools for collaborative problem solving
— Building repositories

— Enabling tacit knowledge transfer

A recent survey took a snapshot of 41 currently practicing knowledge managers via
self-reported questionnaires. It summarizes their roles in enterprises, their goals and
their self-understanding:

“The role of knowledge manager in organizations is a new and growing phe-
nomenon. Qur study suggests that knowledge managers are well-educated
and experienced individuals who are gemerally satisfied with their position
and the freedom and latitude it affords. The primary goal is to guide their
organization towards an understanding of knowledge as an organizational
asset so that it can be managed for mazximal benefit. As they see it, their
key challenge is changing people’s behavior. Despite considerable support
from top management, they have little direct authority over employees so
their levers for effecting change are negotiation, persuasion, and commumni-
cation.”

(McKeen & Staples, 2003)

14

2.2 Building Blocks of Knowledge Management

Technology

The two main drivers of practical knowledge management are technology and people,
as pointed out by Davenport:

Effective management of knowledge requires hybrid solutions of people and
technology.
(Davenport, 1996)

[T-supported KM applications are typically built around some kind of corporate mem-
ory or organizational memory (c¢f. (Kuehn & Abecker, 1997; Abecker et al., 1998;
Dieng-Kuntz & Matta, 2002)). Organizational memories integrate informal, semi-
formal and formal knowledge in order to facilitate its access, sharing and re-use by
members of the organization(s) for solving their individual or collective tasks (cf. (Di-
eng et al., 1999)), e.g. as part of business processes (¢f. (Staab & Schnurr, 2000;
2002)). In such a context, knowledge has to be modelled, appropriately structured
and interlinked for supporting its flexible integration and its personalized presentation
to the consumer. [I.e. implicit knowledge of employees is made explicit by means of
externalization and stored in the organizational memory. Then it can be accessed by
other persons by means of internalization.

Ontologies (c¢f. Chapter 3) have shown to be the right answer to these structuring and
modeling problems by providing a formal conceptualization of a particular domain that
is shared by a group of people in an organization (cf. (O’Leary, 1998; Gruber, 1995)).

People

The embodied knowledge of people and their abilities to access, integrate and use
knowledge are essential for generating value for their enterprises. Their willingness to
share their knowledge makes knowledge management possible.

But, as mentioned before, knowledge management is a process in which one needs to
keep the balance between human problem solving and automated IT solutions. This
balancing distinguishes KM from traditional knowledge-based systems. Nevertheless,
the extensive knowledge modeling tasks that are inherent in ontology-based KM ap-
proaches support Alun Preece’s saying “Every KM project needs a knowledge engineer”.

We will now focus on relevant processes for introducing KM applications into enter-
prises.

15

2 Knowledge Management

2.3 Knowledge Processes

There exist various proposals for methodologies that support the systematic introduc-
tion of KM applications into enterprises. One of the most prominent methodologies
is CommonKADS that puts emphasis on an early feasibility study as well as on con-
structing several models that capture different kinds of knowledge needed for realizing
a KM solution (cf. (Schreiber et al., 1999)).

Typically, these methodologies conflate two processes that should be kept separate in
order to achieve a clear identification of issues: whereas the first process addresses as-
pects of introducing a new KM application into an enterprise as well as maintaining it
(the so-called “Knowledge Meta Process”), the second process addresses the handling of
the already set-up KM solution (the so-called “Knowledge Process”) (see Figure 2.1).
E.g. in the approach described in (Probst et al., 1999), one can see the mixture of
aspects from the different roles that, e.g. “knowledge identification” and “knowledge
creation” play. The Knowledge Meta Process would certainly have its focus on knowl-
edge identification and the Knowledge Process would rather stress knowledge creation.

Knowledge
Process

Knowledge Meta
Process

Figure 2.1: Two orthogonal processes with feedback loops

In the Chapters 4 and 5 we will introduce our methodology called On-To-Knowledge
Methodology that is based on the two knowledge processes.

2.4 Knowledge Items & Meta Data

The core concern of IT-supported knowledge management is the computer-assisted
capitalization of knowledge (Abecker et al., 1998). Because information technology
may only deal with digital, preferably highly-structured, knowledge the typical KM
approach distinguishes between computer-based encoding in an organizational memory
and direct transfer that is done by humans. Sticking to what is almost readily available,

16

2.4 Knowledge Items & Meta Data

Table 2.2: Approaching the Knowledge Process — two extreme positions

Document focus Knowledge Item focus
1. Find out what the core knowledge needs are
Find out which Find out which
2 ’-'.'_-_____E;H_S_i_ﬁii's documents and daia?:f_s_gf_'_'ﬁ::i- -—-- —I-':j:::ﬁom'edge f;e;{ >
deal with these knowledge needs deal with these knowledge needs
Build an Organize the

3. /—f knowledge processes

to allow for creation, handling, and process
support of and around knowledge items

Reorganize / \—’ Build an

Infrastructure

for your organizational memory syste:

to deal with creation and distribution of

knowledge for your organizational memory system

KM applications have tended to serve either the needs of easy access to documents
(e.g. building on groupware, database management systems etc.) or the encoding of
knowledge that facilitates the direct transfer of knowledge by humans (e.g. by people
yellow pages, skill databases, etc.).

Introducing KM to a company (i.e. moving along the Knowledge Meta Process in
“the light grey circle” in Figure 2.1), a very simple, pragmatic approach has typically
been pursued, which however meant that only the low hanging fruits were picked. This
approach is summarized in the left column of Table 2.2. What appears preemminent in
this approach is the focus on the handling of documents (steps 2 and 3) and the existing,
but minor role of the appendix “process”. In spite of its immediate successes, this
approach shows several disadvantages. In particular, it often leads to the consequence
that the Knowledge Process steps (“the dark grey circle”) of creation, import, capturing,
retrieving/accessing, and using are only very loosely connected, if at all (the steps will
be described in Chapter 5, ¢f., e.g., Figure 5.1). The underlying reason is that for each
of these steps different types of business documents play a major role, which makes
“knowledge re-use” — and not only knowledge re-finding — extremely difficult.

Subsequently, we show how domain ontologies (see next Chapter 3) may act as the
glue between knowledge items, bridging between different Knowledge Process steps.
Thereby, we argue for a refocus on the Knowledge Process and its core items, which
need not be documents! This shift becomes visible in the second column of Table 2.2,
which positions knowledge items and knowledge processes in the center of consideration.

17

2 Knowledge Management

The reader may note that we contrast two rather extreme positions in Table 2.2. As
becomes obvious in recent research papers, current knowledge management research
tends to move away from the document focus to a focus on knowledge items and
processes (Abecker et al., 1998; Staab & O’Leary, 2000). While for a multitude of
settings we still see the necessity for the document-oriented view, we argue for a more
constructivist view of the knowledge processes. In particular, we believe that the
exuberant exchange and trading of knowledge within and across organization still has
to begin — and that it needs a knowledge item-oriented view such as we plead for.

Relevant knowledge items appear in a multitude of different document formats: text
documents, spreadsheets, presentation slides, database entries, web pages, construction
drawings, or e-mail, to name but a few. The challenge that one must cope with lies in
the appropriate digestion of the knowledge, e.g. by “simple” reuse, or by aggregation,
combination, condensation, abstraction, and by derivation of new knowledge from ag-
gregations. Following only the lines of traditional document management, I'T support
for knowledge management cannot take advantage of the contents of the business doc-
uments, but only of its explicit or implicit classification. At the other extreme of this
spectrum, there are expert systems that structure and codify all the knowledge that
is in the system. Though such an approach may sometimes be appropriate, it is cer-
tainly not the way to follow in the typical knowledge management scenario, where not
everything can be codified, a lot of knowledge is created sporadically, and the worth
of knowledge re-use is only shown over time and not necessarily obvious from the very
beginning.

Hence, one must search for the adequate balance between reuse, level of formality, and
costs to codify knowledge. For instance, certain help desk scenarios imply long term
use of extremely well-defined knowledge items (Morgenstern, 1998). Then it may be
worth to codify extensively and to spend some considerable amount of time and money
on coding. On the other hand, a sporadic discussion is typically not worth coding at
all, since it lives on the spur of the moment and often is negligible and, hence, not
reusable after some short time.

As a way to balance these conflicting needs and to flexibly manage various degrees of
encoded knowledge, we advertise the use of various notions of meta data. The different
notions of the term “meta data”, i.e. data about data, may be classified at least into
the following categories:

1. Data describing other data. We may again divide this category into two orthog-
onal dimensions.

a) The one dimension concerns the formality of this data. Meta data may range
from very informal descriptions of documents, e.g. free text summaries of

18

2.4 Knowledge Items & Meta Data

books, up to very formal descriptions, such as ontology-based annotation of
document contents.

b) The second dimension concerns the containment of the meta data. Parts
of meta data may be internal to the data that is described, e.g. the author
tag inside of HTML documents, while others may be stored completely
independently from the document they describe, such as a bibliography
database that classifies the documents it refers to, but does not contain
them.

2. The second major connotation of meta data is data that describes the structure
of data. For our purpose, one might refer to this notion by the term “meta meta
data”, because we describe the structure of meta data. Also, in our context this
notion boils down to an ontology that formally describes the domain of the KM
application, possibly including parts of the organization and the information
structures (Abecker et al., 1998). The ontology allows to combine meta data
from different parts of the Knowledge Process and data proper that adhere to
the ontology description.

Meta data in its first connotation fulfills a double purpose. It condenses and codifies
knowledge for reuse in other steps of the KM process by being connected through
mutual relationships and the ontology (the meta meta data). Furthermore, it may
link knowledge items of various degrees of formality together, thus allowing a sliding
balance between depth of coding and costs. In the next chapter we will now focus on
“Ontologies”, explain what they are and for what purposes they can be used.

19

2 Knowledge Management

20

3 Ontologies & The Semantic Web

This chapter provides a basic introduction to ontologies
and the Semantic Web. The history and foundations of con-
cept “ontology” are described in Section 3.1. Current trends
of using such ontologies for knowledge management, coined
in the vision of the Semantic Web, motivate the need for
advanced methodologies, tools and case studies. We pro-

Overview yide a classification schema for ontologies in Section 3.2. An
illustrative example in Section 3.3 shows the core usage of
ontologies, viz. to support communication.

3.1 History & Foundations

Philosophical Roots

The term “Ontology” (Greek. on = being, logos = to reason) in its original sense is
a philosophical discipline, a branch of philosophy that deals with the nature and the
organization of being. Though “Ontology” was first coined in the 17th century, the
term is synonymous with “metaphysics” or “first philosophy” as defined by Aristotle
during the 4th century BC in his work “Metaphysics, IV, 1”. In the context of research
on “Ontology”, philosophers try to answer fundamental questions like “what is being?”
and “what are the features common to all beings?”.

“Ontology” vs. “ontology”

According to (Guarino, 1998a) we consider the distinction between “Ontology” (with
the capital “O”) , as in the statement “Ontology is a fascinating discipline” and “ontol-
ogy” (with the lowercase “0”), as in the expression “Aristotle’s ontology”. The former
reading of the term ontology refers to a particular philosophical discipline, the latter
term has different senses assumed by the philosophical community and the computer

science community. In the philosophical sense we may refer to an ontology as:

21

3 Ontologies & The Semantic Web

“. . .] a particular system of categories accounting for a certain vision of the
world |...]”
(Guarino, 1998a)

Such a system does not depend on a particular language in the philosophical point of
view.

Ontologies in Computer Science

In recent years ontologies have become a topic of interest in computer science (cf.
e.g. (Gruber, 1995; Uschold & Grueninger, 1996; Noy & Hafner, 1997; Maedche &
Staab, 2001; Fensel, 2001)). There are different ‘definitions’ in the literature of what
an ontology should be. Some of them are discussed in (Guarino, 1997; van Heijst,
1995), the most prominent being published by Tom Gruber (¢f. (Gruber, 1993; 1995))
during his efforts for the Knowledge Sharing Effort (KSE, (Neches et al., 1991)):

“An ontology is an explicit specification of a conceptualization. The term
15 borrowed from philosophy, where an Ontology is a systematic account of
Existence. For Al systems, what ‘exists’ is that which can be represented.”
(Gruber, 1993)

A conceptualization refers to an abstract model of some phenomenon in the world by
identifying the relevant concept of that phenomenon. FEzplicit means that the types of
concepts used and the constraints on their use are explicitly defined. This definition
is often extended by three additional conditions: “An ontology is an explicit, formal
specification of a shared conceptualization of a domain of interest”. Formal refers to
the fact that the ontology should be machine readable (which excludes for instance
natural language). Shared reflects the notion that an ontology captures consensual
knowledge, that is, it is not private to some individual, but accepted as a group.
The reference to a domain of interest indicates that for domain ontologies one is not
interested in modeling the whole world, but rather in modeling just the parts which
are relevant to the task at hand (we will present a classification for different types of
ontologies in Section 3.2).

Gruber also introduces as part of the “Frame Ontology” kinds of components, which
are used to model ontologies (¢f. (Gruber, 1993)), e.g.: classes (often also called con-
cepts), relations (often, especially in the RDF community, also called properties),
axioms, and instances!. Concepts are organized in taxonomies through which inher-
itance mechanisms can be applied. Relations represent a type of interaction between

'Readers that are interested in more formal definitions are referred to The Karlsruhe Perspective
on Ontologies, cf. (Bozsak et al., 2002), that was developed in a joint effort of members of the
Institute ATFB.

22

3.1 History & Foundations

concepts of the domain. Axioms are used to model sentences that are always true.
They are also used to represent knowledge that cannot be formally defined by the
other components. And, last but not least, instances can be instances of concepts and
of relations.

As shown above, an important aspect of ontologies is their consensual character. As
mentioned previously, people (cf. Section 1.1) need to speak a common language to
share knowledge (cf. (Davenport & Prusak, 1998)). Users of an ontology first need to
agree on a shared conceptualization to enable knowledge sharing on a conceptual level,
the so-called knowledge level (cf. (Newell, 1982)). The same holds for software agents.
Considering the fact that different software agents might use different ontologies, they
need to be able to reach consensus on the ontology used for communication:

“Software agents are communicating with each other via messages that con-
tain expressions formulated in terms of an ontology (ontology driven com-
munication). In order for a software agent to understand the meaning of
these expressions, the agent needs access to the ontology they commat to.”
(Guarino, 1998a)

This is reflected in the FIPA-ACL, the Agent Communication Language specified by
the FIPAZ. In the specification a special parameter is reserved to reference the used
ontology for a message exchanged by agents. Some implementations already make use
of explicit ontologies (cf., e.g., (Smolle & Sure, 2002)).

Typically in computer science, an ontology refers to an engineering artifact, constituted
by a specific vocabulary used to describe a certain reality, plus a set of explicit assump-
tions regarding the intended meaning of the vocabulary. Often a form of First-Order
Logic (FOL) theory is used to represent these assumptions. Vocabulary is defined as
unary and binary predicates, called concepts and relations, respectively.

The use of logic as a basis for knowledge representation languages was first proposed
by McCarthy in 1959 (McCarthy, 1959). His intention was to model knowledge instead
of hard-wiring it into specific programs to make it more modular and therefore more
reusable:

“Bxpressing information in declarative sentences is far more modular than
expressing it in segments of computer programs or in tables. Sentences can
be true in a much wider context than specific programs can be used. The
supplier of a fact does not have to understand much about how the receiver
functions or how or whether the receiver will use it. The same fact can

2FIPA is the official abbreviation for “Foundation for Intelligent Physical Agents”, see
http://wuw.fipa.org/

23

3 Ontologies & The Semantic Web

be used for many purposes, because the logical consequence of collections of
facts can be available.”
(McCarthy, 1989)

Ontologies have been successfully applied in numerous scenarios including (taken from
(Erdmann, 2001)):

e Natural Language Processing and Machine Translation (e.g. (Miller, 1995; Staab
et al., 1999; Dahlgren, 1995)),

e Knowledge Engineering (esp. Problem Solving Methods (Fensel, 2000)),

e Knowledge Management (cf. (Abecker et al., 1997; Staab & Schnurr, 2000; Sure
et al., 2000)),

e Engineering Disciplines (e.g. (Borst & Akkermans, 1997; Pocsai, 2000)),
e Electronic Commerce (e.g. RosettaNet? and Ontology.org?),

e Information Retrieval and Information Integration (e.g. (Kashyap, 1999; Mena
et al., 1998; Wiederhold, 1992)),

e Web Catalogs (e.g. Yahoo! (Labrou & Finin, 1999)),

e Intelligent Search Engines (e.g. Ontobroker (Decker et al., 1999), SHOE (Heflin
& Hendler, 2000), Getess (Staab et al., 1999), OntoSeek (Guarino et al., 1999)),

e Digital Libraries (e.g. (Amann & Fundulaki, 1999)),
e Enhanced User Interfaces (e.g. (Kesseler, 1996), Inxight?),
e Software Agents (e.g. (Gluschko et al., 1999; Smith & Poulter, 1999)) or

e Business Process Modelling (e.g. (Decker et al., 1997; TOVE, 1995; Uschold et al.,
1998)).

Further examples can be found e.g. in (Sowa, 2000; Guarino, 1998a; Noy & Hafner,
1997, Jasper & Uschold, 1999; Studer et al., 1998; Sure & Schnurr, 2003). However,
these have been mostly academic applications. With the rise of the Semantic Web,
ontologies gain ever more attention and industry is beginning to take up the first results
and to offer commercial products (e.g. (Moench, 2003)). E.g. one of the primary goals
of the OntoWeb® thematic network is the following one:

3RosettaNet, http://RosettaNet.org/
“Ontology.Org, http://www.Ontology.org/
*Inxight Inc., http://www.inxight.com/
50OntoWeb.org, http://www.ontoweb.org/

24

3.2 Classification of Ontologies

“Demonstrating to industry how ontologies can be applied to particular prob-
lems in Knowledge Management, Electronic Commerce, and Enterprise In-
tegration, and identifying problems in industry that can be addressed in
scientific research.”

(OntoWeb, 2001)

The network started in Summer 2001 and has currently over 100 members coming from
academia and industry that share an interest in ontologies and the Semantic Web. In
Chapter 12 we will describe more detailed the goals of OntoWeb and in particular the
contribution of this work with respect to the “SEmantic portAL” of the network.

The vision of the Semantic Web is described as

“...an extension of the current Web in which information is given well-
defined meaning, better enabling computers and people to work in coopera-
tion. It is the idea of having data on the Web defined and linked in a way
that it can be used for more effective discovery, automation, integration,
and reuse across various applications ... data can be shared and processed
by automated tools as well as by people.”

(W3C, 2001)

As such, it offers a large potential for supporting issues like “integration” and “re-use”,
two of the main practical problems of computer science. Quite naturally, with the
growing interest on the Semantic Web the number of ontologies for various domains
will rise. Although many researchers are working now in the research area Semantic
Web on different problems, there is still a lack of work that integrates aspects to give
a clear picture and overview of how to develop and use ontology based applications for
practical knowledge management problems.

This thesis is motivated by the urgent need for comprehensive methodologies, that
(i) guide domain-independently the introduction and running of ontology-based ap-
plications, (ii) have appropriate tool support and (iii) are accompanied by illustrative
show cases. Thus, the thesis e.g. contributes to the goals of the OntoWeb network as
described above.

3.2 Classification of Ontologies

Different classification systems for ontologies have been developed (van Heijst, 1995;
Guarino, 1998a; Jasper & Uschold, 1999). A classification system that uses the subject
of conceptualization as a main criterion has been introduced by Guarino (cf. (Guarino,

25

3 Ontologies & The Semantic Web

top-tevel ontology

R

domain ontology task ontology

>~

l application ontology I

Figure 3.1: Different kinds of ontologies and their relationships

1998a)). He suggests to develop different kinds of ontologies according to their level of
generality as shown in Figure 3.1.

Thus, different kinds of ontologies may be distinguished as follows:

e Top-level ontologies describe very general concepts like space, time, event,
which are independent of a particular problem or domain. Such unified top-level
ontologies aim at serving large communities of users and applications. They
facilitate the (semi-)automatic integration and combination of different ontologies
that are mapped to the same top-level ontology. Prominent examples of such
ontologies include the top-level ontology by John Sowa (cf. (Sowa, 2000)), the
IEEE SUO7 and DOLCE (c¢f. (Gangemi et al., 2002a)). Recently, these kinds of
ontologies have been also introduced under the name foundational ontologies
and efforts exist on creating a modularized “Foundational Ontologies Library”
(cf. (Gangemi et al., 2002a)).

e Domain ontologies describe the vocabulary related to a specific domain (such
as vines or cars), e.g. by specializing concepts introduced in a top-level ontology.

e Task ontologies describe the vocabulary related to a generic task or activity
(such as drinking or selling), e.g. by specializing concepts introduced in a top-level
ontology.

e Application ontologies are the most specific ontologies. Concepts in applica-
tion ontologies often correspond to roles played by domain entities while perform-
ing a certain activity, 4.e. application ontologies are a specialization of domain
and task ontologies. They form a base for implementing applications with a
concrete domain and scope.

"Standard Upper Ontology, http://suo.icee.org

26

3.3 Communication with Ontologies

Noteworthy are also common sense ontologies (cf. (Pirlein, 1995; Lenat & Guha,
1990; Lenat, 1995)) which are used to model aspects relevant for many other applica-
tions. As such, they contain typically concepts of space and time and are intended to
be highly re-usable.

In this work we refer by ontology to domain and in particular to application ontologies.

3.3 Communication with Ontologies

Reference & Meaning

The meaning triangle (cf. (Odgen & Richards, 1923), in the tradition of Frege, cf., e.g.,
(Frege, 1892)) is used to define the interaction between symbols or words, concepts
and things of the world (¢f. Figure 3.2). The meaning triangle illustrates the fact that
although words cannot completely capture the essence of a reference (= concept) or of a
referent (= thing), there is a correspondence between them. The relationship between
a word and a thing is indirect. The correct linkage can only be accomplished when an
interpreter processes the word invoking a corresponding concept and establishing the
proper linkage between the concept and the appropriate thing in the world (= object).
We will now illustrate some practical aspects of the meaning triangle by an example.

evokes refers to

Object

Symbol

stands for

Figure 3.2: The Meaning Triangle

Communication Example

The following example and figure has been taken from (Maedche, 2002a), but was
slightly modified to fit the the skills management case study in Chapter 11. Figure 3.3
depicts the overall setting for communication between human and software agents. We
mainly distinguish three layers: First of all, we deal with things that exist in the real
world, including in this example human and software agents. Secondly, we deal with

27

3 Ontologies & The Semantic Web

symbols and syntactic structures that are exchanged. Thirdly, we analyze models with
their specific semantic structures that correspond to certain domains, e.g. geography
or skills.

[Human | [Human | Machine Machina
| Agent1 | QRS A, Agent 1 Agent 2
. . -~
— S I
)
exchange signs, Ontology exchange signs, Symbols
e.g. nat. language Description e.g. protocols Syntactic structures
+«—— "Java" —» * "

Formal Semantics
Formal

' _I :-,-,m:dr;aﬁl J- ’.' commit cammit models Concepts |
o v A - ‘Semantic structures
< i, 1
. s -~
~_‘__H commit ‘\. Ontology ‘_—mnmlt
T~ (G
T L A specific
4 P
Another 2 domain, e.g.
domain, e.g. T gkills
geography JAVA

Figure 3.3: Communication between human and/or software agents

Let us first consider the left side of Figure 3.3 without assuming a commitment to a
given ontology. Two human agents HA; and HA5 exchange a specific sign, e.g. a word
like “Java”. Given their own internal model each of them will associate the sign to his
own concept referring to possibly two completely different existing things in the world,
e.g. the part of Indonesia called “Java” wvs. the programming skill “Java”. The same
holds for software agents: They may exchange statements based on a common syntax,
however, they may have different formal models with differing interpretations.

We consider the scenario that both human agents commit to a specific ontology that
deals with a specific domain, e.g. skills. The chance that they both refer to the same
thing in the world increases considerably. The same holds for the software agents SAy
and SAs: They have actual knowledge and they use the ontology to have a common
semantic basis. When agent SA; uses the term “Java”, the other agent SAs may use the
ontology just mentioned as background knowledge and rule out incorrect references,
e.g. ones that let “Java” stand for the part of Indonesia. Human and software agents
use their concepts and their inference processes, respectively, in order to narrow down
the choice of references.

28

Part |l

On-To-Knowledge Methodology

“If you can’t describe what you are doing as a process,
you don’t know what you’re doing.”
— W. Edwards Deming

29

4 Knowledge Meta Process

This part introduces the On-To-Knowledge Method-
ology for developing, deploying and using ontology based
knowledge management applications. The methodology con-
sists of two main processes: the “Knowledge Meta Process”
(KMP) for developing and deploying such applications and
the “Knowledge Process” (KP) for using them.

This chapter is about the KMP, the following Chapter 5 is
about the KP. Section 4.1 introduces relevant processes for
developing and deploying knowledge management applica-
tions. We focus on the KMP as a core process and introduce

Overview ip Section 4.2 an overview of the KMP steps. Each step is
subsequently described in the following sections, wviz. Feasi-
bility Study in Section 4.3, Kickoff in Section 4.4, Refinement
in Section 4.5, Evaluation in Section 4.6 and Application &
Evolution in Section 4.7.

References: This chapter is mainly based on (Staab et al.,
2001), (Sure et al., 2002c) and (Sure & Studer, 2002a).

4.1 Developing and Deploying Knowledge Management
Applications

To implement and invent any KM application, one has to consider different processes
(cf. Figure 4.1). We experienced in the case studies presented in Part IV mainly
three interacting processes that influenced the projects, i.e. “‘Knowledge Meta Process”,
“Human Issues” and “Software Engineering”.

Human issues (HI) and the related cultural environment of organizations heavily in-
fluence the acceptance of KM. It is often mentioned in discussions that the success of
KM - and especially KM applications — strongly depends on the acceptance by the
involved people. As a consequence, “quick wins” are recommended for the initial phase

31

4 Knowledge Meta Process

Knowledge
Management
Application

> Knubl‘ifgt' MN> Process >
Y/ A/ 4

4
oy

Figure 4.1: Relevant processes for developing and deploying KM applications

of implementing any KM strategy. The aim is to quickly convince people that KM is
useful for them and adds value to their daily work.

Software engineering (SE) for knowledge management applications has to fit to the
other processes. The now presented On-To-Knowledge Methodology is cyclic and in-
cludes iterative steps, ideally the software engineering methods should also explicitly
include cycles and iterations. A prominent examples for such a methodology is (Ja-
cobson et al., 1999). Although the On-To-Knowledge Methodology inherits the notion
of the core steps from object-oriented programming (c¢f. (Jacobson, 1998)), it does
actually not require or rely on a particular SE methodology.

As introduced in Section 2.3, we distinguish two main processes. In the following
sections we will first focus on the Knowledge Meta Process as the core process and
illustrate some cross-links to the other mentioned processes. The Knowledge Process
is subsequently presented in the next Chapter 5. The methodology described in this
part was (mainly) developed and applied in the On-To-Knowledge' project (cf. Chap-
ter 11).

4.2 Steps of the Knowledge Meta Process

The Knowledge Meta Process (c¢f. Figure 4.2) describes the development and employ-
ment of ontology based KM applications. The Knowledge Meta Process consists of five

'EU IST-1999-10132 On-To-Knowledge, see http://www.ontoknowledge.org/

32

4.2 Steps of the Knowledge Meta Process

main steps. Each step has numerous sub-steps, requires a main decision to be taken

at the end and results in a specific outcome:

Evaluated Evolved
ontology ontology

Common

<o

evaluation

I
I
|
|
formal ontology:g‘ Create ;
|
|
I

KADS
Worksheets Human
Y Issues
= - pplicatio Knowledge
Feasibility ickoff Py
study Kicko Management
) Evolution Application

I I N i

1] I i

I I I I

I 1 1 I
|dentify .. 15. Capture 17. Refine semi- 110. Technology- 1 13. Apply : .
1. Problems & | requirements | formal ontology! focussed ' ontology Ngineering

opportunities : specification in : description : evaluation 14. Manage
2 Focus of KM | ORSD 18. Formalize into 111. User- evolution and
application :Ei‘ Create semi- | targetontology ! focussed maintenance

I

I

I

I

I

3. (OTK-) Tools Y
4. People description | Prototype 112. Ontology-
1 I focussed
: : evaluation
2
Ontology Development

Figure 4.2: The Knowledge Meta Process

The main stream indicates steps (phases) that finally lead to an ontology based
KM application. The phases are “Feasibility Study”, “Kickoff”, “Refinement”,
“Evaluation” and “Application & Evolution”.

Below every box depicting a phase the most important sub-steps are listed, e.g.
“Refinement” consists of the sub-steps “Refine the semi-formal ontology descrip-
tion”, “Formalize into target ontology” and “Create Prototype”. etc.

Each document-flag above a phase indicates major outcomes of the step, e.g.
“Kickoff” results in a “Semi-formal ontology description” etc.

Each node above a flag represents the major decisions that have to be taken at
the end to proceed to the next phase. Typically the major outcomes serve as a
base for the decisions to be taken.

As indicated, some steps need to be performed in iterative cycles.

33

4 Knowledge Meta Process

A main part of the Knowledge Meta Process is covered by ontology engineering, be-
ginning with the “Kickoff” phase. In Part III we will describe dedicated tool support
for each of the steps during ontology development. In Part IV we will describe lessons
learned during the application of the On-To-Knowledge Methodology in different case
studies.

4.3 Feasibility Study

Any knowledge management system may function properly only if it is seamlessly
integrated in the organization in which it is operational. Many factors other than tech-
nology determine success or failure of such a system (cf. Section 4.1). To analyze these
factors, we initially start with a feasibility study, e.g. to identify problem/opportunity
areas and potential solutions. In general, a feasibility study serves as a decision sup-
port for economical, technical and project feasibility, determining the most promising
focus area and target solution.

CommonKADS Worksheets

The well-known CommonKADS methodology (Schreiber et al., 1999) offers three mod-
els for performing feasibility studies: the organization, task, and agent model. The
process of building these models proceeds in the following steps:

e Carry out a scoping and problem analysis study, consisting of two parts:

1. Identifying problem/opportunity areas and potential solutions.

2. Deciding about economic, technical and project feasibility, in order to select
the most promising focus area and target solution.

e Carry out an impacts and improvements study, for the selected target solution,
again consisting of two parts:

1. Gathering insights into the interrelationships between the business task,
actors involved, and use of knowledge for successful performance, and what
improvements may be achieved here.

2. Deciding about organizational measures and task changes, in order to ensure
organizational acceptance and integration of a knowledge system solution.
An overview of the process of organizational context modeling is given in Figure 4.3.

Building the organization, task and agent model is done by following a series of steps

34

4.3 Feasibility Study

supported by practical and easy-to-use worksheets and checklists (we provide a brief
summary of the most relevant steps and refer for a detailed description of these steps
to the CommonKADS methodology (Schreiber et al., 1999)).

BN

OM-1
worksheet: P
Th-1
problems, worksheet
solutions, p rate
= e w, [,
f Faasibl analysis
OM-3 (iffeasibie] both the ofd
./
worksheet — ; J:‘j a’;i“’
process ™-2 n
om-2 breakdown OM-5 waorksheet
worksheet: worksheet — T,
knowledge OTAA
description ' Refine H Judge item
of Integraled coasivility analysis worksheet
organization OM-4 {Decision "
'R » Asse
focus area worksheet Document) R
AM-1
— knowled ksheet Changes
n::setsge Ly workshee (Decision
, agent Document)
{If unfeasible] madel
—
—
Stop Context
analysis
ready

Figure 4.3: CommonKADS worksheets for feasibility study

The organization model focuses on problems and opportunities. These issues are dis-
cussed in the worksheets OM-1 — OM-4 that are described in the following.

e Worksheet OM-1 explains the problems, solutions and the organizational con-
text, e.g. including (i) the mission, vision and goals of the organization, (ii)
important external factors the organization has to deal with, (iii) strategy of the
organization and (iv) its value chain and the major value driver.

e Worksheet OM-2 concentrates upon the more specific aspects of an organization.
This includes e.g. how the business is structured, what staff is involved and what
resources are used.

e Worksheet OM-3 breaks down the business process into smaller tasks, because

an envisaged KM application always carries out specific tasks and this has to fit
into the process as a whole.

35

4 Knowledge Meta Process

o Worksheet OM-4 describes the knowledge assets of an organization. It provides
e.g. detailed information on who possesses a knowledge asset and in which tasks
it is used.

e Worksheet OM-5 finally provides a checklist for the feasibility decision. All key
implications are wrapped up to support the decision-making process. Key ques-
tions in the process are:

— What is the most promising opportunity area for applications, and what is
the best solution direction?

— What are the benefits versus the costs (business feasibility)?

— Are the needed technologies for this solution available and within reach
(technical feasibility)?

— What further projet actions can successfully be undertaken (project feasi-
bility)?

If a project is considered feasible, the task and the agent model help to prepare the
start of the ontology development in the kickoff phase by zooming in on the features of
the relevant tasks, the agents that carry them out, and on the knowledge items used
by the agents in performing tasks.

e Worksheet TM-1 can be seen as a refinement of OM-3. All identified tasks are
now being described in detail, e.g. covering goal and value of tasks, their timing
and competencies needed for successful task performance.

e Worksheet TM-2 is a refinement of OM-4 and provides a knowledge bottleneck
analysis to uncover the areas for improvement.

e Worksheet AM-1 adds to the task oriented point of view the perspective of in-
dividual agents (e.g. knowledge workers). The purpose of the agent model is to
understand the roles and competencies that various actors in the organization
bring with them to perform a (shared) task.

e Worksheet OTA-1 integrates the task and agent model into a checklist that pro-
vides a detailed insight into the impact of a KM application, and especially what
improvement actions are possible or necessary in the organization in conjunction
with the introduction of such an application.

Outcome & Decision

In the end the two decision documents OM-5 and OTA-1 serve as a base for (i) deciding
whether the project per se is started, and (ii) identifying the problems & opportunities,

36

4.4 Kickoff

the focus of the application, the technology and in particular the tools needed that are
available and, last but not least, the people involved.

Given that a “GO” decision finalizes the feasibility study, the results as described above
serve as input for the kick off phase of the ontology development. Obviously, a “No
GO” decision might lead to a complete stop or at least a modification of the project.

4.4 Kickoff

Capture Requirements Specification

In the Kickoff phase the actual development of the ontology begins. Similar to soft-
ware engineering and as proposed by (Fernandez-Lopez et al., 1999) we start with an
ontology requirements specification document (ORSD). The ORSD describes what an
ontology should support, sketching the planned area of the ontology application and
listing, e.g. valuable knowledge sources for the next step, the gathering of the semi-
formal description of the ontology. The ORSD should also guide ontology engineers in
the refinement phase to decide about inclusion and exclusion of concepts and relations
and the hierarchical structure of the ontology. In this early stage one should look for
already developed and potentially reusable ontologies?. In detail, the ORSD contains
the following information.

ORSD, part (i): Goal, Domain and Scope

In the beginning one should specify the particular domain in use, which might e.g.
help to identify already existing ontologies. The feasibility study made clear proposals
about interesting areas to be supported by a knowledge management project. The
ontology engineer may use the outcomes of the task analysis to describe the goal of
the ontology. The following list gives some examples from the Swiss Life case study
(cf. Section 11.4): "The ontology serves as a means to structure skills and job profiles®,
"The ontology serves as a guideline for the knowledge distribution between the Human
Resource department and the Research and Development department®, "The ontology
serves as a base for semantic search®.

>The reuse of ontologies, e.g. by merging or aligning them, is not covered by this methodology. We
describe the process of developing an ontology from scratch. However, the merging and alignment
can be integrated in the methodology as part of the kickoff and refinement steps. For existing
methodologies and tools dedicated to merging and aligning we refer to (Russ et al., 1999; Noy &
Musen, 2000; McGuinness et al., 2000a; Stumme & Maedche, 2001; Pinto et al., 2002).

37

4 Knowledge Meta Process

ORSD, part (ii): Design Guidelines

Due to the nature of our related case studies (¢f. Part IV) we focus on pragmatic design
guidelines that help users who are not familiar with modeling.

The guidelines might e.g. contain an estimation of the number of concepts and the
level of granularity of the planned model. This estimation is based on the knowl-
edge item analysis, a further outcome of the feasibility study. E.g. if the requirements
analysis specified that an ontology should support browsing through a domain which
includes around 100 concepts and the ontology engineer ended up with modeling 1000
concepts, either the ontology grew too big and should be modified to fulfill the re-
quirements or the requirement specification is not up to date any longer and should be
updated.

Also, one might specify common rules how to name concepts and relations. A typical
approach for a naming convention is to begin all concepts with capitals and all relations
with small caps. Whatever rules one might specify, they should be used consistently
when modeling an ontology. Ideally an ontology engineering tool should support to
set these kinds of constraints and check it during the modeling process (e.g. as the
OntoAnalyzer which is presented in Section 9.2). There exist standardized naming
conventions for concepts and relations such as (ISO 704, 1987).

(Noy & McGuinness, 2001) proposes a set of pragmatic guidelines for modelling
ontologies. Especially domain experts not familiar with modelling (e.g. at Swiss Life)
found these guidelines quite helpful. The guidelines are based on experiences with
Protégé which is an ontology editor similar to OntoEdit (c¢f. next Part IIT on tool
support). Therefore the guidelines were easily applicable when using OntoEdit for
modelling (we even formalized some of them as constraints that can be automatically
checked with the OntoAnalyzer, c¢f. Section 9.2). We now sketch some of the guidelines
found in (Noy & McGuinness, 2001) which we found most useful in the case studies.

e “The ontology should not contain all the possible information about the domain:
you do not need to specialize (or generalize) more than you need for your appli-
cation (at most one extra level each way).”

e “The ontology should not contain all the possible relations of and distinctions
among concepts in a hierarchy.”

e “Subconcepts of a concept usually (i) have additional relations that the supercon-
cept does not have, or (ii) restrictions different from those of the superconcept, or
(111) participate in different relationships than the superconcepts. In other words,
we introduce a new concept in the hierarchy usually only when there is something
that we can say about this concept that we cannot say about the superconcept. As

38

4.4 Kickoff

an exception, concepts in terminological hierarchies do not have to introduce new
relations.” (This also holds for most of the “light-weight” ontologies developed in
the case studies.)

o “If a distinction is important in the domain and we think of the objects with
different values for the distinction as different kinds of objects, then we should
create a new concept for the distinction.”

e “A concept to which an individual instance belongs should not change often.”

More formal guidelines exist regarding the proper creation of “clean” taxonomi-
cal structures (cf., e.g., (Guarino & Welty, 2000a)). These guidelines are based on
philosophical notions and resulted in the development of the OntoClean methodology
including guidelines on the use and misuse of subsumption in ontology engineering
(cf., e.g., (Guarino & Welty, 2002)). The OntoClean methodology aims at the formal
evaluation of ontologies, but inherently provides guidelines as mentioned before. We
discuss OntoClean and its application in Section 9.3 which is about the implementation
of the OntoClean plugin.

A common problem in knowledge engineering is that objects may play different roles
(¢f. (Steimann, 2000)) simultaneously, resulting in multiple classifications of objects.
Similar to that, objects may play the same role several times, simultaneously. A typical
example is that an employee may hold several employments at the same time. The
main reason to distinguish multiple occurrences in the same role is that each occurrence
of the object in a role is associated with a different state. For example, an employee
has one salary and one office address per job.

As (Steimann, 2000) points out, the interest in roles has grown continuously in recent
years. But although there appears to be a general awareness that roles are an important
modelling concept, until now no consensus has been reached as to how roles should
be represented or integrated into the established modelling frameworks. This may
partly be due to the different contexts in which roles are introduced, and partly to
the different problems one is trying to solve with them. However, the divergence of
definitions contradicts the evident generality and ubiquity of the role concept, and
hampers its general acceptance as a modelling construct. Thus, there are currently
no guidelines that help in modelling roles, but (Steimann, 2000) gives an exhaustive
overview of existing definitions in the literature.

ORSD, part (iii): Knowledge Sources

The knowledge item analysis from the feasibility study serves as an important knowl-
edge source at hand. The ontology engineer may here interview people and analyze

39

4 Knowledge Meta Process

documents to complete the list of knowledge sources for the domain in use. The fol-
lowing shows a partial list of typically available knowledge sources as an example:

domain experts (interviews, competency questionnaires)

(reusable) ontologies

dictionaries

thesauri

other sources

— databases

— index lists

— regulations

— standard templates

— product and project descriptions
— technology white papers

— telephone indices

— web pages / site statistics

— organization charts

— employee role descriptions

— business plans

e cic.

An ontology engineer should use all available knowledge sources based on their avail-
ability and reliability. Some of these knowledge sources like e.g. databases might be
directly integrated within the envisaged application. A key benefit of ontology based
systems is the integrated access to heterogeneous and distributed knowledge sources,
examples include so-called “Semantic Portals” (cf. Section 12.2). Especially the Swiss
Life case study (cf. Section 11.4) explored the integration of various existing knowledge
sources.

40

4.4 Kickoff

ORSD, part (iv): (Potential) Users and Usage Scenarios

This includes a list of potential users or user groups and a description of each usage
scenario. These scenarios might be described by potential users who may report from
own experiences: In what situation occurred a need for such a system (better search
for information, information distribution etc.)? How did they proceed without it? How
would they like to be supported? The usage scenarios sketch the point of view of each
individual user, which may vary between extreme degrees. Those views give interesting
input to the structure of the ontology. The descriptions of the hindering blocks include
also important hints for the design of the ontology based system. The acquisition of
the usage scenarios is done via structured or informal interviews. A common way of
modeling usage scenarios in software engineering are use cases. In particular they help
to identify stakeholders and to clarify their roles in the scenario.

ORSD, part (v): Supported Applications

This is a draft of the ontology based knowledge management application and its sys-
tem and software environment, which links the Knowledge Meta Process to software
engineering (cf. Section 4.1). The ontology engineer may here as well use the task
analysis from the feasibility study as an input source to describe the proposed system
and analyze the role of the ontology. The draft must also deliver a clear picture about
the ontology interface to the user and answer the following question: what part of the
ontology, namely concepts and relations are visible to the user and how does he use
them? If the application runs several times on different hosts, one might want to keep
track of the different locations to enable separate update processes in the maintenance
phase.

ORSD, part (vi): Usage of Competency Questions

The usage scenarios (see above) describe aspects of the real existing domain of the
targeted system. They deliver information about concepts and their relations which
have to be modelled in the target ontology. To derive that information out of the
use cases, the ontology engineer has to transform the scenarios in detailed competency
questions (CQ) (¢f. (Grueninger & Fox, 1994; Uschold & Grueninger, 1996)). They
represent a set of possible queries to the system, indicating the scope and content of
the application or domain ontology (cf. Section 3.2). In Section 7.1 we will show the
integration of CQs into the ontology engineering environment OntoEdit, in Section 11.4
we present an example from the Skills Management case study.

41

4 Knowledge Meta Process

Create semi-formal Ontology Description

Similar to the work presented in (Neubert, 1994) we use different formalization levels
during the creation of ontologies. Thus, the next step after capturing requirements
specifications is the creation of a semi-formal ontology description. This is actually
the beginning of the modelling activity. In the case studies we relied on the creation
of mind maps™ to capture quickly and intuitively the domain knowledge from domain
experts. In Section 7.2 we present the Mind20nto framework that bridges the gap
between the rather weakly structured mind maps™ towards ontologies.

In the next Section 4.5 we will elaborate more on some guidelines for the creation of
initial mind maps™. The guidelines help to create them in a way that facilitates the
transformation into an ontology.

Outcome & Decision

The outcomes of this phase are (i) the ontology requirement specification document
(ORSD)), and (ii) the semi-formal description of the ontology, i.e. a graph of named
nodes and (un-)named, (un-)directed edges, both of which may be linked with further
descriptive text e.g. in form of mind maps™.

If the requirements are sufficiently captured, one may proceed with the next phase.
The decision is typically taken by ontology engineers in collaboration with domain
experts. “Sufficiently” in this context means, that from the current perspective there is
no need to proceed with drafting domain knowledge, but rather the existing structure
needs to be refined in a separate session.

4.5 Refinement

Refine semi-formal ontology description

We will now describe the following issues that are relevant during the refinement of

the semi-formal ontology description: (i) top—down ws. bottom-up modelling, (ii) the

further usage of competency questions, and (iii) guidelines for creating initial mind
™

maps .

Top—down vs. Bottom—up Modelling

During the kickoff and refinement phase one might distinguish in general two concurrent
approaches for modeling: top—down and bottom—up.

42

4.5 Refinement

The usage scenario/competency question method follows usually a top—down ap-
proach in modeling the domain. One starts by modeling concepts and relationships on
a very generic level. Subsequently these items are refined. This approach is typically
done manually and leads to a high-quality engineered ontology. Available top-level
ontologies may here be reused and serve as a starting point to develop new ontologies.
In practice (¢f. Part IV) we encountered more a middle—out approach, i.e. to identify
the most important concepts which will then be used to obtain the remainder of the
hierarchy by generalization and specialization.

However, with the support of an automatic document analysis, a typical bottom—up
approach may be applied (e.g. in ontology learning, cf. (Maedche, 2002a)). There,
relevant concepts are extracted semi-automatically from available documents. Based
on the assumption that most concepts and conceptual structures of the domain as well
the company terminology are described in documents, applying knowledge acquisition
from text for ontology design seems to be promising.

Both approaches have advantages and drawbacks. The competency questions lead to a
more detailed description of the problem area at hand. This supports the fine tuning of
the ontology. On the other hand this gathering of several views is likely to be never com-
plete and might not focus on the documents available. Semi-automatic text extraction
is usually not able to produce high-level quality but delivers instead a more complete
list of relevant concepts. So, the top-down-approach meets the representation of the
“information demand* better than the bottom-up-approach with automatic analysis of
documents, which supports a better representation of the "information supply*.

A promising approach might be to combine both approaches. An automated extraction
might be used as a starting point that is further refined by manual efforts of ontology
engineers. However, the current drawback is that there is no tool support available for
keeping the references between an extracted and the further refined version. This is a
mandatory requirement for the maintenance of such a combined solution.

We propose that ontology engineers should include various knowledge sources depend-
ing on their availability and their reliability (see above) and use each time the more
applicable method to extract relevant knowledge from the sources.

Further Usage of Competency Questions

During the refinement phase the competency questions may be analyzed to derive
relevant concepts, relations and instances that should be included into the ontology
(as shown detailed in Section 7.1). Typically the semi-formal description serves as a
baseline that is refined by concepts and relations found in the competency questions.

43

4 Knowledge Meta Process

Guidelines for creating initial Mind Maps™

Typically, a mind map™ does not provide inherently a consistent taxonomy of concepts,
but rather associatively linked elements. Such elements might represent single concepts,
multiple concepts, concepts related by a relations etc. At first hand, they provide a
quick and intuitive way for capturing knowledge from the domain experts, even in the
absence of ontology engineers. The effort of transforming mind maps™ into ontologies
has currently to be performed manually, typically by ontology engineers. However, we
provide valuable tool support (¢f. Section 7.2) to bridge that gap.

In two of the case studies (¢f. Sections 11.4 and 11.5) we made good experiences with
guiding the domain experts towards an ontology-like mind map™, that already provides
some structural elements. We relied on the following simple guidelines:

e Try to use only single nouns (whenever possible) for naming elements of a mind
™

map".

e Try to avoid relationships (whenever possible) in the initial kickoff phase. Add
them later in the refinement phase, after an initial taxonomy of concepts has
been established.

These guidelines helped to create mind maps™ that are quite easily transformed into
basic structures of ontologies. For instance, without much interference of ontology
engineers we got in our scenarios “subtopic of” structures that could be easily modelled
as a proper ontological structure.

However, a drawback of the mind maps™ is their weakness for modelling (potentially
numerous) relationships and to illustrate the inheritance implied by “is-a” structures.
Therefore, the initial semi-formal ontology description is much more like a first draft
version of a taxonomical structure without relations or inheritance. Thus, in the for-
malization phase required relations and attributes (and possibly instances and axioms)
need to be added.

Formalize into Target Ontology

To formalize the initial semi-formal description of the ontology we firstly form a tax-
onomy out of the semi-formal description of the ontology and add relations other than
the “is-a” relation which forms the taxonomical structure — mainly derived out of the
competency questions.

The ontology engineer adds different types of relations as analyzed e.g. in the compe-
tency questions to the taxonomic hierarchy, e.g. by using typical ontology engineering

44

4.5 Refinement

environments. In Chapter 6 we will motivate typical requirements for such environ-
ments and introduce OntoEdit as an instance of such environments.

However, this step is cyclic in itself, meaning that the ontology engineer now may need
to start interviewing domain experts again and to use the already formalized ontology
as a base for discussions. It might be helpful to visualize the taxonomic hierarchy and
give the domain experts the task to add attributes to concepts and to draw relations
between concepts (e.g. we presented them the taxonomy in form of a mind map™ as
shown in the previous section). The ontology engineer should extensively document
the additions and remarks to make ontological commitments made during the design
explicit.

Depending on the application that has to be supported one has to choose an appropri-
ate representation language. One should notice that formal representation languages
typically differ in their expressive power and tool support for reasoning. The ontology
engineer has to consider the advantages and limitations of the different languages to
choose the appropriate one for the application (cf., e.g., (Decker, 2002) for a compre-
hensive comparison of typical ontology languages). Also, when using modelling tools,
they typically are not capable of exporting all current ontology languages, an example
for OntoEdit’s limitations of exporting DAML+OIL is given in Appendix C.

Create Prototype

As proposed by (Fernandez-Lopez et al., 1999), it is very valuable to have “evolving
prototypes” of ontologies. Since we typically do not model top-level ontologies, but
rather domain or task ontologies (¢f. Section 3.2), we recommend to build a prototype
of the envisaged ontology based application at the end of the refinement phase. This
makes the evaluation of ontologies, especially the user-focussed evaluation (c¢f. next
section) easier if not possible at all.

Cyclic Approach

The refinement phase is closely linked to the evaluation phase. If the analysis of the
ontology in the evaluation phase shows gaps or misconceptions, the ontology engineer
takes these results as an input for the refinement phase. It might be necessary to
perform several (possibly tiny) iterative steps to reach a sufficient level of granularity
and quality.

45

4 Knowledge Meta Process

Outcome & Decision

The outcome of this phase is the “target ontology” (as mentioned above, potentially
embedded into a prototype application), that needs to be evaluated in the next step.
In comparison to the semi-formal ontology description, the target ontology needs to
fulfill formal ontology definitions (e.g. like given in (Bozsak et al., 2002)).

The major decision that needs to be taken to finalize this step is whether the target
ontology is mature enough to evaluate the requirements captured in the previous kickoff
phase. This decision will be most likely be based on the personal experience of ontology
engineers. As a good rule of thumb we discovered that the first ontology should provide
enough “flesh” to build a prototypical application. This application should be able to
serve as a first prototype system for evaluation.

4.6 Evaluation

To describe the evaluation task, we cite (Gomez-Pérez, 1996):

“...] to make a technical judgement of the ontologies, their associated soft-
ware environment, and documentation with respect to a frame of reference
[...]. The frame of reference may be requirements specifications, compe-
tency questions, and/or the real world.“

(Gomez-Pérez, 1996)

The requirements specifications and particularly the competency questions that were
captured during the kickoff serve therefore as a frame of reference for the evaluation of
ontologies. An obvious strategy is therefore to check whether the ontology possesses
enough competence to answer all competency questions.

However, considering the fact that we aim at building applications, evaluation is
not only restricted to ontologies themselves. Additionally one has also to consider
technology-related issues as well as an evaluation from a users’ perspective. Therefore
we distinguish the following three kinds of evaluation:

Technology-focussed Evaluation

Our evaluation framework for technology-focussed evaluation consists of two main as-
pects: (i) the evaluation of properties of ontologies generated by development tools,
(ii) the evaluation of the technology properties, i.e. tools and applications which in-
cludes the evaluation of the evaluation tool properties themselves. In an overview these
aspects are structured as follows in Table 4.1.

46

4.6 Evaluation

Ontology Properties Technology Properties

Language conformity (Syntax) | Interoperability (e.g. Semantics)
Consistency (Semantics) Turn around ability
Scalability
(including performance
and memory allocation)

Integration into frameworks

(e.g. by connectors and interfaces)

Table 4.1: Technology-focussed evaluation framework

For ontologies generated by the development tools the language conformity and con-
sistency may be checked.

Language conformity means that the syntax of the representation of the ontology
in a special language is conform to a standard. Such a standard is either a well-
documented standard defined by a standardization body or it is an industrial standard
mostly given by a reference implementation. So in the first case the outcome of an
ontology tool must be checked with respect to the syntax definition and in the second
case it must be tested using the reference implementation.

Evaluation of consistency means to what extent the tools ensure that the resulting
ontologies are consistent with respect to their semantics, e.g. that different parts of the
ontology representation do not contradict.

Ontology properties may be evaluated using the ontologies only, i.e. without having
tools, e.g. for development, themselves available.

In contrast to that for the following second block of properties the tools are examined.

Interoperability means how easy it is to exchange ontologies between different tools.
This includes such aspects as "is a tool able to interpret the outcome of another tool
in the same way?". This is more than only checking the language conformity because
it examines whether different tools interpret the same things in the same way. Often
things can be represented in the same language in different ways.

Turn around ability means that the outcome of a tool is represented to the user in
the same way again later on. FE.g. a value restriction may be represented as a range

47

4 Knowledge Meta Process

restriction or by a constraint. If the tool shows that as a range restriction it should
not show it as a constraint the next time it reads the same ontology.

Scalability evaluates the performance and memory behavior of the tools with respect
to increasing ontologies and tasks. It examines questions like “how increases a linear
growth of ontologies the amount of memory allocated by the tool?”.

Performance especially concerns the runtime effort of the tools, e.¢g. how much time
is needed for solving a special inference task (not discussed here), for storing ontologies
etc. Benchmark tests must be developed to evaluate these performance issues. For
these benchmarks reference ontologies, reference ontology classes, reference tasks and
reference task classes may be very helpful. This also refers to scalability (see below).

Memory allocation means how much memory is needed by the tools to handle on-
tologies. Similarly to the performance evaluation benchmarks must be available to test
memory allocation. For performance evaluation as well as for memory allocation it
must be clarified what does the “size” of an ontology or the complexity of a task mean
and which parameters influence this size in what way etc. This also refers to scalability
(see below).

Integration into frameworks means how easy it is to switch between such tools.
For instance it is not very convenient that for a switch between tools it is necessary
to store the ontology, to transform it afterwards with a different tool into another
language which is a precondition to load it with the other tool. Entirely integrated
environments similar to well-known programming environments must be the goal for
ontology development tools. This includes whether there exist connectors (and in-
terfaces) to other tools. This concerns (i) connectors to other tools and (ii) connectors
from other tools to the tool.

This evaluation framework for technology oriented evaluation was e.g. taken as a base-
line for the workshop on “Evaluation of Ontology based Tools (EON2002)”, ¢f. Sec-
tion 12.3. Within an experiment as part of the workshop, different ontology engineering
environments were evaluated.

User-focussed Evaluation

The framework shown above concentrates on the technical aspects of ontologies and
related ontologies. However, the aspect of user-focussed evaluation remains open. We
therefore present further steps for ontology evaluation that particularly make use of
already available resources from earlier steps in the methodological framework.

Ontology engineers need to check, whether the target ontology itself suffices the on-
tology requirements specification document (c¢f. Section 4.4) and whether the
ontology based application supports or “answers” the competency questions, ana-
lyzed in the kickoff phase of the project.

48

4.6 Evaluation

Therefore the ontology is tested in the target application environment. A prototype
should already show core functionalities of the target system. Feedback from beta
users of the prototype may be a valuable input for further refinement of the ontology.

A valuable input for refinement (and further maintenance) are usage patterns of the
ontology. A recent approach for tracking (and using) usage patterns has e.g. been
presented in (Stojanovic et al., 2002d). The system has to track the ways, users
navigate or search for concepts and relations. With such an “ontology log file analysis®
one may trace what areas of the ontology are often “used“ and others which were not
navigated. Less frequently used parts of the ontology should be monitored whether
they are relevant for the application. High frequently used parts of the ontology might
need to be expanded. However the ontology engineer should carefully evaluate the
usage patterns before she updates the ontology.

The most important point from our perspective is to evaluate whether users are sat-
isfied by the KM application. More specific, we evaluated whether the ontology
based technologies are at least as good as already existing technologies in
the EnerSearch case study and some results are described in Section 11.6.

Ontology-focussed Evaluation

Beside the above mentioned process oriented and pragmatic evaluation methods, there
exist also formal evaluation methodologies for ontologies themselves. Typically, one
distinguishes in software engineering between “verification” and “validation” to evaluate
the quality of software systems. The two concepts can be characterized as follows (cf.
(Boehm, 1984)):

e Verification is building the system right.

e Validation is building the right system.

As (Preece, 2000) points out, these methods can be analogously used in knowledge en-
gineering. (Gomez-Pérez, 2003) focusses on the validation and verification of ontologies
with respect to the criteria consistency, completeness, conciseness, expandability and
sensitiveness. However, our ontology engineering environment OntoEdit (¢f. Part III)
prevents the incorrect modelling of ontologies that do not fulfill the criteria. Therefore
we focus on another well-known methodology for formal evaluations of ontologies.

The OntoClean Methodology (cf., e.g., (Guarino & Welty, 2002)) is based on philo-
sophical notions. It focuses on the cleaning of taxonomies and e.g. is currently being
applied for cleaning the upper level of the WordNet taxonomy (cf. (Gangemi et al.,
2002b)). Core to the methodology are the four fundamental ontological notions of

49

4 Knowledge Meta Process

rigidity, identity, unity and dependence. By attaching them as meta-relations to con-
cepts in a taxonomy they are used to represent the behavior of the concepts. I.e. these
meta relations impose constraints on the way subsumption is used to model a domain

(¢f. (Guarino & Welty, 2000a)).

By attaching the meta relations to concepts of an ontology, they are classified into
categories (Sortal, Non-sortal, Role etc.). E.g., a concept that is tagged with “+0O
+I +R” is called a “Type”. OntoClean defines an ideal structure of such classified
concepts. By defining constraints one is able to derive automatically modelling errors
in an “unclean” taxonomy. In Section 9.3 we explain more detailed the foundations of
OntoClean and how we implemented a specialized tool support to operationalize the
methodology.

Cyclic Approach

If the evaluation reveals insufficient quality of an ontology or an ontology based ap-
plication, the ontology needs to be refined again. From practical experiences, the
iterative steps can be highly cyclic, i.e. each refinement step might require a separate
evaluation step. In fact, there exist an approach that recommends the concurrent qual-
ity ensurance of an ontology during the complete ontology development lifecycle (cf.
(Fernandez-Lopez et al., 1999)).

Outcome & Decision
The outcome of this phase is an evaluated ontology, possibly embedded into the up-
and-running application that is ready for the roll-out into a productive system.

The major decision that needs to be taken for finalizing this phase is whether the
evaluated ontology fulfills all evaluation criteria relevant for the envisaged application
of the ontology, i.e. the requirements set up in the kickoff phase.

4.7 Application & Evolution

Apply Ontology

The application of ontologies in productive systems, or, more specifically, the usage of
ontology based systems, is being described in the following Chapter 5 that illustrates
the “Knowledge Process”. This steps is actually the meeting point of the Knowledge
Meta Process and the Knowledge Process.

20

4.7 Application & Evolution

Manage Evolution and Maintenance

The evolution of ontologies is primarily an organizational process. There have to be
strict rules to the update, insert and delete processes of ontologies (cf. (Stojanovic et al.,
2002a)). We recommend, that ontology engineers gather changes to the ontology and
initiate the switch-over to a new version of the ontology only after thoroughly testing
all possible effects to the application. Most important is to clarify who is responsible
for maintenance and how it is performed and in which time intervals is the ontology
maintained. However, systems can help identifying the needs for evaluation, e.g. by
“usage mining” (cf. (Stojanovic et al., 2002d)) or text mining (cf. (Maedche, 2002a)).

There exist two possible strategies for maintenance of ontologies: the centralized
and the distributed strategy. In a centralized ontology, one single entity (e.g. a
person) is responsible for maintaining the whole ontology or specific parts of it. Any
modification (typically update-insert-delete) has at least to be approved by this entity.
In the distributed strategy all modifications are made as they appear to be necessary
and valuable by involved individuals.

Typically two aspects strongly influence the decision for one or the other strategy:
quality and time. The responsible entity for maintenance is able to enforce and
to guarantee to a certain degree a certain quality of the ontology through thoroughly
testing and checking possible effects of a modification. In most cases these modifications
will take long time until they appear in the ontology. The distributed strategy is
typically vice versa. Modifications appear immediately in the ontology — but also the
level of quality may not be guaranteed and may change drastically over time.

Cyclic Approach

Each request for a change as part of the evolution typically requires an additional cycle
beginning by the refinement phase.

Outcome & Decision

The outcome of an evolution cycle is an evolved ontology, i.e. typically another version
of it. The storage and management of different versions of ontologies is illustrated in
the Section 10.1.

The major decision to be taken is when to initiate another evolution cycle for the
ontology. This depends on the restrictions that apply for an organization and the
evolution strategy one has implemented as part of the organization.

ol

4 Knowledge Meta Process

02

5 Knowledge Process

The On-To-Knowledge Methodology described in this
part consists of two main processes: the “Knowledge Meta
Process” (KMP) for developing and deploying knowledge
management applications and the “Knowledge Process” (KP)
for using them.

This chapter is about the KP. Section 5.1 introduces the
steps of the KP. Subsequently all introduced steps are de-
scribed in detail in the following sections, wiz. Knowledge

Overview (reation and Knowledge Import in Section 5.2, Knowledge
Capture in Section 5.3, Knowledge Retrieval in Section 5.4,
and Knowledge Use in Section 5.5.

References: This chapter is partially based on (Staab et al.,
2001) and (Sure & Studer, 2002c).

5.1 Steps of the Knowledge Process

Once a KM application is fully implemented in an organization, knowledge processes
essentially circle around the following steps of the “Knowledge Process” (cf. Figure 5.1).
The process steps reflect the typical steps that knowledge workers perform as part of
their daily work.

e Knowledge creation and/or import of documents and meta data, i.e. contents
need to be created or converted such that they fit the conventions of the company,
e.g. to the knowledge management infrastructure of the organization;

e then knowledge items (cf. Section 2.4) have to be captured in order to elucidate
importance or interlinkage, e.g. the linkage to conventionalized vocabulary of the
company by the creation of relational metadata;

e retrieval of and access to knowledge satisfies the “simple” requests for knowledge
by the knowledge worker;

93

5 Knowledge Process

Documents
Metadata

Creation

Retrieval / ontOIO
Access Q gz
apture

Figure 5.1: The Knowledge Process

e typically, however, the knowledge worker will not only recall knowledge items,
but she will process it for further use in her context.

Quite naturally, the process is highly cyclic. Knowledge that has been created or
imported, captured, retrieved and used typically feeds again into the next cycle.

Ontologies as a backbone for ontology based knowledge management applications lie
in the center of the circling processes. In the following sections we will discuss relevant
aspects for each step and show ways of using ontologies in the Knowledge Process.

5.2 Knowledge Creation & Import

Creation of knowledge is an integral part of the daily life for knowledge workers. How-
ever, the degrees of knowledge that is created may vary from formal to informal knowl-
edge, as we will illustrate in the next subsection. But, at least equally important is the
import of external knowledge. We will discuss in the last section the main distinction
between creation and import with respect to ontology based applications.

o4

5.2 Knowledge Creation & Import

Formal vs. Informal Knowledge

The creation of computer-accessible knowledge proceeds between the two extremes of
very formal and very informal knowledge. What is often overlooked is that compara-
tively deep coding can often be done without requiring any extra efforts.

Business documents, in general, are not arbitrarily changing knowledge containers, but
reasonably often come with some inherent structure, part of which is often required
by quality management and, e.g., engineering requirements. Thus, a contribution to
(Staab & O’Leary, 2000) proposed to embed the structure of knowledge items into doc-
ument templates, which are then filled on the fly by doing daily work. The granularity
of this knowledge then lies in the middle between the extremes of coarse representa-
tions of business documents only and an — for the purpose of KM — overly fine one,
such as found in expert systems. Thus, one finds several degrees of formality between
the two extremes of very formal and very informal knowledge. We compare some of
them in Table 5.1.

Table 5.1: Degrees of formal and informal knowledge

‘ Degree ‘ Model ‘ Interface ‘ Example ‘
Thoroughly | Relational Form Interface Database interface
Formal
Formal Content- Tight XML Struc- | XML-EDI

structured docu- | ture
ment
Partially Document tem- | Loose XML Struc- | Dublin Core tem-
Formal plate ture plates
Informal Free text No predefined | ASCII text file
structure

In this comparison, we use the term “content-structured documents” to refer to e.g.
XML structures that are tightly (sometimes explicitly, sometimes implicitly) linked to
a domain model. For instance, XML-EDI (¢f. (XML/EDI-Group, 2003)) documents
come with a predefined structure alluding to a standard framework for exchanging
data, such as invoices, healthcare claims, or project status reports. By document
templates we refer to similar structures, which however come with a larger degree of
freedom, including large chunks of informal knowledge items. One may note that these
different degrees of formality are often combined, e.g. unstructured documents may
have attached a form for adding Dublin Core (¢f. (DC, 2003)) meta data.

Careful analysis of the knowledge items in use allows for the possibility to add formal
knowledge parts into the process of creating these documents, thus pushing the de-

95

5 Knowledge Process

gree of formality slightly upwards without endangering the overall usage of the system,
which could be incurred by an expert systems-like approach to Knowledge Manage-
ment.

Home-made vs. Imported Knowledge

For many KM purposes the import of knowledge items into the KM system of the orga-
nization has the same or more importance than their creation within the organization.
The overall situation is akin to data warehousing — only that the input structures are
more varying and the target structures are much richer and more complex than this is
the case for the standard data warehouse.

For imported knowledge accurate access to relevant items plays an even more important
role than for home-made knowledge. The reason is that for home-made knowledge
items, people may act as a backup index. This is not the case for recently imported
knowledge that no one has seen yet. In fact, access studies to KM systems have
shown that organizational memory parts that cover imported knowledge are less heavily
exploited than those covering home-grown ones (cf. (O’Leary, 1998)) — though it seems
implausible that they would contain less useful contents.

Ontology based applications typically make use of meta data (¢f. Section 2.4). As
mentioned before, the meta data conforms to structures provided by ontologies. Note-
worthy is the following distinction with respect to the use of ontology based technologies
between the import and the creation:

e Created knowledge can automatically be enriched with meta data according
to an ontology, therefore inherently capturing knowledge contained in the knowl-
edge items. An example implementation is the OntoWeb Semantic Portal. The
ontology is used to create forms that automatically enrich created knowledge
with meta data according to the underlying ontology. In Section 12.2 we present
a detailed example.

e Imported knowledge often needs to be enriched in an additional (manual) ef-
fort with meta data to make the content accessible. In the next Section 5.3 we will
present an approach that supports knowledge capturing, the so-called CREAM
framework implemented by the OntoMat—Annotizer (cf. (Handschuh et al., 2001;
2002)). However, if the external knowledge is already including meta data accord-
ing to an agreed ontology, the import task becomes fairly easy. This approach is
also taken in the OntoWeb Semantic Portal. Partners of OntoWeb who want to
contribute knowledge to the portal provide meta data according to the OntoWeb
ontology. Thus, the import via syndication can be performed automatically. A
detailed description of the architecture can be found in Chapter 12.

26

5.3 Knowledge Capture

5.3 Knowledge Capture

Driven by the knowledge-based industries, knowledge capture gains ever more signifi-
cance, as outlined in the following citation.

“In today’s Web-linked and data-rich world, there is a growing need to man-
age burgeoning amounts of information effectively. Although indexing and
linking documents and other information sources is an important step, cap-
turing the knowledge contained within these diverse sources is crucial for
the effective use of large information repositories.”

Introduction to (Gil et al., 2001)

Knowledge acquisition which is a challenging area of research in artificial intelligence
with its roots in early work to develop expert systems, has matured and plays a signifi-
cant role for realizing the Semantic Web (cf., e.g., (Gomez-Pérez & Benjamins, 2002)).
However, as e.g. shown by the broad spectrum of topics at the first and second “Inter-
national Conference on Knowledge Capture” (K-CAP 2001/2003, cf. (Gil et al., 2001;
2003)), many other research areas contribute methods and techniques for the capturing
of knowledge:

“Although there has been considerable work in the area of knowledge capture,
activities have been distributed across several distinct research communities.
In machine learning, learning apprentices acquire knowledge by nonintru-
sively watching a user perform a task. In the human-computer interac-
tion community, programming-by-demonstration systems learn to perform
a task by watching a user demonstrate how to accomplish it. In knowledge
engineering, modeling techniques and design principles have been proposed
for knowledge-based systems, often exploiting commonly occurring domain-
independent inference structures and reusable domain-specific ontologies.
[...] In natural language processing, tools can process text and create repre-
sentations of its knowledge content.”

Introduction to (Gil et al., 2001)

We now focus on the capturing of knowledge by creating meta data according to on-
tologies (cf. Section 2.4), thus by exploring methods and technologies coming from
knowledge acquisition and knowledge engineering which have more recently been ma-
tured into the Semantic Web research area.

Once that knowledge items have been created, but not yet, or only incompletely, cap-
tured apart from their context, e.g. from their database entries or their business docu-
ment containers, the next process step is the capturing of their essential contents. By

o7

5 Knowledge Process

this so-called “annotation process” meta data are created that conform to the ontology
and, hence, can be aligned with related information to yield analyzes and derivations.
The origins of the meta data may be used to validate the overall information.

The OntoMat—Annotizer implements the CREAM framework! (¢f. (Handschuh et al.,
2001; 2002)). The framework allows to construct relational meta data, i.e. meta data
that comprises instances of concepts and relations. The instances are not based on
a fixed structure, but on a domain ontology (cf. Section 3.2). Figure 5.2 shows a
screenshot taken while annotating this thesis.

i1

File Edit View Tools Window Help
== 2e ot WO <
& Efl @ vork Sure: Main

«i Ontology Browser -
’E (® Person
(® Project
@ (® Role
O (® Software
D (® Application :
B (® Tool i
’7 (® Annotation_Editor|”

(8 OEE
(8 OntoMat-Plugin

3 Knowladge Process

this so-called “annotation process” meta data are created that conform to the ontology
and, hence, can be aligned with related information to yield analyzes and derivations.
The origins of the meta data may be used to validate the overall information.

The R SRR i plements the CREAM framework® (of. (Handschub et al.,
2001)). The framework allows to construct rclational meta data, .. meta data that
comprises instances of concepts and relations, The instances are not based on a fixed
structure, but on a domain ontology (¢f. Section 3.2). Figure 5.2 shows a sercenshot
taken while annotating this thesis,

&

i)} OntoMat-Annotizer

[Romoanmmiconii -E
i E Vew loms Weoow hop

Sl 2¢ i wmo -
o EfO venswemem —)
€ 3 @ B B UR G Rushont horaises_ubredis_nohy & & 3:

B () developed_by (Person)
§) Siegfried_Handschuh

(D developed_in (Project)
(D has_part (Root) :
(@ implements (Architecture) |2
(D part_of (Root)

0 A

4 b Claus_Boyens

b Dirk_Wenke

4 Heiko_Rudat

4§ Markus_Zondler

db Siegfried_Handschuh
@) Stefan_Lenhart

ik varl o

Ready.| |3723.0K free

HTML [Source] DOM] Annotation]

atus: loading images: done [Z] editable
hitp:/this.is. i

Figure 5.2: Annotating documents with the OntoMat—Annotizer

E.g., as shown in the figure, the current page is annotated by marking “OntoMat—
Annotizer” as an instance of the concept Annotation Editor of the example ontology.
Furthermore we might add instances of relations, e.g. the instance OntoMat-Annotizer

!CREAM stands for “Creating RElational, Annotation-based Meta data’.

28

5.4 Knowledge Retrieval & Access

is related to the instance Siegfried Handschuh (an instance of the concept Person) by
the relation pDEVELOPED BY. The following sample illustrates the generated instances
(created in RDF, cf. (Lassila & Swick, 1999)).

<rdf :RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:daml="http://www.daml.org/2001/03/daml+oil#"
xmlns="http://this.is.an/example\#">
<Annotation_Editor

rdf :about="http://this.is.an/example/annotation#0OntoMat-Annotizer">

<developed_by

rdf :resource="http://this.is.an/example#Siegfried_Handschuh"

/>
</Annotation_Editor>
</rdf :RDF>

Such annotations can be further used by applications to provide better retrieval results
as shown in the next Section 5.4. Another approach deals with the reverse engineering
of databases (cf. (Stojanovic et al., 2002c¢)) to capture their contents. Last, but not
least, there already exists an approach to handel the maintenance of such annotations,
for further details we refer to (Stojanovic et al., 2002b).

5.4 Knowledge Retrieval & Access

Large parts of knowledge retrieval and access from an ontology based application are
performed through conventional GUI, exploiting means like information retrieval (cf.
(Moench, 2003) for a combination of information retrieval and ontologies).

In addition, one may use the ontology to derive further views. In particular, ontologies
are often exploited for navigation purposes. Thus, knowledge workers may explore what
is e.g. in the organizational memory without being required to ask a particular question
— which is often a hard task for newbies. Also, an ontology allows to derive additional
links and descriptions by drawing inferences with appropriate inference engines (such
as e.g. Ontobroker, cf. Section 6.6), e.g. the ontology allows to derive state descriptions
for points in time for which no explicit data exists, or it provides new hyperlinks that
are not given explicitly. Thus, we may complete views without requiring that all
information is given.

The example given in Figure 5.3 is taken from the OntoWeb Semantic Portal (cf.
Section 12.2). Tt presents the advanced query facilities provided by the underlying
DOGMA server (cf. (Meersman, 1999; Jarrar & Meersman, 2002; Spyns et al., 2002a)).
The following functionalities showed in the figure represent advanced functionalities

99

5 Knowledge Process

that ontologies enable in such portals. The given numbers correspond to the numbers
given in the figure.

60

2 Welcome to OntoWeb - Microsoft Internet Explorer _10O] x|
J Datei EBearbeiten Ansicht Fawvoriten Extras ¢ |

J ik + = v @)] | Qhsuchen [FFavoriten &4 verlauf ‘ By S -
JAd[essel hitkp: e ontoweb, argf j @ wechseln zu “L\nks >
)

uuguu OntoWeb

Ontology-based information exchange for

(=) o -
OmintWeb knowledge mandagement and electronic commerce
| about | [ewents || jobs || rmermbers | | news | | publications | | sigs | | browse ontology |
% login % join! = help!
80w TadsSok pegeloll iawel.3
----- ' Deliverable
T e | try the ontological
b Conference 5 or e ontologica
g Find a Book
- Exhibiti search form
v Exhibition using keywords ﬂl
' Lecture

. Meeting
- % Projectheeting 3 Q Viewmore generic Book

- ‘/ . .
: M_lwtt"ksmp i Publication
----- e Milestone
..... .‘\\, Mews
A H H . .
B R Organization Publication >>Book
- Person
‘/ . .
E A Emfj”ctt © OCntologies: A Silver Bullet for _ _
e F'mdfc . Knowledge Managementand | @ Spinning the Semantic Yveb
‘ ‘“A'r:iil'e”” Electronic Commerce
' Book 1 © Towards the Semantic Web:
- - Baaklet Ontology-Driven Knowledge
I InBook Management
- InCallection
-y InProceedings
1o Manual Result Pages: 1
U Mlise Ontological Search for Book

- '+ Proceedings
& Repont 4 author | deContributor |

B Thesis

_____ - WorkPackage deCoverage | deCreator |
deDate | deDescription | =
It [[% mternet v

Figure 5.3: Knowledge Retrieval with DOGMA in the OntoWeb Portal

1. The taxonomic structure is used for navigation in an explorer tree-like manner.
Thus, users might easily browse through the ontology to explore the domain of

this portal. Inherently this provides a query to the knowledge base, as shown in
the next item.

2. In addition, for each concept, e.g. Book, the known instances are displayed when

selecting it. The list directly links to further information of the instances and

5.5 Knowledge Use

possibly to downloadable resources themselves. Thus, one might also browse
instances, often called the knowledge base.

3. The inherently posed query (in this case for all instances of the concept Book)
can be generalized by selecting more general concepts, or

4. refined by restricting values for relations and attributes of a concept. E.g. one
might look for instances of the concept Book that have a certain author, i.e. they
have a certain value for the attribute AuTHOR.

5. Last, but not least, one might combine the ontology based search with a typical
keyword based search.

5.5 Knowledge Use

Knowledge use deals with the most intricate points of knowledge management. It is
the part that is most often neglected, because many KM systems assume that once
some relevant document is found everything is done. Eventually, however, the way
that knowledge from the organizational memory is used is quite involved. Therefore
topics like proactive access, personalization, and, in particular, tight integration with
subsequent applications play a crucial role for the effective re-use of knowledge. Very
often it is not even the knowledge itself which is of most interest, but the derivations
that can be made from the knowledge which is the added value on top of the existing
knowledge.

An evolving research area tackles this issue in the light of the Semantic Web, viz.
Semantic Web Mining (cf. (Berendt et al., 2002b; Stumme et al., 2001; Berendt et al.,
2002a)). Semantic Web Mining combines the methods of Web Mining and Semantic
Web. Web Mining applies data mining techniques on the web. Three areas can be
distinguished: (i) web usage mining analyzes the user behavior, (ii) web structure
mining explores the hyperlink structure, and (iii) web content mining exploits the
contents of the documents in the web.

The idea of Semantic Web Mining is to improve, on the one hand, the results of Web
Mining by exploiting the new semantic structures in the Web; and to make use of Web
Mining, on the other hand, for building up the Semantic Web.

Thus, Semantic Web Mining not only feeds again into the Knowledge Process, but also
helps to make the Semantic Web become reality.

61

5 Knowledge Process

62

Part |1l

Tool Support

“One only needs two tools in life:
WD—-40 to make things go,
and duct tape to make them stop.”

— G. Weilacher

63

6 Requirements for OEEs

This part is about tool support for ontology engineer-
ing. In particular, we introduce plugins that realize spe-
cialized tool support for ontology engineering by extending
OntoEdit, an ontology engineering environment (OEE).

We start in this chapter by motivating and enumerating
requirements for OEEs in Section 6.1. We identify five main
requirements (R1-R5). Section 6.2 illustrates the core func-
tionalities of the OEE OntoEdit from a users perspective,
including the flexible way of handling evolving ontology lan-
guages (requirement R1). The next Section 6.3 is more
technically oriented and introduces the underlying OntoMat
framework that guarantees a flexible extensibility (require-
ment R2) of OntoEdit. In Section 6.4 we give an overview
of such extensions of OntoEdit, so-called “methodology plu-

Overview &ins’, that are designed to support steps of the On-To-
Knowledge Methodology (requirement R3) (¢f. Part II). We
include an overview of “external plugins”, i.e. plugins that
are developed outside the scope of this work, but extend
OntoEdit similar to the methodology plugins. The plugins
can be divided into two sections according to their support
for collaboration (R4) and inferencing (R5). The following
Sections 6.5 and 6.6 introduce dimensions of collaboration
and relevant inferencing issues.

The following Chapters 7, 8, 9 and 10 are dedicated to show
in detail the support for steps of the Knowledge Meta Pro-
cess.

6.1 Motivation of Requirements (R1 — Rb5)

In this part we focus on tool support for ontology engineering, i.e. the structured and
well-defined way of developing ontologies. Ontology development is a major part of

65

6 Requirements for OEEs

the On-To-Knowledge Methodology presented in Part II. Figure 6.1 shows the steps of
the Knowledge Meta Process (cf. Figure 4.2) that cover ontology development. Tools
that support the engineering of ontologies are often referred to as “Ontology Editors”
or “Ontology Engineering Environments” (OEE). We begin this chapter by motivating
and identifying typical requirements for OEEs.

During the development and application of the On-To-Knowledge Methodology in the
case studies (cf. Part IV) we experienced practical ontology engineering. The follow-
ing five requirements were identified as the major requirements for OEEs in practical
settings such as described in the case studies.

Obviously, requirements known from software engineering like e.g. “ease of use” or
“scalability” are relevant for any software. Given the focus of this thesis, we concentrate
on requirements that are specific for OEEs.

; > R_eﬂne- Ev_alu-> E_volu->
o ment» ation 2 tion
S BR7

 Ontology Development

Figure 6.1: Ontology development steps of the On-To-Knowledge Methodology

Ontology development typically involves collaboration of ontology engineers and do-
main experts. In joint efforts they develop ontology based applications step by step
in iterative cycles. A primary issue for OEEs is to support such collaborations,
e.g. by facilitating distributed collaboration and guiding through the process of ontol-
ogy creation. Quite naturally, OEEs should therefore also reflect steps of underlying
methodologies.

There already exist numerous ontology languages that evolved over the last decades.
Besides a growing number of languages counted by names also the version numbers of
languages are growing, some of them quite fast. An example showing the current speed
of evolvement is OIL, the “Ontology Inference Layer” (cf. (Fensel et al., 2001) and also
Section 11.2.2 for a brief description). The development was initiated in the On-To-
Knowledge project (¢f. Chapter 11) in year 2000. Meanwhile, OIL has been adopted by
a joined EU/US initiative that developed a language called DAML+OIL (¢f. (Horrocks
et al., 2001)), thereby combining the European OIL with the equivalent American
DAML (“Darpa Agent Markup Language”). In November 2001, the W3C started a
Web Ontology Working Group for defining a language. This group is chartered to
take DAML+OIL as its starting point and is developing now a language called OWL,

66

6.1 Motivation of Requirements (R1 — R5)

the “Ontology Web Language”. There exist specialized OEEs for some languages, e.g.
OILed (Bechhofer et al., 2001) was initially designed for OIL. More advanced OEEs
like WebODE (Arpirez et al., 2001), Protégé (Noy et al., 2000) and OntoEdit, as we
will show in the next section, abstract their GUIs from specific languages and provide
flexible import and export facilities for a number of existing ontology languages.

Modularization is a typical principle in software engineering to meet changing require-
ments for tools. A flexible extensibility of such environments should therefore include
import and export modules to keep pace with evolving language standards. Addition-
ally, different usage scenarios typically require new or modified functionalities (we will
show some different scenarios in the Chapters 11 and 12). Thus, extensibility should
also cover customization of tools to specific scenarios.

Numerous ontology languages are based on logics and include axioms that allow for
sophisticated reasoning capabilities. There exist different kinds of inference engines
for different language paradigms like description logic and Frame Logic. The most
well-known inference engines include e.g. FaCT (Horrocks, 1998) for description logic
dialects and Ontobroker (Decker et al., 1999) for frame logic, viz. F-Logic. Firstly,
OEEs might rely on such inference engines to ensure the quality of ontologies, e.g.
to test the consistency of a concept hierarchy. Secondly, OEEs might use reasoning
capabilities to develop ontologies, if they want to be able to cover all aspects of such
languages, wviz., e.g., for developing and testing axioms. Inferencing support is a
valuable add-on for ontology engineering environments.

In the following sections and chapters we will illustrate how OntoEdit meets the re-
quirements summed up in Table 6.1.

Table 6.1: Summary of the requirements for Ontology Engineering Environments

R1 | Ontology Languages
R2 | Extensibility

R3 | Methodology

R4 | Collaboration

R5 | Inferencing

R4: Collaboration and R5: Inferencing can be seen as essential parts of the
support for R3: Methodology. As a core contribution of this thesis we present in the
following chapters of this part specialized tool support for the steps of the Knowledge
Meta Process and explain which requirements they fulfill.

Next in this chapter, we will (i) introduce in Section 6.2 the core ideas of OntoEdit as
an ontology engineering environment, e.g. by showing its ability to import and export

67

6 Requirements for OEEs

current and future evolving ontology languages and standards (requirement “R1: On-
tology Languages”), (ii) show in Section 6.3 the extensibility of OntoEdit through
the underlying OntoMat plugin framework (requirement “R2: Extensibility”), and
(iii) introduce in Section 6.4 the “methodology plugins” that are specifically designed to
support steps of the methodology (requirement “R3: Methodology”) and distinguish
them according to their support for “R4: Collaboration” or “R5: Inferencing”.
Last, but not least, we will elaborate more on the foundations for collaboration and
inferencing by introducing (iv) the dimensions of collaboration in Section 6.5 and (v)
theoretical and practical issues of inferencing in Section 6.6.

6.2 Ontologies in OntoEdit (R1)

In this section we introduce the core functionalities of OntoEdit. Thereby, we also
describe OntoEdit’s facility to flexibly support different ontology languages, i.e. the
support for requirement “R1: Ontology Languages”.

OntoEdit is an ontology engineering environment which allows for inspecting, brows-
ing, codifying and modifying ontologies. Modeling ontologies using OntoEdit means
modeling at a conceptual level, viz. (i) as much as possible independent of a concrete
representation language, (ii) using graphical user interfaces (GUI) to represent views
on conceptual structures, i¢.e. concepts ordered in a concept hierarchy, relations with
domain and range, instances and axioms, rather than codifying conceptual structures

in ASCII.

We now explain the main GUI of OntoEdit!. To put the description into a wider
perspective, viz. the Karlsruhe Perspective on Ontologies (cf. (Bozsak et al., 2002)),
we give reference links to this ontology definition. We begin with the elements for (i)
modeling concepts and relations and (ii) importing and exporting ontologies in different
ontology languages as shown in Figure 6.2.

The following numbers refer to the corresponding numbers shown in this figure.

1. This window represents an ontology opened in OntoEdit. Each ontology is iden-
tified uniquely by a URI (Uniform Resource Identifier, defined in (Berners-Lee,
1993) as “generic set of all names/addresses that are short strings that refer
to resources”). In our example we use the URI http://this.is.an/example.
Each tab shown provides specialized functionalities that are encapsuled in mod-
ules called “plugins” (c¢f. next section for the underlying plugin framework called
“OntoMat”), e.g. here the tab ‘Concepts & Relations’ is opened.

!Further information about OntoEdits historical roots and a complete description of the main GUI
can be found in Appendix A.

68

6.2 Ontologies in OntoEdit (R1)

_-‘.!Dntology Engineering Workbench DntoEdit ¥2.6 (inferencing edition}
File Edit Wiew Tools ‘Windows Help

Mew ontolagy ‘}{, | gl Connect ko Sesamel Generate ontologyl

Open antolagy

Imnport 13

[Epot
Save ontology Expott to database. .,
Save ontology as ... Flogic export
Close ontology RDF(S) export

Visualizer Export

1/ /this.is.an/example (C:\home', diss_ysu'example.oxmi) =gl

General fioms | Rule Editor | Inferencing | OnkaFiller | Domain-Lexicon Debugger | Visualizer | Identification | Metadata
Concepts & Relations Instances | Relation axioms I Disjoint concepts I Query Toal

KZoncept hierarchy Felations Fange
Ql&l +| - | gl Ettp:ﬁtnis.is‘an;examp:e#ﬂeve:opeg by Ettp:ﬁtpis.is.anj:examp:e#Person
_G e ttp: fithis.is . anfexample# developed in tkp: JiEhis.is, an/example#Project
B € http'.j,l't,l'tthlls.L:.an.,iexample#I?E::U:J_ROOT_CONCEPT 21| Whttp: fjthis.is. an/exampleshas part hkkp: ffthis.is. an/example#Software
@http: ffthis.is. anjexample# Softwars hittp: fthis is anjexamplegimplements hikkp: ffthis,is. anexampled Architecture
hittp: fthis.is. anfexample# Application hittp: f this.is. anfexampledpart of hittp:jfthis.is.an/examples Software
hittp: ffthis.is. anfexample# Taol hittp: fithis is. anfexample#supparts http: {fthis.is. an/example#Methodalogy
@http:ffthis.is. anjexamplef OEE hittp: fithis is.anfexample#used to build hitkp: ffthis.is. an/exampled Application
ks, i x ttpe f fthis.is. anjexampledversion Eepe i, w3, orgf 2001 fXMLSchema# STRIMNG
(@ http: /this.is. an/example#OntaMat-Plugir http: h_ L i I htp: ot i it h
| ®http: this.is. an/example#Annotation Edil hiktp: fithis is.anfexample#used to engineer | http: ffthis.is. an/example# Ontalogy
... @http:fithis.is. an/example#iethadology _ILI
| *

Figure 6.2: Basic functionalities of OntoEdit

2. Further functionalities (also provided by specialized plugins) can be accessed e.g.
through buttons in the main OntoEdit window. Shown here is e.g. the “Generate
Ontology” button that opens the “OntoGenerator” (cf. Section 9.1).

3. The “Concepts & Relations” tab allows for creating, editing and deleting concepts
and relations. Creating concepts and relations includes (i) creating internally
unique identifiers that are not visible to users, (ii) creating signs in different
languages, also called “external representations”, (cf. the handling of multiple
languages in Appendix A) that are displayed in the GUI and (iii) creating and
maintaining references between unique identifiers and external representations.
Thus, OntoEdit automatically creates an ontology with lexicon (cf. (Bozsak et al.,
2002)). Concepts are ordered in an inheritance hierarchy, a so-called concept
hierarchy. By default, all names of created concepts get attached the URI of the
ontology as a namespace to ensure their unique identity. In Figure 6.2, concept
OEE is selected (indicated by the highlighting). OEE “is a” Tool, i.e. OEE is a
direct subconcept of Tool and inherits all its relations.

4. All relations that have OEE as their domain are shown without highlighting in
this figure. All relations that OEE inherits from its superconcepts are shown with
highlighting. E.g., (i) the relation USED TO ENGINEER with the domain Ontology

69

6 Requirements for OEEs

has the range OEE, (ii) the relation DEVELOPED BY has the range Software and
Software is a superconcept of OEE. By default, all created relations get attached
as a namespace the URI of the ontology to ensure their unique identity. However,
concerning a relation hierarchy similar to the concept hierarchy (cf. (Bozsak et al.,
2002)) is not yet implemented in OntoEdit, i.e. relations currently form a flat
structure.

. The conceptual model of an ontology is internally stored using a powerful on-
tology model (it conforms mainly with the definitions in (Bozsak et al., 2002),
only excluding the relation hierarchy). To meet requirement “R1: Ontology
Languages” , this ontology model can be mapped onto different state-of-the-art
representation languages. The mapping is implemented as import and export
filters, e.g. as highlighted in Figure 6.2, for DAML+OIL? (Horrocks et al.,
2001). Further import/export filters exist e.g. for F-Logic (Kifer et al., 1995)
and RDF(S) (Brickley & Guha, 2002).

In Figure 6.3 the “Instances” tab is shown that allows for modelling of instances in

OntoEdit.

Concepts & Relations

Instances | Relation axioms | Disjoint concepks | Query Tool | General Axioms

IConcept higrarchy

Aa|+]-|e

= GDEFALLT_ROOT_CONCERT
=) @ Software

‘... @ Application

E| @ Tool

. (& OntoMat-Plugin

{® Annotation Editor

(& Methodology

@ architecture

r'y

=l

[nstances

@l CEE

¥ OnkoEdit

- 4 implements{OntoMat)

developed byiDirk Wenke)
) Protege

3 WebODE

Figure 6.3: Modeling instances with OntoEdit

The tab consists of two main elements. On the left side the concept hierarchy is shown
(similar to the “Concepts & Relations” tab in Figure 6.2). One may select a concept

to show its concept instantiations (cf. (Bozsak et al., 2002)).

Here the concept OEE

is selected. On the left side the concept instantiations are shown. Equivalent to the
handling of concepts and relations, OntoEdit creates automatically internal identifiers
for instances as well as it creates and manages the references to signs shown in the

2A detailed description of DAML4OIL features supported by OntoEdit can be found in Appendix C.

70

6.3 Extensibility through the OntoMat Framework (R2)

GUI. E.g. shown in the figure are the signs for the instances OntoEdit, Protégé and
Web0ODE. Attached to each instance are its belonging relation instantiations (cf. (Bozsak
et al., 2002)). E.g. shown in the figure is the relation instantiation for the relation
DEVELOPED BY with an instance of Person, viz. Dirk Wenke, as value for the range.

6.3 Extensibility through the OntoMat Framework (R2)

In this section we illustrate how OntoEdit meets requirement “R2: Extensibility”
(c¢f. Table 6.1). We start with an introduction to the plugin framework OntoMat,
show the advantages of the framework, describe the basic functionalities provided in
OntoEdit by the framework and, last but not least, illustrate different types of plugins
in OntoEdit.

Introduction to the OntoMat Framework

Building up from standardized units to complex things and products is a well-known
construction principle from engineering disciplines. With the development of software
systems this concept gains ever more significance.

OntoEdit is based on a flexible plugin framework called OntoMat (Handschuh, 2001).
The OntoMat framework offers the possibility to implement functions by extensions.
Such extensions are usually called snap-ins, add-ons or plugins. The term “plugin” in
the context of the framework means a software component, which implements the ap-
propriate Java interface. The framework consists of a core for the plugin management
and a general plugin which represents the core functionality. All additional function-
ality is totally enclosed in additional plugins.

All plugins are dynamically plug-able during runtime. The plugin mechanism no-
tifies each installed component, when a new component is registered. Through the
service mechanism each component can discover and utilize the services offered by an-
other component. A service represented by a component is typically a reference to
an interface. This provides among other things a de-coupling of the service from the
implementation and allows therefore alternative implementations.

Advantages of the OntoMat Framework

The main advantages of this architectural idea are:
e Extensibility: The system can be extended by plugins. Each new functionality

can be realized as independent plugin. The interoperability between the plugins
is realized over services. Each plugin can offer new services.

71

6 Requirements for OEEs

e Flexibility: Each unnecessary plugin can be removed and each necessary plugin
can be loaded at run-time. Therefore the system can be configured in such a way
that it has only the needed functionality to adapt OntoEdit to different usage
scenarios.

e De-coupling: The service mechanism provides a de-coupling of the service from
the implementation and allows therefore alternative implementations.

e Modularity: Plugins may access over the service mechanism all other plugins.
The interface of the service reveals as little as possible about the inner working of
an service. This isolates the client of the services from requiring intimate knowl-
edge of the design of the service, and from the effects of changing those decisions.
This information hiding is a primary criteria for system modularization.

Basic Functionalities of OntoEdit

The basic functionalities of OntoEdit are realized as so-called “core plugins” that
provide different functionalities for the management and hosting of additional plugins
and services.

e OntoEdit realizes a “Multiple Document Interface” (MDI), with some standard
menu entries.

e Plugin administration consists of two main functionalities:

— A plugin Management Console. The plugins are registered with this
console. Users must indicate the complete class name of the plugin for
that. The console loads and unloads the registered plugins. Furthermore
it indicates the copyright messages and possible error messages of plugins.
Each plugin is examined with registering. It is discovered whether it offers
a service or it would like using a service.

— The Option Manager shows a list of the installed plugins (cf., e.g., Ap-
pendix B). If a plugin from the list is selected the associate option panel
will be visible. Each plugin that has options can offer such a panel.

e All additional plugins implement certain Java interfaces in order to be plug-able
into the framework and to offer additional services.

e Besides of the service mechanism OntoEdit has further means of internal commu-
nication. OntoEdit produces internal standard events, e.g. clipboard events or
file events. These events are dispatched and each plugin can utilize these events.

72

6.3 Extensibility through the OntoMat Framework (R2)

Each plugin can provide menu entries within the menu bar and an icon within the
toolbar. The menu entries and the icon are connected with actions of the plugin. Apart
from the own menu actions a plugin can react to an OntoEdit standard event, if it has
registered itself for it. Further, it can share an event model with another plugin based
on the service mechanism.

A plugin can be in the role of a service-provider or a service-consumer, according
to the Java interface it implements. A plugin that implements the service-consumer
interface registers it and intends to be notified of new services. On the other hand a
plugin that implements the service-provider interface register a new service with the
framework. The framework notifies all currently registered service-user that this new
service-provider plugin has been added. After being notified of the newly available
service, the listening plugin requests an instance of the service from the framework.
The framework tells the service-provider to deliver the service to the requesting plugin.

Each plugin has access to the MDI Desktop of OntoEdit. It can independently place
windows there. Also a data exchange is possible between these plugin windows by drag
and drop if these windows are appropriately implemented.

Types of Plugins in OntoEdit

Plugins themselves are not restricted in their potential functionalities, but in OntoEdit
they typically can be categorized into four main types of functionalities like shown in
Figure 6.4.

e Core plugins are needed to build up internal structures like the datamodel or
other basic functionalities (see previous section).

e GUI plugins extend the core plugins by adding GUI elements that represent
specific functionalities, e.g. the methodology plugins (see Section 6.4) support
specific steps of the Knowledge Meta Process (see Chapter 4).

e Connector plugins realize connections to databases or inference engines like
Ontobroker (see Section 6.6).

e Parser plugins realize the import and export filters for numerous state-of-the-
art representation languages mentioned in the previous Section 6.2.

Appendix B illustrates the implementation of OntoEdit on top of OntoMat more de-
tailed, it e.g. includes descriptions of the common OntoMat interfaces and of OntoEdit’s
core plugins.

73

6 Requirements for OEEs

GUI

Sesame
Plugin

OntoKick
OntoFiller
OntoClean
Plugin

Connectors

i Ontobroker
ontOMat Connector

Q[ookt Plugin Framework @
Datamodel [
0
o = g = = =
S| o8|l 22| 28
J5 | 8d | 24 || O
st | 3z | 52| 2%
o2 L8| x8 | =&
£ E E| CFE
Parsers

Figure 6.4: Plugin architecture of OntoEdit

6.4 Methodology Support (R3)

In this section we give an overview on how OntoEdit meets requirement “R3: Method-
ology” (cf. Table 6.1) by introducing the so-called “methodology plugins”. Figure 6.5
presents the “methodology plugins”. These plugins were initiated and implemented
to support the steps of the On-To-Knowledge Methodology. Typically each plugin is
designed to support a specific step.

The plugins can be divided into two groups according to their support for “R4: Col-
laboration” or “R5: Inferencing”.

There exist already numerous further plugins for OntoEdit (c¢f. (Ontoprise, 2002b)).
They are developed outside the scope of this work, but extend OntoEdit similar to the
methodology plugins. They tackle common problems known in the area of ontology
engineering. These plugins, in this work referred to as “external plugins”, can also be
categorized by their support for steps of the On-To-Knowledge Methodology and their
support for R4: Collaboration or R5: Inferencing. Figure 6.6 gives an overview
of existing external plugins for OntoEdit.

At the end of each of the following Chapters 7, 8, 9 and 10 we will briefly describe the
functionality of the “external plugins”. The intention is to present a rather complete
picture how OntoEdit currently meets “R3: Methodology”, “R4: Collaboration”

74

6.5 Dimensions of Collaboration (R4)

—o& OntoKick: Competency Questions
—& Mind20nto: Brainstorming

—=& OntoFiller: Documentation & Translation
Client-Server: Distributed Engineering
Sesame Plugin: Storage & Versioning

Lo OntoGenerator: Scalability Evaluation
OntoAnalyzer: Guidelines Evaluation
—& OntoClean Plugin: Formal Evaluation

Hﬂmferencing H“\Wllaboration

Figure 6.5: Overview of the “methodology plugins”

and “R5: Inferencing”(cf. Table 6.1).

6.5 Dimensions of Collaboration (R4)

Computer-Supported Cooperative Work (CSCW) deals with systems that support the
collaboration of people, as mentioned in the following quotation.

“CSCW looks at how groups work and seeks to discover how technology
(especially computers) can help them work.”

(Ellis et al., 1991)

(Nichols & Twidale, 1999) divide the dimensions according to the terms of the time and
space in which a collaborative activity occurs. Collaboration can be between people

e in the same place or different places,

e at the same time or separated in time.

Also, as further mentioned in (Nichols & Twidale, 1999), collaboration can be (in
libraries) (i) among staff members, (ii) among users and staff members, and (iii) among

75

6 Requirements for OEEs

Domain Lexicon: Domain Entry Collection
l—o OntoVisualizer: Visualization

|l—: Rule Debugger: Graphical Rule Evaluation
Query Tool: Graphical Query Evaluation
——e Inferencing Plugin: Query Evaluation
——=e OntoMap: Generate Mapping Rules
—® General Axioms Editor: Axioms Management

\inferencing [Collaboration

Figure 6.6: Overview of “external plugins”

users. Similarly, in ontology engineering we distinguish between the collaboration
among

e domain experts,
e ontology engineers & domain experts, and

e ontology engineers.

OntoEdit was not designed from the very beginning to be a cooperative tool. Figure 6.7
gives an overview of additional “collaboration plugins” that were developed to support
the collaboration task. The figure includes all “methodology plugins” and “external
plugins” that support collaboration (c¢f. Section 6.4).

Characterization of Plugins
We will introduce each of the plugins in the subsequent chapters of this part. At
the beginning of each section the plugins will be characterized e.g. according to their

support for collaboration or inferencing. For each plugin we will depict

e the steps of the Knowledge Meta Process that are supported,

76

6.6 Theoretical & Practical Inferencing Issues (R5)

— OntoKick: Competency Questions
—e Mind20nto: Brainstorming
—o OntoFiller: Documentation & Translation
Client-Server: Distributed Engineering
|—0 Sesame Plugin: Storage & Versioning

I—O OntoVisualizer: Visualization
Domain Lexicon: Domain Entry Collection

[External [{Methodology

Figure 6.7: Overview of the “collaboration plugins”

e the different groups that are supported, and

e the tasks that are supported and benefits that are achieved.
For all plugins that support collaboration we add
e the supported time and space dimensions.

Existing external plugins are briefly sketched at the end of each chapter.

6.6 Theoretical & Practical Inferencing Issues (Rb)

In this section we introduce theoretical and practical issues of inferencing including the
logical framework underlying OntoEdit and its attached inference engine Ontobroker.
We start with an introduction to relevant inferencing issues, explain the underlying
logical framework of OntoEdit and Ontobroker and, last but not least, enumerate
some functionalities of Ontobroker.

77

6 Requirements for OEEs

Introduction

While OntoEdit is primarily used to engineer ontologies, Ontobroker is able to process
rules, also called axioms (we use both concepts synonymously), and draw inferences,
1.e. to operationalize ontologies which makes Ontobroker suitable as a backend for
ontology based applications. However, Ontobroker is tightly integrated into OntoEdit
(via a “connector plugin”, cf. Section 6.3) and therefore is also suitable to support
ontology engineering tasks.

Figure 6.8 shows an overview of the “inferencing plugins”. The plugins will be described
in the subsequently following sections of this chapter. Two major use cases are relevant
for the usage of inferencing for ontology engineering:

>
g‘ —= OntoGenerator: Scalability Evaluation
3 —e OntoAnalyzer: Guidelines Evaluation
'8 I—o OntoClean Plugin: Formal Evaluation
S
=
1]
E
Q Rule Debugger: Graphical Rule Evaluation
"*' Query Tool: Graphical Query Evaluation
L —=e Inferencing Plugin: Query Evaluation
- —=® OntoMap: Generate Mapping Rules
== —® General Axioms Editor: Axioms Management

Figure 6.8: Overview of the “inferencing plugins”

1. Application of pre-defined axioms to an ontology, e.g. for evaluation purposes.

2. Creation of axioms as part of the ontology.
The “methodology plugins” support the first use case (as shown in the following Sec-
tions 9.1, 9.2 and 9.3). The “external plugins” support (mainly) the second use case (as
briefly described in Sections 8.3 and 9.4). In a nutshell the “external plugins” support

the following (sub-) use cases:

e Text-based and (more advanced) graphically oriented creation of axioms.

78

6.6 Theoretical & Practical Inferencing Issues (R5)

e Text-based and (more advanced) graphically oriented (creation and) evaluation
of queries that can be e.g. used for applications, and

e evaluation of axioms and queries by switching them on/off during the query
processing.

e Graphically oriented debugging of axioms.

e Creation of mappings between ontologies, the mappings are expressed as axioms
and can be processed with Ontobroker e.g. during the runtime of an application.

More examples for the usage of inferencing during ontology engineering can be found
in (Sure et al., 2002b).

Logical Framework

In order to provide a clearly defined semantics to the knowledge model of OntoEdit,
the knowledge structures of OntoEdit correspond to a well-understood logical frame-
work, viz. F-Logic (cf. (Kifer et al., 1995), “F” stands for “Frames”). F-Logic combines
deductive and object-oriented aspects:

“F-logic [...] is a deductive, object-oriented database language which com-
bines the declarative semantics of deductive databases with the rich data
modelling capabilities supported by the object oriented data model.”

(Frohn et al., 1996)

F-Logic allows for concise definitions with object oriented-like primitives (classes, at-
tributes, object-oriented-style relations, instances) that are reflected by the OntoEdit
GUI. Furthermore, it also has Predicate Logic (PL-1) like primitives (predicates, func-
tion symbols), that are only partially reflected in the GUI but internally used within
the data structures. F-Logic allows for axioms that further constrain the interpretation
of the model. Axioms may either be used to describe constraints or they may define
rules, e.g. in order to define a relation R by the composition of two other relations S
and Q.

F-Logic rules have the expressive power of Horn-Logic with negation and may be
transformed into Horn-Logic rules. The semantics for a set of F-Logic statements is
defined by the well-founded semantics (¢f. (van Gelder et al., 1991)). This semantics
is close to First-Order semantics. In contrast to First-Order semantics not all possible
models are considered but one “most obvious” model is selected as the semantics of a
set of rules and facts. It is a three valued logic, i.e. the model consists of a set of true
facts and a set of unknown facts and a set of facts known to be false.

79

6 Requirements for OEEs

In comparison to other logic-based representation languages for ontologies, F-Logic is
quite well suited for the usage within the World Wide Web (c¢f. (Decker, 2002)). Unlike
Description Logics (DL), F-Logic does not provide means for subsumption (Horrocks,
1998), but (also unlike DL) it provides for efficient reasoning with instances and for
the capability to express arbitrary powerful rules, e.g. ones that quantify over the set
of classes.

The most widely published operational semantics for F-Logic is the alternating fixed
point procedure. This is a forward chaining method which computes the entire model
for the set of rules, i.e. the set of true and unknown facts. For answering a query
the entire model must be computed (if possible) and the variable substitutions for
the query are then derived. In contrast, the inference engine Ontobroker performs a
mixture of forward and backward chaining based on the dynamic filtering algorithm
(¢f. (Kifer & Lozinskii, 1986)) to compute (the smallest possible) subset of the model
for answering the query. In most cases this is much more efficient than the simple
evaluation strategy. These techniques stem from the deductive data base community
and are optimized to deliver all answers instead of one single answer as e.g. resolution
does.

Within the F-Logic compiler F-Logic statements are translated to normal programs.
Normal programs are Horn programs where rules may contain negated literals in their
bodies. Horn Logic is Turing Complete, thus F-Logic programs are not decidable
in principle. The semantics defined for these normal programs is the well-founded
semantics (van Gelder, 1993). In contrast to the stratified semantics the well-founded
semantics is also applicable for rules which depend on cycles containing negative rule
bodies. Because F-Logic is very flexible, during the translation to normal programs
such negative cycles often arise. In (van Gelder et al., 1991) the alternating fixpoint
has been described as a method to operationalize such logic programs. This method
has been shown to be very inefficient. Therefore the inference engine realizes dynamic
filtering (Kifer & Lozinskii, 1986) which combines top-down and bottom-up inferencing.
Together with an appropriate extension to compute the well-founded semantics this
method has been proven to be very efficient compared to other horn based inference
engines (cf., e.g., (Sure et al., 2002b)).

For detailed introductions to the syntax and the object model of F-Logic, in particular
with respect to the implementation of F-Logic in Ontobroker, we refer to (Erdmann,
2001), (Decker, 2002) and (Ontoprise, 2002a).

Inference Engine Ontobroker

The inference engine Ontobroker (cf. (Decker et al., 1999)) was developed in numer-
ous years of scientific research (cf., e.g., (Angele, 1993; Fensel, 1995; Erdmann, 2001;

80

6.6 Theoretical & Practical Inferencing Issues (R5)

Decker, 2002)) and is now being commercialized by the company Ontoprise?. It comes
with several features that makes it adequate not only for inferencing purposes but
rather as a backbone for an ontology editor. In particular, it provides:

e A namespace mechanism: Thus, several ontologies (or ontology parts) may be
syntactically split into modules and processed by different inference engines.

e Switch-off: It is possible to switch of (possibly singleton) sets of definitions. Thus,
one may test interactions and easily distinguish between modules.

e Database Connectors: Thus, one may easily map db tables into predicates via,
e.g., JDBC.

e User-definable Built-ins: Besides of standard built-ins like “multiply”, the user
may define his own ones for special purposes.

e An extensive API: Thus, one may remotely connect to the inference engine and
one may also import and export several standards (e.g., RDF(S)).

Characterization of Plugins
As mentioned in the previous section, we will introduce each of the plugins in the
subsequent chapters of this part. At the beginning of each section the plugins will be

characterized e.g. according to their support for collaboration or inferencing. For each
plugin we will depict

e the steps of the Knowledge Meta Process that are supported,
e the different groups that are supported, and

e the tasks and benefits.
For all plugins that support inferencing we add
e whether they support the creation or application of axioms.

Existing external plugins are briefly sketched at the end of each chapter.

3Ontoprise GmbH, see http://www.ontoprise.de/

81

6 Requirements for OEEs

82

7 Kickoff Support

In this chapter we present specialized plugins that support
the kickoff phase of the Knowledge Meta Process. In Sec-
tion 7.1 we show how to capture competency questions and
other requirements with OntoKick. The Mind20Onto frame-
work described in Section 7.2 integrates brainstorming into
the early stages of ontology engineering. Both plugins pro-
vide support for R3: Methodology and R4: Collabora-
tion. Last, but not least, we briefly introduce further sup-
Overview Dport for the kickoff phase by external plugins in Section 7.3.

Note: The ontology that is used as an illustrating example
is included completely in Appendix D.

References: This chapter is mainly based on parts of (Sure
et al., 2002a).

7.1 Competency Questions (and other Requirements)

As described in Section 4.4, the actual development of the ontology begins in the
Kickoff phase. Similar to software engineering and as proposed by (Fernandez-Lopez
et al., 1999) we start with an ontology requirements specification document (ORSD).
The ORSD describes what an ontology should support, sketching the planned area of
the ontology application and listing, e.g. valuable knowledge sources for the next step,
the gathering of the semi-formal description of the ontology.

OntoKick extends the functionality of OntoEdit by support for capturing requirements
specifications for an ontology based application. It focusses on two aspects: (i) the
capturing of meta aspects of an ontology during the kick—off in an “electronic” ORSD
that is stored along with ontologies and (ii) the capturing of competency questions
during the kick—off and the extraction of concepts, relations and instances during the
refinement. The OntoKick plugin is characterized in Table 7.1.

Capturing meta aspects: OntoKick allows for describing meta aspects of the on-
tology such as the domain and the goal of the ontology, potential design guidelines,

83

7 Kickoff Support

Table 7.1: OntoKick characterization

Methodology: | Kick-off (and partially refinement)
Task: | Capturing and storing competency questions
and requirements
Benefits: | Traceability and context
Requirements: | Methodology (R3) and Collaboration (R4)
Space: | Same place, different place
Time: | Same time, separated in time

Group: | Ontology engineers, ontology engineers & domain experts

available knowledge sources (e.g. contact data of domain experts, pointers to known
reusable ontologies etc.), potential users and use cases, and applications supported by
the ontology. OntoKick guides a user through all relevant aspects and stores these
descriptions along with the ontology definitions, thereby making it available at any
time and place for ontology engineers.

Capturing competency questions: As proposed by (Uschold & King, 1995), we use
competency questions (CQ) to define requirements for an ontology. Each CQ defines a
query that the ontology should be able to answer and therefore defines explicit require-
ments for the ontology. One can say that an ontology should have the “competence”
to answer such questions. Typically, CQs are derived from interviews with domain
experts and help to structure knowledge.

We take further advantage of using them to create an initial version of the semi-
formal description of the ontology. Based on the assumption that each CQ contains
valuable information about the domain of the ontology we extract relevant concepts
and relations (see example below). Furthermore, OntoKick establishes and maintains
links between CQs and concepts derived from them. This allows for better traceability
of the origins and the context of concept definitions in later stages. Figure 7.1 shows
an example of a CQ in OntoEdit.

The numbers in the figure refer to the following steps that are taken during an interview
session when using OntoKick. Typically an ontology engineer and a domain expert take
part in such a session.

1. During the kick—off an ontology engineer captures a list of relevant competency
questions from a domain expert, e.g. the CQ “Which partners collaborate in the
European funded project On-To-Knowledge?”.

84

7.1 Competency Questions (and other Requirements)

& New competency questionnaire ﬂ
KConcept hierarchy knowledge Engineer Diomain Expert: Edition Date
Al +] -] €| [rorksure [rhomas moder [1-19-2003
ERC L
----- ﬂMathodology 4
""" [;Project Match Pattern! | = 4 letters vl I~ Activate stemming Reset
Edit Question Concept: Relation:
2 Which partners collaborate in the European funded Project

project m?
Add as subconcept of PROJECT
Add as relation of PROJECT

3. Shiow similat concepts 3
fidd a5 symonym
ADD T LIST
Add as instance of PROJEC Question 1 L |
CHAMNGE | Ignore Is does the KnowPros Methodalogy have?
T mIins exdst for OnkoEdie?
REMOVE | 3 which case studies are described in the thesis?
& ‘wthich partners collaborated in the European funded project On-To-Knawl. ..
pr— 5 ‘which tools were developed in On-To-Knowledge?
4| 3 ‘Whlch tools were evaluated in the EONZ00Z waorkshop? |
DOME | CAMCEL |

Figure 7.1: Capturing competency questions with OntoKick

2. During the refinement ontology engineers can extract concepts, relations and
instances out of the competency questions. E.g. the concepts Methodology and
Project are already modelled.

3. On-To-Knowledge can be inserted as an instance of the selected concept Project
(or any other already existing concept) by marking it up and using a context
menu. Also, a marked item can be inserted as a subconcept of a concept or as a
relationship with having the domain of an already given concept. When using a
domain lexicon, one might add the marked item as a synonym for a concept.

4. When an ontology is quite big, it might be difficult to decide whether e.g. a
concept already has been modelled or not. A simple pattern matching facil-
ity (including a stemming facility for the English language) allows for finding
syntactically similar concepts by comparing a pre-selected number of characters
(or letters) of the marked up item to letters in the names of existing concepts.
E.g. when marking up “project” and selecting “3 letters” for pattern matching,
one would obviously match “project”, but also, e.g., “profile”. Both contain e.g.
the three letters “pro”. When marking up “On-To-Knowledge” and selecting “9
letters” for pattern matching, one would e.g. also match “Knowledge”.

During later stages of refinement, it might be helpful to trace back why concepts,
relations or instances have been modelled as they are (cf. (Landes, 1995)), especially
when multiple ontology engineers work on the same ontology. OntoKick keeps track of

85

7 Kickoff Support

extracted concepts and their corresponding competency questions (in a future version
this is also planned for relations and instances). Figure 7.2 shows the tracing from a
concept to the corresponding CQ. This provides not only the origins — and thereby
some context — of concepts, but also links to domain expert who e.g. can be contacted
for further questions ontology engineers might have.

itk Mew Ontology

Concepts & Relations I Instancesl Relation axiomsl Diisjoink cnnceptsl Feequiremenk 5peciFication| Idk

Concepk hierarchy Felations Range
A+ -|ef
= m Root
----- [;Methudnlugy
[mprgj- -t

Insert Concepk
Delete Concepk

Insert Relation

Reaorganize]

Edit concept:

Corresponding Competency Question 5[

Expert: Thomas Madel

Date: 1-19-2003

wWihich partners collaborated in the European funded project On-To-kKnowledge?

Figure 7.2: Traceability of concepts with OntoKick

Outlook: As mentioned above, the traceability is currently only available for concepts,
but is planned also for relationships and instances. Other possible add-ons include
e.g. the linking of OntoKick with existing contact data managing applications such
as Outlook to make the collaboration with relevant persons as easy as possible. A
linking to search engines such as the knowledge retrieval platform Semantic Miner (cf.
(Moench, 2003)) might help in finding people if the contact data are not sufficient.

7.2 Brainstorming

Especially during early stages of projects in general, brainstorming methods are com-
monly used to quickly capture pieces of relevant knowledge. A widely used method

86

7.2 Brainstorming

are mind maps™ (Buzan, 1974), they were originally developed to support more effi-
cient learning and evolved to a management technique used by numerous companies.
In general, a mind map™ provides information about a topic that is structured in a
tree. Each branch of the tree is typically named and associatively refined by it’s sub-
branches. Icons and pictures as well as different colors and fonts might be used for
illustration based on the assumption that our memory performance is improved by vi-
sual aspects. There already exist numerous tools for the electronically creation of mind
maps™. Many people from academia and industry are familiar with mind maps™ and
related tools — including potential ontology engineers and domain experts. Therefore
the integration of electronic mind maps™ into the ontology development process is very
attractive (c¢f. (Lau & Sure, 2002)).

The Mind20nto framework integrates brainstorming into the kickoff phase of the
Knowledge Meta Process. It is characterized in Table 7.2.

Table 7.2: Mind20Onto characterization

Methodology: | Kick-off (and partially refinement)
Task: | Brainstorming, capturing domain knowledge
Benefits: | Easy to use, intuitive, understandable
Requirements: | Methodology (R3) and Collaboration (R4)
Space: | Same place, different place

Time: | Same time, separated in time

Group: | Domain experts, ontology engineers & domain experts

In our case studies (¢f. Sections 11.4 and 11.5) we typically performed the following
three steps while using mind maps™:

1. During the kick—off the domain experts create initial mind maps™ about their
domain (typically without the help of ontology engineers).

2. During the refinement the domain experts and ontology engineers jointly refine
mind maps™.

3. Finally, during the refinement, the ontology engineers transform and formalize
the mind maps™ into ontologies.

We rely on a widely used commercial tool! for the creation of mind maps™. Figure 7.3
shows an example mind map™ that contains the most relevant concepts for this work.

'"MindManager™ 2002 Business Edition, cf. http://www.mindjet.com

87

7 Kickoff Support

Noteworthy is that certain concepts, e.g. “Methodology”, have attached codes, e.g. like
the check mark which means “Meilenstein” (German for “milestone”), and/or have a
separate layout like different fonts or colors. This mind map™ has already be sorted to
reflect a taxonomical structure.

1=
23(,"‘ Datei EBearbeiten Ansicht Einfigen Format Mulki-Maps Extras Fenster Hilfe _ 8 x
b SR8 V¥V # 4 BB oo @Q w -R a0 WEESE @ -
= *Standardaweige AN B S UmiE A-S -G A F -G | miEe
X =
] Application
L] Annotation_Editor
03 v Software @ oes
é & ontoMat-Plugin
& Project -
¢ L. Topic
= Ontology Http:/fthis.is.anfexample# [J
Q
a 24.01.2003 -1 8]
o v Case_Study
@
) Document
R PhD_Thesi
E] Architecture Esi
&Y
&
)
$ -
1] | »
vy Hbtpiffthis.is.an/example#
HilFe rnit F1 Keine Auswahl 24.01,2003 10:32 =

Figure 7.3: Example mind map about this work

The MindManager™ has advanced facilities for graphical presentations of hierarchical
structures, e.g. easy to use copy&paste functionalities and different highlighting mech-
anisms. It’s strength but also it’s weakness lies in the intuitive user interface and the
simple but effective usability, which allows for quick creation of mind maps™ but lacks
of expressiveness for advanced ontology modeling. By nature, mind maps™ have (al-
most) no assumptions about their semantics, i.e. branches are somehow “associatively
related” to each other. This assumption fits perfectly well during early stages of on-
tology development for quick and effective capturing of relevant knowledge pieces and
makes the mind map™ tool a valuable add-on. Further mind map™ examples are given
in Figures 11.19 and 11.21.

The Mind20nto framework integrates the mind map™ tool into the ontology engi-
neering methodology. It consists of two parts, viz. (i) we developed scripts for the
MindManager™ that import/export mind maps™ from/to the OXML format and pro-

88

7.2 Brainstorming

vide additional needed functionalities such as creation of namespaces and unique iden-
tifiers, and (ii) similar to the MindManager™ we use layout information and icons,
so-called “codes”, to present concepts within OntoEdit. Figure 7.4 illustrates the sec-
ond part of the Mind2Onto framework, i.e. the implementations in OntoEdit.

N ontoEdit for Beta Tester

File Edit Wiew Tools Windows Help
:klﬁ”_ll '-'jlﬂ" £ |‘|E| Generake ontologyl Zonnect ko Sesamel
check | | €| & || v | 2B @[2D D] 0| DD R| % |x [2| @] 3 [Lz|o0]ve|2x(C

|
JchecklIArlal ;”'IU;I A’ A:l F X O m|lé|ly

check. | add new delete | ;I

+'1. http:/ /this.is.an/example (C:\home'diss_ysu'example.o =10l x|

Inferencing | Analvzer | Visualizer | Debugger Domain-Lexican | OntoFiller | TIdentification | Metadata
Concepts & Relations Instancesl Relation axioms | Query Tnoll Disjaink conceptsl Rule Editorl General Sxioms

IConcepk hierarchy Felations Range
A& +| - | & ||developed_by Persan
developed_in Project

= GDEFALLT_ROOT_COMCEPT h

- as_part Foftware
@ Software limplements Architecture

part_of Goftware
sUppOrts ethodology

used_to_build \Application
@ 0ntoMat-Flugin =7 ersion CTRING
...... (® Annotation_Editor psed_to_enginesr Ontology

..... GMethodnlogy v

Figure 7.4: Support discussions with Mind20nto

We imported the mind map™ shown in Figure 7.3 into OntoEdit via the Mind20nto
import/export facilities. As mentioned above, each concept can be marked with codes,
e.g. like the concept OEE is marked with a smiley. Each code has an assigned meaning,
e.g. the smiley has attached the meaning “That is good!”. Furthermore, similar to the
MindManager™ but also other common applications, the font, font size, font type and
font color can be changed for each concept. E.g. by enlarging concepts or changing the
color to red, one might attract the attention to such concepts if further discussion about
them is needed?. During the refinement phase (cf. Section 4.5) an ontology engineer
can now add in OntoEdit further relationships, attributes, instances and axioms to the
hierarchical structure.

To summarize the main advantages: (i) by assigning codes one might indicate which
issues are to be discussed, and (ii) by changing the layout one might draw the attention
to it, to facilitate discussions e.g. in large structures. The usage of codes and layout

2Editing font information sounds very simple and still useful, but currently no other OEE supports
such a feature!

89

7 Kickoff Support

information in OntoEdit fulfills two purposes, wviz. (i) to close the gap between the
usage of the MindManager™ and OntoEdit and (ii) to improve the collaboration of
ontology engineers that work on the same ontology at different times.

Outlook: Currently the layout information and codes can only be used for concepts.
In the future we plan to extend that also for relations, instances and possibly axioms.
Another open issue is the transformation of mind maps™ into ontologies. Currently
this requires a manual effort of ontology engineers. In the future we envision a possible
semi-automatic tool support by applying ontology learning methods (c¢f. (Maedche,
2002a)), e.g. to support the decision whether a branch in a mind map™ reflects a
concept, a relation or an instance — or a even combination of them.

7.3 External Support

Note: External plugins (i.e. plugins that are developed outside the scope of this work,
but extend OntoEdit similar to the methodology plugins) that support the method-
ology are only briefly mentioned. More detailed information can e.g. be found in
(Ontoprise, 2002b).

Domain Entry Collection

The plugin enables users to expand the ontology by additional expressions for the
concepts. Currently these expressions can be:

e synonyms (same meaning as a selected concept),
e domain entries (same domain as a selected concept), and

e classifications (documents belonging to a selected concept).

Often the kickoff phase starts with collecting relevant concepts for a given domain.
They can be stored in the domain lexicon to serve e.g. as a starting point for the for-
malization during the refinement phase. Thus, they inherently support the collabora-
tion between ontology engineers and domain experts. Domain lexicons can be exported
into OXML or F-Logic format. A specialized import and export suits to the knowledge
retrieval platform Semantic Miner (c¢f. (Moench, 2003) for further information).

90

8 Refinement Support

In this chapter we present specialized plugins that support
the refinement phase of the Knowledge Meta Process. The
OntoFiller plugin presented in Section 8.1 helps (i) to trans-
late ontologies into multiple languages and (ii) to add docu-
mentations (in multiple languages). In Section 8.2 we present
Client-Server Framework that enables the distributed engi-
neering of ontologies. Both plugins provide support for R3:
Methodology and R4: Collaboration. Last, but not
least, we briefly introduce further support for the refinement

Overview phase by external plugins in Section 8.3.

Note: The ontology that is used as an illustrating example
is included completely in Appendix D.

References: This chapter is mainly based on parts of (Sure
et al., 2002a).

8.1 Documentation & Translation

During the refinement phase of the Knowledge Meta Process (cf. Section 4.5) the semi-
formal description of an ontology is refined into a target ontology. Typically one starts
by creation of a taxonomical concept structure and adding of further relationships.
However, an important aspect might be also the translation of concepts and relations
of the ontology into different languages. Clearly, a well-documented ontology is more
likely to be understood by people. Thus the documentation of concepts and relations
should be integrated into the ontology engineering process. Both aspects are tackled
by the OntoFiller plugin.

OntoFiller addresses a specific requirement from the Swiss Life case study (c¢f. Sec-
tion 11.4), viz. the need for ontologies in multiple languages. It allows users to easily
“fill in” external representations for concepts. The main purpose is to support users
during the translation of an ontology into different languages (e.g. German, English,
French and Italian). The OntoFiller plugin is characterized in Table 8.1.

91

8 Refinement Support

Table 8.1: OntoFiller characterization

Methodology: | Refinement
Task: | Documentation and translation
Benefits: | User guidance
Requirements: | Methodology (R3) and Collaboration (R4)
Space: | Different place
Time: | Separated in time

Group: | Ontology engineers

As shown in Figure 8.1, the basic functionality consists of the generation of language-
specific views on the ontology. Users can easily identify not yet translated concepts (or
relations) and fill in external representations and documentations in various languages.

1. http://this.is.an,/example (C:\home' diss_ysu'example.oxn =10l
Concepts & Relations | Inskances | Relation axioms | Query Tool | Disjoint concepts | Rule Editor | General Axioms
Inferencing I Analyzer I Visualizer I Debugger Domain-Lexicon OntoFiller Identification I Metadata
Shc'_'j'_‘f' ; en de I fr I
Lol : Softvare Software «|
™ relations OEE CEE

- OntoMat-Plugin OnkoMat-Plugin
Edit -
: rMethodology Vorgehensweise
" documentations Architecture Archibekiur
(¥ ext. representations ||@pplication Arwendung
Edit docurentation Tool Werkzeug
Petson Person
Role Folle
Document Crokurnent
PHD Thesis Diokkorarbeit ~|
Language tool | MNamespace tool | Translation tool | Show languages v en W de [fr [it

Figure 8.1: Inserting multi-lingual external representations for concepts and relations
with OntoFiller

Additionally, this plugin contains a translation support on top of the free German-
English dictionary LEO'. A user can request “translation hints” from this online dic-
tionary for concepts and relations. They consist of translations for a chosen concept
or relation from German to English (and vice versa). A user then might choose from
the retrieved hints the appropriate translation for his purpose.

As a side effect this plugin allows several further functionalities, viz. (i) viewing and

'"LEO dictionary, see http://wuw.leo.org/

92

8.2 Distributed Engineering

editing all namespaces used in an ontology for concepts and relation and (ii) detecting
all used languages in an ontology based on the language tags of XML.

Discussion: However, the translation of concepts into different languages is not with-
out pitfalls. Our approach relies on the assumption that concepts and relations build
the same structures in different languages. This assumption was valid for the Swiss
Life case study (cf. Section 11.4), but in other scenarios this is not necessarily the case.
For more complex ontologies is rather likely that the structures differ in multiple lan-
guages. Main reasons are different meanings of concepts (even for direct translations)
and especially of relationships. To solve this problem, one would need to create for
each language at least one separate ontology that reflects e.g. cultural backgrounds.
To enable multi-lingual knowledge sharing one would define mappings between these
ontologies. This is a quite immature research area with many open questions, first
implementations exist (¢f., e.g., Section 8.3) but are not yet applied to such problems.

Outlook: The translation support is planned to be extended also for other languages.
The Altavista Babelfish? offers translations for a set of languages. It can be accessed
via a SOAP web service interface.

8.2 Distributed Engineering

The Client-Server Framework allows members of an engineering team to collaborate
even though they are geographically distributed and still modify the ontology at the
same time. It is characterized in Table 8.2.

Table 8.2: Client-Server Framework characterization

Methodology: | Refinement
Task: | Locking and transaction management
Benefits: | Consistency and concurrency
during distributed ontology development
Requirements: | Methodology (R3) and Collaboration (R4)
Space: | Different place

Time: | Same time

Group: | Ontology engineers

The description in this section is rather technical to show the practical implications

% Altavista Babelfish, see http://babelfish.altavista.com/

93

8 Refinement Support

of this challenging approach. We have implemented® a client-server architecture (cf.
Figure 8.2) in which the clients connect to an ontology server and can change or extend
the ontology. All clients are immediately informed of modifications of other ontologists.
Ontology engineers can store comments (e.g. explaining design decisions) in a docu-
mentation field for each concept and relation. By this way, one of the main features
of ontologies, i.e. their consensual character, is supported. Collaborating ontologists
must agree on the modeling decisions that are made. Therefore the possibility to mon-
itor the development process of all collaborators is essential for reaching the goal of a
shared ontology.

Client 3

Client 2 - - Client 4
Local view on H_‘ H_‘ ﬁ W l* I*

locking information

Local copy of
ontology

i
e

Ontology Server

- Locking Information

-

> Ontology Datamodel

|
!

Figure 8.2: Client-Server architecture of OntoEdit

Transaction management*: In a distributed development environment certain
mechanisms must be implemented to ensure safe development conditions, such as con-
sistency of the models and the provision of a minimum degree of concurrency. To
reach this goal we employed a locking and transaction protocol and implemented a
distributed event model on the basis of Java-RMI (remote method invocation).

To guarantee consistent models the clients are forced to obtain locks for each resource
(e.g. concept, instance, relation) that they want to modify (e.g. add a superconcept,
add an attribute-value pair to an instance, or change the arity of a relation). The

3 Acknowledgements: the Client-Server Framework, in particular it’s implementation, was done
by co-authors of (Sure et al., 2002a), viz. Michael Erdmann and Dirk Wenke, Ontoprise GmbH.
Together we integrated it into the methodological framework.

4For introductory material on transactions and locking protocols we refer e.g. to (Bernstein et al.,
1987; Gray & Reuter, 1993).

94

8.2 Distributed Engineering

server denies the (write-) access to a resource if the resource is not locked by the client
that attempts to modify it. Clients can obtain locks either by explicitly locking these
resources, or more conveniently, by a begin of transaction (BOT) that is accompanied
with a list of needed resources. If not all resources can be assigned to the calling
client the BOT fails and the transaction is immediately aborted. Otherwise the server
locks the needed resources for the client, so that no other client can manipulate them
until the end of the transaction is reached. Now the client can manipulate the locked
resources until it commits the transaction. After a commit all locked resources are
freed again and the operations performed in the body of the transaction are actually
applied to the datamodel. Afterwards, events are created to inform the other clients
of the modifications performed. If the transaction needs to be aborted by the client all
operations are undone, all locks are removed, and no events are fired.

Transactions may be nested to make complex operations possible without the need
of rollback mechanisms. FE.g. the datamodel procedure of moving a concept from one
superconcept to another one consists of two sub-transactions (remove a superconcept-
relationship to the first superconcept and establish a new one for the second concept)
that must be performed all together or none at all. Because of the necessity of nested
transactions we implemented a strict two phase locking protocol (S2PL). In this proto-
col additional resources can be achieved (and locked) within the body of a transaction.
Our implementation of the S2PL allows for arbitrarily nested transactions. The exe-
cution of inner transactions and the release of all locked resources is postponed until
the outermost commit or abort is finally reached. Again, only after the final commit
events are sent to the other clients. We employ the S2PL because (i) it allows for
nested transactions and (ii) prevents cascading aborts. Thus, clients can be immedi-
ately informed if a planned operation will commit or is prohibited due to unavailable
resources. (iii) S2PL prevents also deadlocks since resources are only locked in a BOT
if all locks can be achieved. Other locking protocols are either too inflexible (like con-
servative locking (C2PL) that cannot lock resources in addition to the locks of the
BOT and thus, is not suitable for nested transactions) or provide chances of deadlocks
that must be appropriately handled.

To reduce communication overhead, save bandwidth and because transactions are rel-
atively short lived no information about transactions (esp. not about locked objects
within a BOT) is communicated from the server to other clients, i.e. the local view
on locking information within a client (¢f. Figure 8.2) contains all resources that are
locked by this client (by a BOT) but none that have been locked by a BOT of any other
client. Nevertheless, another kind of locking information s distributed to all clients.
An ontologist can lock a whole subtree of the concept hierarchy. The server informs
all clients of this locking operation.

Locking subtrees of the concept hierarchy: A common practice in ontology
engineering is to start with a top level structure and to refine it later on. Different parts

95

8 Refinement Support

of an ontology can be refined by different ontologists or groups. These collaborators
should be able to work on their parts of the ontology with as few interference with
other ontologists as possible. This is achieved in OntoEdit by the possibility of locking
a complete subtree of the concept hierarchy. After the subtrees have been locked no
conflicts can arise anymore, and what is equally important, the need to check for locking
information with the server is reduced drastically. Since most modeling operations will
occur within the scope of the subtrees, i.e. will mainly access already locked resources,
the client can decide locally whether these operations are permitted or not.

This (tree-) locking information is distributed to all other clients and visually indicated
in the GUI. Due to the distribution of this information clients can often check locally
whether a transaction will be permitted or not. If all needed resources are marked as
“locked by me” in the local view on the locking information (c¢f. Figure 8.2) a BOT
can be safely accepted. If at least one resource is marked as being locked by another
client the current client can definitively reject a BOT (or a lockSubTree request). Only
if resources are requested in a BOT for which no information is locally available, the
server has to be consulted.

What does locking a concept mean? Locking resources in relational databases
(DB) means the DB administrators or application developers must decide whether to
lock an attribute, a tuple, or a complete table (i.e. relation). Since the basic datamodel
for ontologies is much richer (esp. due to hierarchical relationships between concepts,
between relations, and between instances and concepts) the decision of what a lock
entails is more complex.

The most simple answer would be to lock the complete ontology with all its components.
But this solution is ruled out since it would disallow any kind of concurrency and
distributed collaboration. Another simple answer would be to lock the resources that
are to be modified within a transaction, e.g. the resource X in the transaction that
states that concept X has a superconcept Y. Apparently, for this transaction concept
Y should also be locked since a new subconcept for Y is defined. Thus, the second
simple approach seems to lock too few resources.

Due to hierarchical relationships between concepts locking a concept X implies read-
locks for all super-concepts of X. A read-lock marks a resource as being read-only, i.e.
modifications to it are currently disallowed. If a read-lock for at least one superconcept
cannot be achieved X will not be locked and the BOT fails. Thus, no operations may
modify X. Read-locks can be yielded to multiple clients at the same time without
conflict. If a client is the only one that read-locked a resource the client can achieve a
stricter (write-)lock. Other clients cannot.

Figure 8.3 shows an example. Crosses mark concepts that are (read-)locked by other
clients and may not be edited. Bullets mark concepts that are (write-)locked by the
current user and may be edited, altered and removed at will. Concepts without addi-

96

8.2 Distributed Engineering

tional icons are currently not locked by other users and therefore available for locking.
E.g. user “1” (left screenshot) (write-)locked the concept Document and (as explained
above) this implies a (write-) lock on the subconcept PhD Thesis. These concepts are
now excluded from the list of available concepts for user “2” (right screenshot), there-
fore marked with a cross in the GUI of user “2”. Vice versa, user “2” (write-)locked
the concept Tool and at the same time all it’s subconcepts. For user “1” this implies
the exclusion of Tool, it’s subconcepts and superconcept, viz. Software, from the list of
available concepts for locking.

£-A ontoEdit For Beta Tester A OntoEdit for Beta Tester

File Edit Yiew Tools MWindows Help File Edit View Tools Windows Help
J :!gll“"?"E” !')ll'!‘" % ||E| Generate ont J :}.lﬁ"E“ "jl{!'" * ||E| Generate ontolo
| check | | €| & || v | BB | ek | 12| & v 2@ B|EDE

1. hitp://this.is.an/example (C: home' diss_ysu’, 1. http://this.is.an/example {C:\home' diss_ysu'ex
General dxioms | Inferencing | Analyzer | General &xioms | Inferencina | Analyzer | W
Concepts & Relations I Instances Concepts & Relations Instances
iConcept hierarchy Relatio IConcept hierarchy Relations
a|+]-|e] Aa|+|-|e]
o GDEFAULT_ROOT_CONCEPT . G DEFALLT_ROOT_CONCERPT
- @ Software X .- @ Software
..... (@ Methodology ... @#Application
..... @ Architeckure g @Todl @
..... (& FPerson L. @CEE @
..... ®Role | (®OntoMat-Plugin @
- @Document: @ i @Annotation Editor @
i @PhD Thesis ® 4 i (® Methodology
..... (& Ontology . (@ Architecture
..... (B Case Study ... (@Person
..... (& Project ... @Rl
..... (& Topic - @Document X
..... ® Onkology
..... @ Case Study
..... @ Froject

1+ 01 | - @ Topic 2

Figure 8.3: Locked trees in OntoEdit

The reason why a lock propagates from one resource to another in the ontology can
be seen in the following example scenario: Assume, X is a subconcept of Y and Y has
a relation A with range Y. Assume, we want to restrict the value range of A for X
from Y to X. Thus, in the BOT we just lock the concept X and call the appropriate
operation on X. Before we send the commit another client (after locking Y') changes
the name of A to B and commits. If we now commit our transaction the semantics of
the combined operations is not defined. Does X now have two independent attributes
A and B? Or is attribute A totally lost as well as our newly defined range restriction?

97

8 Refinement Support

Both situations are unsatisfactory. Thus, to prevent them superconcepts need to be
read-locked.

Outlook: The transaction management is currently implemented for concepts and still
in an early stage. However, the extension for locking relations, instances and especially
for axioms is non-trivial and still requires a substantial amount of research to develop
sophisticated locking strategies, otherwise one easily ends up in locking each time the
whole ontology.

8.3 External Support

Note: External plugins (i.e. plugins that are developed outside the scope of this work,
but extend OntoEdit similar to the methodology plugins) that support the method-
ology are only briefly mentioned. More detailed information can e.g. be found in
(Ontoprise, 2002b).

Axioms Management

Axioms are quite difficult to model. OntoEdit offers several functionalities to create
and manage axioms, to make the life of ontology engineers easier.

The General Axioms editor allows users to define all kinds of axioms. All existing
axioms can be grouped into folders to structure them. “Typical axioms” (inverse,
disjoint, etc.) are grouped together and stored in specialized folders to provide a
better overview. Modelling such axioms is done in a “notepad”™like manner and the
syntax of axioms has to be F-Logic (c¢f. (Kifer et al., 1995)).

There exists a newly Graphical Rule Editor plugin that allows for graphically oriented
creation of axioms. Unlike the General Axioms plugin, one is assisted by a graphical
interface, where no F-Logic knowledge is needed.

Generate Mapping Rules

The decentralized nature of the Semantic Web makes achieving consensus across com-
munities difficult, therefore the generation of a single coherent ontology seems un-
realistic. In order to balance the autonomy of each community with the need for
interoperability, mapping mechanisms between distributed ontologies are required. A
mapping framework for ontologies has e.g. been presented in (Maedche et al., 2002a).

The OntoMap plugin is an already existing plugin for generating arbitrary mappings
between two ontologies. It allows for the mapping of data structures between ontologies

98

8.3 External Support

via graphically oriented drag & drop. Mappings are stored as rules along with the
mapped ontologies. They can be processed in Ontobroker during runtime.

99

8 Refinement Support

100

9 Evaluation Support

In this chapter we present specialized plugins that sup-
port the evaluation phase of the Knowledge Meta Process.
In Section 9.1 we show the OntoGenerator which aims at
the creation of “synthetic ontologies” that allow for an eval-
uation of scalability of ontology based tools. The OntoAna-
lyzer presented in Section 9.2 helps in evaluating (formalized)
guidelines to ensure that ontologies subscribe to predefined
modelling guidelines. The OntoClean plugin shown in Sec-
tion 9.3 implements the well-known OntoClean methodology
for formal evaluations of ontologies based on philosophical
principles. All three plugins heavily rely on the underlying

Overview Ontobroker inferencing engine and thus provide support for
R3: Methodology and R5: Inferencing. Last, but not
least, we briefly introduce further support for the evaluation
phase by external plugins in Section 9.4.

Note: The ontology that is used as an illustrating example
is included completely in Appendix D.

References: This chapter is mainly based on parts of (Sure
et al., 2002b).

9.1 Scalability Evaluation

We address two of the mentioned evaluation aspects (¢f. Section 4.6) for ontologies
and related technologies: the technology-focussed evaluation and the ontology-focussed
evaluation. The user-focussed evaluation was e.g. performed in two of the case studies
(cf. Sections 11.5 and 11.6). Tool support for this evaluation was implemented outside
of the ontology engineering environment and rather embedded into the ontology-based
applications. This reflects the fact the the user perception of ontologies is rather
dependant on the different usages of ontologies in applications.

The OntoGenerator plugin targets at technology-focussed evaluation, wiz. scalability
evaluation. The plugin is characterized in Table 9.1.

101

9 Evaluation Support

Table 9.1: OntoGenerator characterization

Methodology: | Evaluation (technology-oriented)

Task: | Generation of “synthetic” ontologies to support
scalability evaluations
Benefits: | Modular extensibility, flexibly adaptable to
different evaluation settings
Requirements: | Methodology (R3) and Inferencing (R5)

Axioms: | Application of predefined axioms

OntoGenerator extends OntoEdit by support for the generation of “synthetic ontolo-
gies”. In contrast to well-known domain ontologies (cf. Section 3.2) they do not model
a specific domain, ¢.e. the concepts, relations and instances created do not relate to spe-
cific objects in the real world but are artificially named entities that form ontology-like
structures according to pre-defined parameters. They aim at supporting the evalua-
tion and benchmarking of ontology based technologies. The consensual character for
synthetic ontologies therefore does not lie in the agreement about a particular domain
description but rather in the agreement what kind of model fits for the evaluation or
benchmarking purpose. A synthetic ontology can be created with OntoGenerator ac-
cording to various user-definable parameters. The plugin’s modular design simplifies
further extensions.

Modular design: As illustrated in Figure 9.1 OntoGenerator consists of a central plu-
gin and several modular plugins for the generation of a specific section of an ontology.
The central plugin manages the module plugins which do not directly interact with
OntoEdit but only communicate with the central plugin. It also provides a mechanism
for storing and re-loading parameter profiles. Each additional module is reflected in the
GUI by an additional tab where parameters for the generation are captured. Currently
there exist modules for (i) concepts, (ii) relations and attributes, and (iii) instances.

Parameters for concepts: With the current version of the concept-generating mod-
ule, a symmetrical concept tree is generated. The user may enter values for depth and
width of the concept tree to be generated. Parameter “depth” specifies the number
of concepts that descend from the root concept in a direct line. “Width” indicates
the number of subconcepts for each concept. At the bottom of the concept parameter
input panel the total number of concepts that would be generated with the current
parameter values is stated.

Parameters for relations and attributes: The module for the generation of re-
lations and attributes can be customized by entering two parameter values, the total

102

9.1 Scalability Evaluation

%DntuEdit for Beta Tester

File Edit ‘iew Took Windows Help

i
b=y OntoGenerator .
J z}\,lﬁ"" ul I')IFI‘ ¥ Ilﬂj Generate ontologyl Connect to Sasamel u _I_I_I
+1. ontogen.2003120.1043059028781 (New ontology)
Inferencina | Analvzer | Visuslizer | Debugger | Domain-Lexicon | OntoFille Save current parameters | Delete selected setting |

Concepts & Relations I Instances | Relation axioms | Query Tool | Disjoint concept:

Concepts | RelationsAttributes | Instances |
KZoncepk hierarchy Felations Range

rBasic Cption:
Q& +| -| gI a1 EOOLEAN

=11 MTEGER I
— Depth of C E Ti

- @ DEFALLT_ROOT_CONCEPT 15 ETRING E&pth O Loncept Tree 3
19 17
a_19 MTEGER
1z = ‘width of Concept Tree |3

rAdditional Option:

rInfarmation and Statistical Dat

Tokal Mumber of Concepts 40

Clear all input Fields | Generate |

Figure 9.1: Generating ontologies with OntoGenerator

numbers of attributes and relations. These are randomly attached to the concepts

created by the concept module. For relations, the range concept as well is chosen at
random.

Parameters for instances: Instances are only attached to the concept tree’s leaves.
The quantity of instances at each leaf is determined by several pre-defined distributions.
Currently, the instance module features three distributions with different parameters:

e Random distribution: The only parameter for this distribution is the total num-
ber of instances that are to be created. These are spread randomly over all
leaves.

e Linear distribution: Here the number of instances per leaf can be thought of as
an increasing line. Both minimum and maximum number of instances can be
chosen. The number of instances increases uniformly from “minimum number of
instances” at the first leaf to “maximum number of instances” at the last leaf.

e Normal distribution: A normal or Gaussian distribution is determined by two
parameters, expectation and standard deviation. Most leaves will have as many
instances as specified by the expectation parameter. According to the standard
deviation value, the number of leaves that have more or less instances attached,
decreases symmetrically.

103

9 Evaluation Support

Discussion: Major benefits are (i) the modular extensibility of the plugin, so in
future more advanced features can be added (see next paragraph) and (ii) the potential
usage of all features the datamodel of OntoEdit has to offer to generate “synthetic
ontologies” makes the plugin highly adaptable to different evaluation settings. A first
usage scenario for OntoGenerator was e.g. the comparison of Ontobroker with XSB!,
a comparable inference engine ((Sure et al., 2002b)).

Outlook: For the future we plan to extend OntoGenerator with a module for rule
generation on top. Potential issues for such an extension are (i) depth of rule trees,
(ii) cyclicity of rules, (iii) length of rule cycles, (iv) complexity of rule bodies, and (v)
transitivity of rules.

9.2 Guidelines Evaluation

Guidelines for ontology modelling help to ensure a coherent modelling of ontologies and
thus to ensure a consistent level of quality. This affects multiple ontology engineers
working on the same ontology, but also single or multiple ontology engineers working
on multiple ontologies. On the one hand, support for evaluation therefore inherently
enhances collaboration, respectively fulfills requirement R4: Collaboration. On the
other hand, we make extensive use of inferencing capabilities by applying axioms to
ontologies for evaluating them. We focus in this and the following section on the
inferencing issues and therefore the support for requirement R5: Inferencing.

An integration of guideline checking into OEEs helps to evaluate the guidelines during
modelling time and guarantees immediate feedback for ontology engineers. However,
different requirements for ontologies, e.g. coming from envisioned applications that
should be supported, might require different guidelines. Therefore, a flexible way of
using and adapting guidelines is needed instead of hard coding them. Guidelines might
be used for technology-focussed evaluations, e.g. to ensure that naming conventions
are fulfilled (for instance, some inference engines do not allow for white spaces in
concept identifiers while others allow for them as long as brackets enclose the identifiers
etc.), or for ontology-focussed evaluations, e.g. as shown in the next section on formal
evaluations of ontologies.

The OntoAnalyzer plugin offers flexible and modularized checking of formalized guide-
lines and constraints. The OntoAnalyzer is characterized in Table 9.2.

From our own experiences of ontology development and deployment we learned that
for different purposes ontologies must have different properties, e.g. for different tar-
get applications (cf., e.g., Sections 11.4, 11.5 and 11.6). The definition of evaluation

'XSB is a “Logic Programming and Deductive Database system for Unix and Windows”, see
http://xsb.sourceforge.net/

104

9.2 Guidelines Evaluation

Table 9.2: OntoAnalyzer characterization

Methodology: | Evaluation (ontology-oriented)
Task: | Checking of guidelines and constraints
Benefits: | Integrated and modular, thus adaptable, checking
Requirements: | Methodology (R3) and Inferencing (R5)

Axioms: | Application of predefined axioms

methods for such properties must be very flexible and easily maintainable. So it is
not convenient to program it into the OEE itself, but rather to have a modular and
flexible way to ensure the quality of an ontology by checking such properties. Logic
is a very comfortable and powerful way on a conceptual level to express constraints
for an ontology or to examine properties of an ontology. For that purpose the rule or
constraint language must be able to access the ontology itself, i.e. to make statements
about classes, relations, subclasses etc.

Formalization: F-logic allows to define statements and rules about the ontology
(concepts, subconcepts, relations). FE.g. the examination whether in an ontology a
concept has at maximum one super concept may be expressed by the following “check”
axiom:

FORALL C check("concept has more than one super concept",C)
<- EXISTS S1,S2
C::581
AND C::52
AND NOT equal(S1,S2).

Further examples for modelling guidelines can be derived from (Noy & McGuinness,

2001). FE.g. consider the two guidelines (“slot” is synonymic used to our usage “rela-
tion”):

“If a list of classes defining a range of a slot includes a class and its
subclass, remove the subclass.”

“If a list of classes defining a domain of a slot includes a class and its
subclass, remove the subclass.”
(Noy & McGuinness, 2001)

They can be formalized as the following F-Logic axioms and automatically checked

105

9 Evaluation Support

within OntoEdit2:

FORALL C check("Remove concept from a range",C)
<- EXISTS B,Domain,Rel
Domain[Rel=>>B]
AND Domain[Rel=>>C]
AND C::B.

FORALL C check("Remove concept from a domain",C)
<- EXISTS B,Range,Rel
B[Rel=>>Range]
AND C[Rel=>>Range]
AND C::B.

How does it work: OntoAnalyzer is a tool which applies such axioms to an ontology
opened in OntoEdit. The plugin transfers the ontology and check axioms to the Onto-
broker inference engine and retrieves back and displays the results of this examination.
OntoAnalyzer is able to load different axiom packages, each intended for a different
target tool or target project.

To actually execute the checks, OntoAnalyzer asks for all values of the predicate
check(X,Y), as shown in the following:

FORALL X,Y <- check(X,Y).

The results are presented in the GUI of OntoAnalyzer.

Outlook: For the future we plan to develop standard rule packages for evaluation
of various purposes to support efficient and effective engineering of ontologies and to
improve the quality of ontologies at the same time. To enhance the usability of the
plugin, the results derived from Ontobroker should immediately allow for the proposed
actions, e.g. if a concept should be removed from the range of a relation, the dialog for
doing so should be automatically opened.

9.3 Formal Evaluation

The previously introduced technology for checking ontologies can be extended to cover
also formal ontology evaluations such as proposed by the OntoClean methodology (cf.,
e.g., (Guarino & Welty, 2000b; 2000c; Welty & Guarino, 2001; Guarino & Welty, 2002)).

2Please note that it is quite easy to present also the relation to which the domain and range concepts
belong by extending the check predicate with an additional value.

106

9.3 Formal Evaluation

The following building blocks constitute the basic infrastructure for implementing On-
toClean: (i) a set of axioms that formalize definitions, constraints and guidelines given
in OntoClean and (ii) a “meta-ontology”, wiz. the so-called “taxonomy of properties”,
that provides a frame of reference for evaluations. An ontology can be compared vs. a
predefined ideal taxonomical structure to detect inconsistencies. Thus, the integration
of the OntoClean methodology into OEEs enables an integrated quality control for
ontologies. The OntoClean plugin makes use of and extends the basic infrastructure
of the OntoAnalyzer (c¢f. previous Section). The plugin is characterized in Table 9.3.

Table 9.3: OntoClean Plugin characterization

Methodology: | Evaluation (ontology-oriented)

Task: | Formal evaluation of ontologies
Benefits: | Enhanced quality of concept hierarchies
Requirements: | Methodology (R3) and Inferencing (R5)

Axioms: | Application of predefined axioms

The OntoClean methodology is based on philosophical notions for a formal evaluation of
taxonomical structures. It focuses on the cleaning of taxonomies and e.g. is currently
being applied for cleaning the upper level of the WordNet taxonomy (c¢f. (Gangemi
et al., 2002b)). Core to the methodology are the four fundamental ontological notions
of rigidity, unity, identity, and dependence. By attaching them as meta-relations to
concepts in a taxonomy they are used to represent the behavior of the concepts. Ie.
these meta-relations impose constraints on the way subsumption is used to model a
domain (¢f. (Guarino & Welty, 2000a)). We can only briefly sketch the methodology in
a simplified way and mention two of the introduced philosophical notions, viz. rigidity
and unity:

e Rigidity is defined based on the idea of essence. A property is essential to an
individual if and only if necessarily holds for that individual. Thus, a property is
rigid (+R) if and only if it is necessarily essential to all its instances. A property
is non-rigid (-R) if and only if it is not essential to some of its instances, and
anti-rigid (~R) if and only if it is not essential to all its instances.

Example: Consider for example the property of being hard. We may say that
it is an essential property of hammers, but not of sponges. Some sponges (dry
ones) are hard, and some particular sponge may be hard for its entire existence,
however this does not make being hard an essential property of that sponge. The
fact is that it could have been soft at some time, it just happened that it never
was.

107

9 Evaluation Support

Furthermore, being a person is usually conceptualized as rigid, while, as shown
above, being hard is not. Rigidity is a subtle notion: every entity that can exhibit
the property must exhibit it. So, every entity that is a person must be a person,
and there are no entities that can be a person but aren’t.

The property being a student is typically anti-rigid — every instance of student is
not essentially a student (i.e. may also be a non-student).

e Unity is defined by saying that an individual is a whole if and only if it is made
by a set of parts unified by a relation R. A property P is said to carry unity
(+U) if there is a common unifying relation R such that all the instances of P
are wholes under R. A property carries anti-unity (~U) if all its instances can
possibly be non-wholes.

Example: F.g., the enterprize British Airways is a whole unified by the relation
has president. To generalize, an enterprize with president carries unity since the
relation has president is the relation that unifies every instance.

Based on these meta-relations OntoClean classifies concepts into categories as shown
in Figure 9.2 (the figure is taken from (Welty & Guarino, 2001)). E.g., a concept that
is tagged with “+O +I +R” is called a “Type”.

The aim of the methodology is to produce a “clean” taxonomy as shown in the ideal
structure in Figure 9.3 (figure is taken from (Welty & Guarino, 2001)).

Beside these meta-relations OntoClean contains axioms that can be applied to evaluate
the correctness of a given taxonomy. For instance, an axiom suggested in OntoClean
is “a property carrying anti-unity has to be disjoint of a property carrying unity”. As
a consequence, “a property carrying unity cannot be a subclass of a property carrying
anti-unity” and “a rigid property and an anti-rigid property are ever disjoint”, to name
but a few. As an example we present the formalization of the disjointness in F-Logic:

FORALL C check("A property cannot carry +R and -R",C)
<- C[carryR->>"true"]
AND ClcarryNotR->>"true"].

Another example is, that a property that is defined as “anti-rigid” cannot subsume a
property that is “rigid” (the check message is abbreviated for means of simplicity):

FORALL B (check(""R can’t subsume +R",B))
<- EXISTS C
C::B
AND B[antiR->>"true"]
AND C[carryR->>"true"].

108

9.3 Formal Evaluation

+D
+O | +I | +R D Type
+D
O | +tI | R Quasi-type —_
-D =
O | +sI | ~R | +D Material role ;c;
O |+ | ~R| -D Phased sortal
+D
-0 +1 | R Mixin
-D
+D
O | -I|+R D Category E
_ 3
-0 -1 ~R | +D Formal Role n
~R | -D é
-0 -1 R +D Attribution
-D
-1
+0 ~R incoherent
+1 R

Figure 9.2: Combinations of OntoClean meta-relations

To implement the OntoClean methodology in OntoEdit?®, we (i) formalized the con-
straints and definitions as axioms, and (ii) formalized the meta-relations and classifi-
cations as a “meta ontology” that can be used to classify concepts of an ontology.

We modelled the “meta ontology” and an example ontology (taken from (Welty &
Guarino, 2001)) that has to be evaluated, in OntoEdit. Each concept of the example
ontology, i.e. all subconcepts of the root concept of the example ontology, viz. “Entity”,
is then specified as being also an instance of the top-level concept “Property” of the

meta ontology through an axiom:

FORALL C C:Property

<- C::Entity.

3There is also the group from the Artificial Intelligence Laboratory of the Technical Univer-
sity of Madrid (UPM) working on the integration of the philosophically oriented OntoClean
methodology with the process oriented METHONTOLOGY (Fernandez-Lopez et al., 1999)
by extending the WebODE (Arpirez et al., 2001) ontology development environment (cf.
http://www.ontoweb. org/workshop/ontoweb2/slides/ontocleansig3.pdf)

109

9 Evaluation Support

Non-sortals Backbone Taxonomy
‘// Categories \\
Attributions Fﬂgil
Sortals Top Types
Types &
Quasi-Types
Mixins M;gelgz !

‘ Phased Sortals

Figure 9.3: Ideal taxonomy structure

Figure 9.4 shows the subsequent steps during implementation and employment of On-
toClean as a plugin in OntoEdit (the numbers in the figure correspond to the following
enumeration):

1. model both ontologies, the taxonomy of properties and the example ontology,

2. fill the meta-relations with values (i.e. tag the concepts of the example ontology
with “carryR” (+R) etc.), and

3. specify the definitions and constraints from OntoClean as axioms (here by using
the General Axiom Editor, ¢f. Section 8.3). One can now ask queries to find
inconsistencies in an ontology according to the OntoClean methodology.

Figure 9.5 shows the inconsistencies derived from applying the OntoClean axioms the
example ontology by using the Inferencing plugin (¢f. Section 9.4. On the left side the
list of implemented axioms is shown, for testing purposes they can be switched on and
off. On the right side the result from an evaluation is shown. FE.g. the concept Agent
is defined as “anti-rigid” and subsumes the concept Animal which is defined as “rigid”.
According to the OntoClean methodology this is a violation of a given constraint.
To enhance the quality of the taxonomical structure an ontology engineer can now
reconsider the modelled hierarchy.

110

9.3 Formal Evaluation

1 http://example.ontoclean/analyzer {C:ihome',0nk ;lilﬂ
Inferencina | OntoFiller | Analyzer | Domain-Lexicon | Identi Metadata
Concepts & Relations I Instances | Relation axioms | Disjoinkt concep eral Axioms
Concept hierarchy Felations Foooan
Q.l +| - | ¢ | [antiR EOOLEAN
Enkil EOOLEAN
- 6: DEFAULT_ROOQT_COMCEPT iy EOOLEAN
QProperty Carryl ECOLEAN
@Mon_Sartal rarryNotD FOCLEAN
Fol s ; F F
gSDDr:aI :/ fexample.ontoclean/analyzer {C:' home'0nk ;Iilﬂ
: @ Incoherent Inferencing | Ontofiller | Anakvzer | Domain-Lexicon | Identification |
E| @ Entity Concepts & Relations Instances | Relation axioms I Disjoink concepts GEnE
1. @Location IConcept hierarchy [nstances
@ Amount_of _matter =
@Red Q|+|-|g|@Property =
@Agert . GDEFALLT_ROOT_COMCERT O Entity
@¢roup . @ Praperty 3 Location
(2. @Living_being 5. @MNon_Sortzl 3 Amount_of_matter
. @FRole 0 Red
. @5ortal B Agert

General &xioms

Inferencing

. @Incoherent

.- @ Entity
[@Location
I O Amnynt

OntaoFiller

carryMotli"true")
carryMotU"true")
carryD("krue")
("true")

P

€ definition_6_7
€ definition_4_5_6_7

" . R
Analyzer | omain-Lexicon | Identification |
FLogic Axioms FLogic syntax
Aiomms = L
i] inverse FORALL C { ClcarryNotR->>"true”] |
[| symmetric <- [C[antiR->>"true”] J.
[transitive
€3 rigidity_subsumption Documentations +| - | ¢ |
€ unity_subsurnption
€ definition_4_5 Language Documentation |

=

|The ~R. meta-praperty is subsumed by -R. |

LW rharl vinidib canckesing 1

Figure 9.4: Implementation of OntoClean in OntoEdit

Discussion & Outlook:
next version of the plugin

The shown implementation is a first proof of concept. The
encapsules the meta ontology by using a dynamically built

GUI to handle the tagging of concepts with meta-relations more intuitively. Similar
to the OntoAnalyzer, the results should automatically guide users through a set of
possible actions that can be performed to fix the detected inconsistencies.

However, the application of the OntoClean methodology requires significant training,

only few people are currently able to apply it properly.

In collaboration with the

group from the Artificial Intelligence Laboratory of the Technical University of Madrid
(UPM) and the inventors of the methodology we are therefore planning to implement
a more user-friendly and intuitive solution.

111

9 Evaluation Support

Inferencing I Analyzer | ‘isualizer | Debugger Domain-Lexicon | CntoFiller | Identification | Metadata
s A1 IFORALL XY =- chack(d¥). query

----- || inverse

----- (] symmetric Tttt

----- [transitive

_____ QJ rigidity_subsumption Evaluating the cuery: FORALL X7 <- chﬁck(X,YJ .

..... unity subsumption "B can't subsume +R": gent

..... g:: defiiiion_‘i_Sp "R can't subsume +R"; Legal agent

..... 8+ definition_&_7 "R can't subsume +R7; Food

----- s definition_4_5_6_7 "+I can't subsume -I"; Group

----- ﬂ,f check_rigidity_constraint_1 “+I can't subsume -I7; Group_of_people

----- @, check_idenkity_constraint_i " can't subsume +I7; Location

""" O,y check_identity_constraint_2 "L can't subsume +I7; Amount_of matter

..... 0+ check_unity_constraint_t "1 can't aubsume 4177 Group

----- B check_unity_constraint_2 A can't subsume +U"; Food

""" B"‘ check_unity_constraint_3 "~ can't subsume +I7; Group_of_people

----- BJ check_dependence_conskraint,

o) s i "+D can't subsume -D"; Agent
----- BJ -:he-:k_snrlt:al_m ivi ;aETtn_ass "D can't subsume -DT: Legal agent
|/ check_sortal_expandability_as 4D can't subsume -D” s Food

----- 0,.- check_disjoink_rigidity
----- B check_disjoint_identity

----- ﬂ,f check_disjoint_own_identity
[T 1 [T -
4 | _*I_I

Figure 9.5: Deriving inconsistencies with the OntoClean Plugin

"4 property cannot carry +0 and -0"; Vertebrate
"L property cannot carry +0 and -0"; Group of people

9.4 External Support

Note: External plugins (i.e. plugins that are developed outside the scope of this work,
but extend OntoEdit similar to the methodology plugins) that support the method-
ology are only briefly mentioned. More detailed information can e.g. be found in
(Ontoprise, 2002b).

Visualization (of Ontologies)

Visualization of ontologies facilitates the engineering tasks in general. Ontology en-
gineers can use such visualizations e.g. to “get a feeling” for ontologies, especially for
the complex structures created by relationships between concepts. Typically, OEEs
provide some kind of “explorer”like visualization of the concept hierarchies. Further
visualizations are needed to represent e.g. relationships other than “is-a” taxonomies.
Such visualizations may be reused to provide navigational structures for portals that
are build on top of an ontology. Therefore the integration of such visualizations into
OEEs helps to evaluate such structures before their implementation in a running ap-
plication.

The Visualizer plugin (shown in Figure 9.6) enables such visualizations and allows the
user to browse and edit the ontology by a graphical means. Concepts and instances are

112

9.4 External Support

shown as blue and green bullets, which can be used as navigators either by double-click
or right-click. The number of existing instances to a selected concept is shown in a
small red square. To edit an ontology, one has to select the ‘Edit’ radio button. The
right click menu on the bullets shows you the options for editing the ontology.

1 http:/ /this.is.an/example {C:% home'diss_ysu'example.oxmi} ;IEIEI
Concepts & Relations | Instances | Relation axioms Cuery Tool | Disjoint concepts | Rule Editor | zeneral Axioms
Inferencing | Analyzer Wisualizer Debugger Domain-Lexicon | CnkoFiller | Identification | Metadata

% Mavigate Edit Search Node:l =) ILucaIil\,f 'l _<| _| _DI
x> e e -
o\ -
~a ~, 8 7

] 7 e
G DEFAULT ROOT_CONCEPT G Tool N)
\@!’r " - - — +J-.:lit.-:-l-lat.—Plu-;rJ.n
Tpic S

@-ﬁllt.-:-‘a‘e.ﬁl -:-11Ff'::-l-:--;r‘_.f
. \Jm

] gntology
@!’f"ﬂ:‘-fﬁ;l--.}:@) . |
s ___"'*o intoEdit
/ \
@.’:"ﬂiss ife ontology | \\
" Enerieach ontology bl
¥ Protege
\9)‘».‘%]:--3
-
_ v

Figure 9.6: Visualizing ontologies in the Visualizer Plugin

L=

Query Evaluation

The Inferencing plugin can be used to test the ontology and its axioms. Queries in
F-Logic syntax can be tested within OntoEdit. All axioms can be switched on and off
during runtime, thereby e.g. allowing for checking side-effects of axioms.

Graphical Query Evaluation

The helps to create queries for knowledge bases. It enables the user to generate the
queries graphically based on one of the available ontologies in OntoEdit. There exist
several possibilities for defining mappings such as

e concepts on concepts,

e attributes on concepts,

113

9 Evaluation Support

e attributes on attributes, and

e relations on relations.

Debugging of Axioms

The Rule Debugger plugin allows for a graphically oriented debugging of axioms.
Therefore the evaluation of axioms is greatly facilitated.

114

10 Application & Evolution Support

Overview

In this chapter we present specialized plugins that sup-
port the application & evolution phase of the Knowledge
Meta Process. In Section 8.2 we present the Sesame Plu-
gin that enables storage and versioning of ontologies based
on the Ontology Middleware Module which belongs to the
Sesame RDF(S) repository. The plugin provides support for
R3: Methodology and R4: Collaboration. Last, but
not least, we briefly introduce in Section 10.2 further exter-
nal support for evaluation that is also based on the flexible
OntoMat plugin framework.

References: This chapter is mainly based on parts of (Sure
& Studer, 2002c).

10.1 Storage & Versioning

The Sesame Plugin is characterized in Table 10.1.

Table 10.1: Sesame Plugin characterization

Methodology: | Application & Evolution

Requirements: | Methodology (R3) and Collaboration (R4)

Task: | Storage, change management

Benefits: | Persistent storage of multiple versions

Space: | Different place

Time: | Separated in time

Group: | Ontology engineers

The Sesame Plugin connects OntoEdit to Sesame (cf. Section 11.2 or (Broekstra et al.,
2002)). Sesame provides (i) a storage facility for RDF(S) ontologies, (ii) a query

115

10 Application & Evolution Support

engine on top of the storage facility that makes Sesame also suitable as a backend for
applications, and (iii) the Ontology Middleware Module on top of the query engine that
supports the evolution of ontologies (cf. Section 4.7). It is noteworthy that Sesame can
only handle RDF(S) ontologies and RDF data statements, but an extension for more
sophisticated support for DAML+OIL is planned.

The plugin allows for connecting Sesame repositories via the protocols HT'TP, RMI and
SOAP. Figure 10.1 shows possible actions, viz. (i) Ontologies that are stored in Sesame
can be opened in OntoEdit, (ii) ontologies that are opened in OntoEdit can be stored in
Sesame, (iii) repositories in Sesame can be cleared, (iv) the list of all available updates
of an ontologies can be retrieved (and a selected update can be opened in OntoEdit),
and (v) the list of all available versions of an ontology can be retrieved (and a selected
version of an ontology can be opened in OntoEdit).

d5csomealocolhost 0

You are currently logged in as ‘admin’, |

i Selected Repository:Sirma Skills KB
-Read options
{~ Open repository into OntoEdit

Madify options
" Expott opened ontology in repository
rf’“ Clear the repository

I Versioning options
0 Get List OF All Updates
(™ Get List of All Yersions

<< Back OK

Figure 10.1: Storing and versioning ontologies with the Sesame Plugin

Outlook: Sesame is being developed as open source. Currently it supports RDF(S),
but future extensions are planned to cover also OWL specific features which would
result in an update of the Sesame plugin to reflect the new functionalities.

10.2 External Support

Evolution of ontologies is still an immature area. But, when ontologies grow in size,
the complexity of change management increases, and rather simple strategies as pre-

116

10.2 External Support

sented in the previous section are not sufficient any longer. Therefore, more ad-
vanced evolution strategies are needed. (Stojanovic et al., 2002a) presents an evolution
strategy that encapsulates policies for evolution with respect to user’s requirements.
OntoMat—SOEP, the tool that implements the strategy, is based — like all previously
presented OntoEdit plugins — on the OntoMat plugin framework. However, the in-
ternal data structures are aligned to the KAON framework (cf. (Motik et al., 2002;
Bozsak et al., 2002)). For the future it is planned to align the data structures of
OntoEdit and KAON to make the OntoMat plugins more reusable.

117

10 Application & Evolution Support

118

Part IV

Case Studies

“dogfood n.

[Microsoft, Netscape] Interim software wused internally for testing.
‘To eat one’s own dogfood’ (from which the slang noun derives) means
to use the software one is developing, as part of one’s everyday development
environment (the phrase is used outside Microsoft and Netscape). [...]”

— http://www.tuxedo.org/ “esr/jargon /html/entry/dogfood.html

119

11 On-To-Knowledge

Overview

In this part we present several case studies that how the
methodology and tools presented in the parts before are ap-
plied in different scenarios. On the one hand, three case stud-
ies of the On-To-Knowledge project shown in Chapter 11 rep-
resent a broad spectrum of use cases in corporate intranets.
On the other hand, the Semantic Portal of the thematic net-
work OntoWeb shown in Chapter 12 illustrates the applica-
tion of the presented work in the World Wide Web. All case
studies provide real world experiences and show different as-
pects of ontology based knowledge management applications.
Additionally, we performed as part of OntoWeb an evalua-
tion of ontology based tools, wiz. a comparison of different
Ontology Engineering Environments.

In this chapter we start by introducing the project On-To-
Knowledge and describing the contribution of this work to
the project in Section 11.1. We continue with the introduc-
tion of the technical architecture in Section 11.2 and give
an overview on how the tools are used within three differ-
ent case studies in Section 11.3. Subsequently we present
each case study, viz. (i) “Skills Management” at Swiss Life
in Section 11.4, (ii) “Communities of Knowledge Sharing” at
BT in Section 11.5 and (iii) “Virtual Organization” at En-
erSearch in Section 11.6. We conclude with presenting the
main lessons learned during the case studies in Section 11.7.

References: This chapter is mainly based on (Sure et al.,
2003a), (Sure, 2002b), (Lau & Sure, 2002), (Davies et al.,
2003) and (Sure & Iosif, 2002).

121

11 On-To-Knowledge

11.1 About the Project

The EU IST-1999-10132 “On-To-Knowledge: Content-driven Knowledge Management
through Evolving Ontologies” (OTK) project! (cf., e.g., (Davies et al., 2002b)) is part
of the 5th framework of the Information Societies Technologies (IST) Programme of
the European Union (EU). Within the project one aims at developing and exploring
sophisticated methods and tools for knowledge management as described in the OTK
Annex.

“The On-To-Knowledge project applies ontologies to electronically available
information to improve the quality of knowledge management in large and
distributed organisations. ...we will develop a methodology and tools for
intelligent access to large volumes of semistructured and textual information
sources in intra-, extra-, and internet-based environments to employ the full

power of ontologies in supporting knowledge management ... The goal of
the On-To-Knowledge project is to support efficient and effective knowledge
management.”

(On-To-Knowledge, 1999)

OTK partners include (i) technology providers who build an ontology based tool
environment to support the acquisition, maintenance and access of information, (ii)
technology users who evaluate and use the tool environment in industrial case studies
and (iii) a methodology provider who guides and assists during the application of
the tool environment in the case studies.

The tool suite developed by the technology providers consists of a set of tools for
different purposes, e.g. access, extraction and storage. The tools are in principle stand-
alone solutions that are integrated via the agreement on OIL, the “Ontology Inference
Layer”, as a common interchange language for ontologies and metadata. In the case
studies the existing tools are bundled together and used in different configurations to
meet the different requirements each case study has.

Three case studies are carried out by the technology users to evaluate and use the
OTK tool environment for ontology based knowledge management. These case studies
represent a broad spectrum of use cases. First, there are three industry sectors involved:
insurance, telecom and energy. Second, the partners come from three countries with
different cultures. Therefore they are facing various aspects of knowledge management
problems. The three case studies are (i) “Skills Management” at the company Swiss
Life, (ii) “Communities of Knowledge Sharing” at the company BT and (iii) “Virtual
Organization” at the company EnerSearch.

"http:/ /www.ontoknowledge.org

122

11.2 Technical Architecture

Within the project the On-To-Knowledge Methodology developed by the method-
ology provider is the glue between technology providers and technology users. The On-
To-Knowledge Methodology sticks all parts together and provides a general overview
of all parts. The methodology provider captures lessons learned from the OTK case
studies while applying the OTK tool set.

The following items show the relationship of work performed in the project
and parts of this thesis:

e The On-To-Knowledge Methodology (c¢f. (Staab et al., 2001; Sure & Studer,
2002a)?) was initially developed in the project and refined in this thesis in Part II.

e OntoEdit and the plugins described in Part III were developed as part of the
On-To-Knowledge tool suite (cf. (Sure et al., 2002a; 2002b)3). Most of the re-
quirements for the plugins were derived from the On-To-Knowledge case studies.

e The three case studies were carried out in close cooperation between the method-
ology provider and the technology users (¢f. (Lau & Sure, 2002; Davies et al.,
2003; Sure & Iosif, 2002)). Thus, the case studies served as an evaluation not only
for the tool suite, but also for the On-To-Knowledge Methodology. The following
Sections 11.4, 11.5 and 11.6 about the case studies reflect the work performed
in close cooperation with the case study providers. Further information about
each case study can be found in the corresponding On-To-Knowledge deliverables
which are mentioned at the beginning of each section.

e As illustrated in Section 11.3, the case studies explored different configurations
of the tool suite. However, during the final review meeting* an integrated life
demo was presented to show all tools interacting with each other®.

11.2 Technical Architecture

This section about the technical architecture summarizes the work performed on the
technical architecture in the On-To-Knowledge project. As such, it reflects the joint

2The evolvement of the methodology and the accompanying tool support can be recaptured in the
corresponding On-To-Knowledge deliverables: (Schnurr et al., 2000; Sure & Studer, 2001b; 2002b;
2002c).

3The following On-To-Knowledge deliverables cover OntoEdit and plugins related issues: (Sure &
Studer, 2001a) and (Sure & Studer, 2002c).

*Final On-To-Knowledge project review meeting, see
http://wuw.ontoknowledge.org/final-review.shtml

50TK Tool Suite Demo, edited by Y. Sure, slides available for download at
http://wuw.ontoknowledge.org/downl/finalreview-demo.pdf

123

11 On-To-Knowledge

work of numerous project partners. Firstly, we briefly introduce all tools that were
developed as part of the project. Secondly, we give a summary about the ontology
language OIL which was also developed as part of the project.

11.2.1 OTK Tool Suite

A key outcome of the On-To-Knowledge project is the resulting “OTK Tool Suite” 6.
Several consortium partners are participating in the effort to realize in software the
underpinning ideas and theoretical foundations of the project.

QuizRDF
RQ OntoShare

Spectacle
P nowledge

OIL-Co 'L—'[OntoEdit & ®=<=_Engineer

(OMM | > BOR

[Sesame |

OIL-Core ontology repository C)

Annotated Data Reposito
RDF C_ — = F
~ — T
pers0D—pr P31 about > <<ar

L])
[OntoWrapper] [OntoExtract]
Data

i [Tio tect 1o
Repository LIS

EV T

(external} H_pawe -

Figure 11.1: OTK technical architecture

A major objective of the project is to create intelligent software to support users
in both accessing information and in the maintenance, conversion, and acquisition
of information sources. The tools are integrated in a three-layered architecture (cf.
Figure 11.1). The layers consists of (i) the user front end layer on top, (ii) a middleware
layer in the middle and (iii) an extraction layer at the bottom. Each tool represents

5The technical requirements to run the tool suite can be found in the OTK Technical Factsheet, cf.
(Sure, 2002a), available for download at
http://www.ontoknowledge.org/downl/0TK-Factsheet.pdf

124

11.2 Technical Architecture

certain functionalities. The layering allows for a modular design of applications that
bundle some or all of the functionalities provided. Most of the tools presented in the
figure are described subsequently below. As a minimum requirement all tools support
OIL core that has been designed to be exactly the part of OIL that coincides with
RDF(S) (cf. section 11.2.2).

QuizRDF: Full Text Searching plus RDF Querying

QuizZRDF” (Krohn, 2001) combines full text searching with RDF querying. This com-
bined approach seems to be very promising due to the fact that RDF-annotated in-
formation resources are likely to be complemented by non-annotated information for a
considerable period to come, and that any given RDF description of a set of resources
will give one particular perspective on the information described. QuizRDF can be
used like a conventional Internet search engine by entering a set of search terms or a
natural language query and produces a list of links to relevant Web pages in the usual
way.

However, QuizRDF’s indexing and retrieval technique is also designed to use domain
knowledge that is made available in the form of ontologies specified as OIL core. RDF
resources are Web pages or (parts thereof) and such pages or segments are effectively
ontological instances. Correspondingly, resource types are ontological classes. The in-
formation items processed by QuizRDF are RDF resources. During indexing QuizZRDF
assigns content descriptors to RDF resources. Content descriptors of a resource are
terms (words and phrases) that QuizZRDF obtains from a full text analysis of the re-
source content and from processing all literal values that are directly related by a
property. They also retain structural information about the ontology.

In QuizRDF the user can select from a list of all the resource types stored in the
index. When searching by selecting a resource type, QuizRDF adjusts its result list to
show only resources of the selected type. The user is also presented with a search and
navigation area. The search area shows the attributes of the selected resource type.
For each attribute the user can input a search criterion. QuizRDF combines the search
criteria entered and matches the resulting query against its ontology-based index.

In addition, resource types (ontological classes) related by some property to the cur-
rently selected type are displayed as hyperlinks. Clicking on such a type then selects
that type and in turn displays those types that are related to it. Thus the user can
browse the ontology in a natural and intuitive way.

Figure 11.2 shows a typical initial query by a user taken from the EnerSearch case
study. The user has entered a free text query for information about “multiagent” and

"Due to legal matters the formally known RDF ferret is now being called QuizRDF.

125

11 On-To-Knowledge

[41] energy

multiagent. building

relevance

Figure 11.2: The query interface of QuizZRDF

“building” and refined the query with a search for the class “energy” from an underlying
ontology. The search engine has returned a ranked list of 53 documents containing the
terms. When returning the result documents, QuizRDF has also compiled a list of the
classes to which each document belongs. This class list is then made available to the
user via the drop-down list referred to. The user can then refine the search results by
selecting one of the classes from the list (like the here chosen “energy”).

QuizRDF is developed by the project partner BT, UK®.

8BT, see http://www.bt.com

126

11.2 Technical Architecture

OntoShare: Community Support

OntoShare (Davies et al., 2002a; Duke & Davies, 2001; Duke & van der Meer, 2002)
enables the storage of best practice information according to an ontology and the
automatic dissemination of new best practice information to relevant co-workers. It
also allows users to browse or search the ontology in order to find the most relevant
information to the problem that they are dealing with at any given time. The ontology
helps new users to navigate and acts as a schema for storing key learning and best
practices accumulated through experience. In addition, the ontology helps users to
become familiar with new domains. It provides a sharable structure for the knowledge
base, and a common language for communication between user groups. Each user can
define his own relevant parts of the ontology (i.e. personal concepts) that are integrated
into a single coherent ontology available to all users (¢f. Figure 11.20, taken from the
BT case study).

OntoShare is like QuizRDF developed by the project partner BT, UK.

Spectacle: Information Presentation

Spectacle (Fluit et al., 2002) is a content presentation platform featuring custom-made
information presentations, aimed at supporting the information needs of its users. This
does not only mean that the right information should be delivered to the user, but also
that it needs to be presented (structured, formatted, rendered) in a manner appropriate
for that specific user.

Y’ =
ey erozece/ ONTOKNowledge
EnerSearch AB Select another concept to narrow down your search:

ABB certain topic effort lead recruit
profile
":"F’UE::?C " Akkermans chosen electronic commerce line report

ancepts
aammmr” cvs callaboration energy market machine reposit
). By Project EU callaboration while entity machinclacees IR S ear
@ISESW representation
E115ES 4 EnerSearch community environment methodology sales
£115ES 5 Hans Akkermans complement exchange netherlands sectior
#]ISES 5 (RISI Conf new IT based business
SlsEs T NL concept framework Categy coastomer sector
g:ggg Sggi: gﬂ:s NL 1081 HY amsterdam contact {,"S: university amsterdam ;. o seman
ISES Book, Ch i i
€l ook, hap Netherlandshttp® b d h generatln;_s%ml N i B
3a,,www.ontoknowledge.org content based searc| structured information office semi
H " presentation
1By Year ontology based it
L.@)Key Concepts oIL contribution i knowledge =
management —

://143.217.135.12 /evaluation/knowledgebase/publications/conference-journals fEMMSEC00/ EMMSECO0-1.html
Summary: OnToknowledge: Ontology based Tools for Knowledge Management, Author: Dieter Fensel, Frank van Harmelen, M
keywords: OnToknowledge: Ontology based Tools for Knowledge Management description: OnToknowledge: Ontology based
Management.

Summary: Its research affiliates and shareholders are spread ower many countries: its shareholding companies include IBM (L
| | (Sweden/Switzerland), PreussenElektra (Germany), Iberdrola (Soain), ECM (Netherlancis)‘ and Electricidade do Portugal. Esiill
4 (2R »

Figure 11.3: Provision of navigational structures with Spectacle

127

11 On-To-Knowledge

Spectacle is used to disclose both the content of databases, document repositories and
other enterprise information sources, as well as the semantics of that information from
Semantic Web resources. The platform consists of the Spectacle server and program-
ming libraries for generating both Web-based and graphical information presentations.

For the end user, Spectacle transforms the task of gathering information from a search
task (formulating explicit queries) to a browsing task (using navigation heuristics) by
presenting each user with the navigational means appropriate for his or her task. This
results in more efficiency in retrieving the right information, both in terms of retrieval
accuracy as well as time spent on the task.

Spectacle can present information in two different ways: (i) it can create hypertext
interfaces, containing selected content, design and an appropriate navigation struc-
ture, based on the semantics of the information, (ii) it can present the information by
graphical visualization.

A key benefit of the first approach is that it allows for an easy and flexible presentation
of the same information in different ways, for each of the envisioned tasks or user
groups. Furthermore, it has all the usual benefits of a generated Web site (like having
a consistent design, being up-to-date) and it also takes advantage of the expressivity
and flexibility provided by Semantic Web standards such as RDF, RDF Schema and
DAML+OIL.

A benefit of the second approach is that it can offer insights and kinds of information
access that are not possible with conventional publishing methods such as Web sites.
For example, overview and analysis of large sets of objects requires an effective and
compact graphical presentation. Similarly, presentation of the relations between these
objects is virtually impossible without the support of a graphical visualization.

Figure 11.3, taken from the EnerSearch case study, shows an example for the first
approach. On the left side the navigational view generated out of the underlying
ontology with the selected concept “OnToKnowledge”, on the upper right side the cur-
rent navigational path “By project/OnToKnowledge”, below other available concepts
like “ABB” or “Akkermans” and, last but not least, on the lower left side the relevant
set of documents for the selected navigational path.

Spectacle is developed by the project partner Aldministrator, NL°.

OntoEdit: Ontology Development

OntoEdit is presented in detail in Part 11T and the Appendices A, B and C. We here
give a brief overview for readers that skipped those.

Aldministrator, see http://www.aidministrator.nl

128

11.2 Technical Architecture

OntoEdit (Sure et al., 2002a; 2002b; Sure & Studer, 2001a) is a collaborative ontology
engineering environment that is easily expandable through a flexible plugin framework
(Handschuh, 2001). OntoEdit supports ontology engineers while inspecting, browsing,
codifying and modifying ontologies in each step of the Knowledge Meta Process (cf.
Chapter 4 or, e.g. (Staab et al., 2001)).

ﬂ!ﬂntology Engineering Workbench OntoEdit ¥2.5 {inferencing edition} - |EI|1|
File Edit View Tools Windows Help

J fz&lﬁ"g“ ')l(‘" b ||@ Generate ontologyl Connect to Sesamel

=18l

sslife.skim (New ontology)

Inferencing | Query Tool | Domain-Lexicon | analyzer | ontoFiller | Identification | Metadata
Concepts & Relations Instances Relation axioms I Disjoint concepks I General Axioms
IZoncept hierarchy Instances
Ql +| = | el [JacquelineReich ;I
E_GRDDt = -3 JoergUwekietz I

[} @ Crganization

. . (B Company
.- @Department
- @University

- PeterBrackhausen
- RalfMalitar E%Sesame@localhust

- ReginaZuecker
[@ ThorstenLau

‘You are currently logged in as 'sesame’,

@ Person -5 UkichReimer Selected Repository:MySQL Test DB
M @Emplovee [7 # HasskillsiknowledgeRepresentation)

®@Froject | # Hasskills{OrganizationalMemories) Read options
L@sks # Hasskills(DataMining)

& @CamputerSystem | 7 # ‘WorksInPrajeck{OnToknowledge) ™ Open repository inko OntoEdit

----- # WorksInProject{Ontoweh)
----- # ‘worksInProject(Skils_Management)
Managementlevel{"Head of Information &

. . (@ DocumentProcessing
- @Language
[@Middleware

e @Netwark | # HasMamne("Ulrich Reimer") Modify options
. @Programminglanguage | # HasEmail{"ulrich. reimer@swisslife.ch")
@®ava # HasTitle("PD Dr.") % Export opened ontology in repository
AvishalRasic hd I S # HasPhoneho("+41 1 2844061")
| _'I—I | " Clear the repository

<< Back | [8]4 |

Figure 11.4: Ontology development with OntoEdit

Modeling ontologies using OntoEdit involves modelling at a conceptual level, viz. (i) as
independently of a concrete representation language as possible, and (ii) using GUI’s
representing views on conceptual structures (concepts, concept hierarchy, relations,
axioms) rather than codifying conceptual structures in ASCII. In addition, OntoEdit
provides a simple instance editor to insert facts according to a modelled ontology. The
conceptual model of an ontology is stored internally using a powerful ontology model,
which can be mapped onto different, concrete representation languages (e.g. OIL core,
DAML+OIL or RDF(S)). Ontologies can be directly imported from and exported to
Sesame.

The core functionalities of OntoEdit were expanded by several plugins to meet the
requirements from the case studies — e.g. OntoKick and Mind20nto (Sure et al., 2002a),
Sesame Plugin, OntoFiller and, last but not least, OntoClean Plugin (Sure et al.,
2002b). They are explained further in Chapter 4.

129

11 On-To-Knowledge

Figure 11.4 shows an ontology opened in OntoEdit taken from the Swiss Life case
study. On the left side of the “ontology window” there is the concept is-a hierarchy
with the chosen concept “Person”, on the right side there is a list showing all instances
for the selected concept, e.g. the selected instance “UlrichReimer”. On the right side of
the screenshot one sees an opened window of a connection to a Sesame repository. The
user “sesame” is logged in at the Sesame repository running on “localhost”, currently
the option “export opened ontology in repository” is chosen to upload the opened
ontology to Sesame. Multiple ontologies can be opened at the same time and multiple
connections to various Sesame repositories can be opened at the same time.

Ontology Middleware Module: Integration Platform

The Ontology Middleware Module!® (OMM, cf. (Kiryakov et al., 2002b; 2002a)) can be
seen as “administrative” software infrastructure that makes the knowledge management
tools easier for integration in real-world applications. The major features supported
are:

Control System
Tracking Access
Changes) Change Investigation > ‘ Control
. 5 <

Current User Info.

Figure 11.5: Features of the Knowledge Control System

e Change management for ontologies to allow for branching of different states and
versions (cf. e.g. the next subsection on OntoView);

e Access control (security) system with support for role hierarchies including com-
prehensive and precise restrictions (down to object/record-level) that enable
business-logic enforcement;

0More information for OMM and BOR including an online demo can be found at (OntoText, 2003c;
2003a; 2003b).

130

11.2 Technical Architecture

e Meta-information for ontologies, specific resources (classes, instances), and state-
ments.

These three aspects are tightly integrated to provide the same level of the handling of
knowledge in the process of its development and maintenance as source control systems
(such as e.g. the Concurrent Versions System (CVS)!!) provide for software. On the
other hand, for end-user applications, OMM can be seen as equivalent to the database
security, change tracking and auditing systems. OMM was designed to support both
use cases.

In a nutshell, OMM extends the storage and query facilities of Sesame with a Knowledge
Control System (KCS, ¢f. Figure 11.5), additional support for multi-protocol access
(e.g. HTTP, RMI, SOAP) and reasoning services.

An example for a reasoning service is BOR (Simov & Jordanov, 2002) — a reasoner
that is currently being developed and complies with the DAML+OIL model-theoretic
semantics. It is a modular component that can be plugged in to extend the query
facilities already provided e.g. by Sesame. It addresses most of the classic reasoning
tasks for description logics, including realization and retrieval. Few innovative services,
such as model checking and minimal ontology extraction, are also integral part of the
system. The full set of functional interfaces will allow a high level of management and
querying of DAML+OIL ontologies.

OMM is developed by the project partner Sirma AI / OntoText Lab., BG!2.

OntoView: Change Management for Ontologies

OntoView (Klein et al., 2002b; 2002a) is a change management tool for ontologies
and is implemented as part of the Ontology Middleware Module (it is not separately
shown in Figure 11.1). Change management is especially important when ontologies
will be used in a decentralized and uncontrolled environment like the Web, where
changes occur without co-ordination. The main function of OntoView is to provide a
transparent interface to arbitrary versions of ontologies. To achieve this, it maintains an
internal specification of the relation between the different variants of ontologies. This
specification consists of three aspects: (i) the meta-data about changes (author, date,
time etc), (ii) the conceptual relations between versions of definitions in the ontologies,
and (iii) the transformations between them. This specification is partly derived from
the versions of ontologies themselves, but also uses additional human input about the
meta-data and the conceptual effects of changes.

"http://www.cvshome.org/
2Sirma AT / OntoText Lab., see http://wuw.sirma.bg

131

11 On-To-Knowledge

% daml-example /daml-ex.daml - diff - 1.3 (K-Meleon) ;IEIEI

J File Edit ‘iew Go Favorites Help ‘-
|== @& AS “URL: Jhttps ffantoview. orgiDML fexample. daml7dif1=1. 16dFf=1.3 |
<fdaml:Ontology> </daml:Ontologys> d
<rdfs:Class rdf.ID="Animal"> <rdfs:Class rdfID="Animal"> identical =l
<rdfs:|abel=Animal</rdfs:label> <rdfs:label>Animal=/rdfs: labsl>
<rdfs:comment= <rdfs:comment=
This class of animals is illustrative of a nurmber of The class of living things that have the capacity for
ontalogical idioms. spontaneousmovement and rapid motor responses
to stimulation, havingcells without cellulose walls.
<frdfs:comment> </rdfs:comment =
<frdfs:Class> </rdfs:Class>

identical

<rdfs:Class rdf.ID="Female"> =rdfs:Class rdf.ID="Female">
<rdfs:subClassOf rdf resource="#Animal"/> <rdfs:subClassOf rdf:resource="#Animal"/>
</rdfs:Class> </rdfs:Class>

(characterization) i=|
(characterization)

icentical

=rdf:Property rdf:ID="hasF ather"> =rdf:Property rdf:|D="hasFather">
<rdfs:subPropertyOf rdf:resource="#hasParent"/> =rdfs:subProperty Of rdf.resource="#hasParent"/>
<rdfs:range rdf:resource="#vala"/> <rdfs:range rdf:resource="#vale" >
<frdf:Property> </rdf Property >

<rdfs:Class rdf.ID="Person"> <rdfs:Class rdf.|ID="Person"=

-
B Y S TSP VT SRR T TS el P e o VD el i 2L e I J

|Ready & 4

Figure 11.6: The result of a comparison of two ontologies with OntoView

To help the user to specify this information, OntoView provides the utility to compare
versions of ontologies and highlight the differences. This helps in finding changes
in ontologies, even if those have occurred in an uncontrolled way, i.e. possibly by
different people in an unknown order. The comparison function is inspired by UNIX
diff, but the implementation is quite different. Standard diff compares file version
at line-level, highlighting the lines that textually differ in two versions. OntoView, in
contrast, compares version of ontologies at a structural level, showing which definitions
of classes or properties are changed.

There are different types of change. Each type is highlighted in a different color, and the
actually changed lines are printed in boldface. An example of the visual representation
of the result of a comparison is shown in Figure 11.6.

The comparison function distinguishes between the following types of change:

e Non-logical change, e.¢g. in a natural language description. This are changes in
the label of a concept or property, or in the comment inside definitions.

e Logical definition change. This is a change in the definition of a concept that
affects its formal semantics. Examples of such changes are alterations of subclass

132

11.2 Technical Architecture

statements, or changes in the domain or range of properties. Additions or dele-
tions of local property restriction in a class are also logical changes. The second
and third change in the Figure 11.6 (class “Male” and property “hasParent”) are
examples of such changes.

e Identifier change. This is the case when a concept or property is given a new
identifier, i.e. a renaming.

o Addition of definitions.

e Deletion of definitions.

The comparison function also allows the user to specify the conceptual implication of
the changes. For the first three types of changes, the user is given the option to label
them either as “identical” (i.e. although the specification is changing, it still refers to
the same concept), or as “conceptual change”. In the latter case, the user can specify
the conceptual relation between the two version of the concept. For example, by stating
that the property “hasParenty o” is a sub-property of “hasParents .

Another function is the possibility to analyze effects of changes. Changes in ontolo-
gies do not only affect the data and applications that use them, but they can also
have unintended, unexpected and unforeseeable consequences in the ontology itself
(McGuinness et al., 2000b). The system provides some basic support for the analy-
sis of these effects. First, on request it can also highlight the places in the ontology
where conceptually changed concepts or properties are used. For example, if a property
“hasChild” is changed, it will highlight the definition of the class “Mother”, which uses
the property “hasChild”. This function can also exploit the transitivity of properties
to show the propagation of possible changes through the ontology. A foreseen second
effect analysis feature is a connection to FaCT (Horrocks, 1998), which allows to check
the formal consistency of the suggested conceptual relations between different versions
of definitions.

OntoView is developed by the project partners Free University of Amsterdam (VUB),
NL!'?, and Sirma AI / OntoText Lab., BG'.

Sesame: Repository for Ontologies and Data

Sesame!® (Broekstra et al., 2002; Broekstra & Kampman, 2001) is a system that al-
lows persistent storage of RDF data and schema information and subsequent online

13V UB, see http://wuw.cs.vu.nl

'4Sirma AT / OntoText Lab., see http://www.sirma.bg

5More information including an online demo can be found at (AIdministrator, 2003b), the Source
Forge project website can be found at (AIdministrator, 2003a)

133

11 On-To-Knowledge

querying of that information. Sesame has been designed with scalability, portability
and extensibility in mind.

< Available actions - Microsoft Internet Explorer X =181 x|

J Datei EBearbeiten Ansicht Favoriben Extras 7 |-

J = Zurick, - = - @ @ o | @Suchen (5] Favariten @Ver\auf | %v =) - @

jnd[esse I@ http:fflocalhost: 8080 sesamef actionlist jsp?reposicory=mysql-db j @Wachsaln 2u |JLinks i

| Gongle -| =] g web-suche @Rsite Suche | P2acRenk @ ccien fnf - =
;l

Available actions

Available actions on MySAL Test DB [select other] are:

read modify
Evaluate an RGL query Add data from the world wide web
Evaluate an RDOL query Add data by copy-paste

Exfract data from the repository Remove statements

Explore the repository Clear the repository

copyright @ 2001-2002 aidministrator nederland by

[
|@ l_l_ (ZE Lokales Intranst v

Figure 11.7: Sesame: repository for ontologies and data

Sesame itself has been implemented in Java, which makes it portable to almost any
platform. It also abstracts from the actual repository used by means of a standardized
API. This API makes Sesame portable to any repository (DBMS or otherwise) that is
able to store RDF triples. Currently, only implementations based on DBMS’s exist. At
the same time, this API enables swift addition of new modules that operate on RDF
and RDF Schema data.

One of the most prominent modules of Sesame is its query engine. This query engine
supports an OQL-style query language called RQL (¢f. (Karvounarakis et al., 2001;
Broekstra et al., 2000; Broekstra & Kampman, 2000)). RQL supports querying of
both RDF data (e.g. instances) and schema information (e.g. class hierarchies, do-
mains and ranges of properties). RQL also supports path-expressions through RDF
graphs, and can combine data and schema information in one query. The streaming
approach used in Sesame (data is processed as soon as available) makes for a minimal
memory footprint. This streaming approach also makes it possible for Sesame to scale
to huge amounts of data. In short, Sesame can scale from devices as small as palm-top
computers to powerful enterprise servers.

A final feature of Sesame is its flexibility in communicating with other tools. Currently,

134

11.2 Technical Architecture

Sesame itself only supports communication over HT'TP, support for other protocols is
added through the Ontology Middleware Module on top of it. Sesame has now been
released as Open Source under the GNU Lesser General Public License (LGPL).

Figure 11.7 shows available actions at the web-interface for a Sesame repository running
on “localhost”. Currently the database “MySQL Test DB” of this Sesame repository is
chosen and the user has several options for reading or modifying the content of this
database.

Sesame is like Spectacle developed by the project partner Aldministrator, NL.

CORPORUM: Information Extraction

The CORPORUM toolset (Engels & Bremdal, 2001a; 2000; 2001b; 2002) consists of
two parts, viz. OntoExtract (¢f. Figure 11.8 showing some options of OntoExtract
for automatic ontology generation) and OntoWrapper (cf. Figure 11.9 showing the
generation of templates for wrapping information sources). Hence, it has two related,
though different, tasks: interpretation of natural language texts and extraction of
specific information from free text.

Whereas the former process can be performed autonomously by CORPORUM tools,
the latter task requires a user who defines business rules for extracting information
from tables, (phone) directories, home-pages, etc. Although this task is not without
its challenges, most effort focuses on the former task, which involves natural language
interpretation on a syntactic and lexical level, as well as interpretation of the results
of that level (discourse analysis, co-reference and collocation analysis, etc.).

The CORPORUM system outputs a variety of (symbolic) knowledge representations,
including semantic (network) structures and visualizations thereof, light-weight on-
tologies, text summaries, automatically generated thesauri (related words/concepts),
etc. Thus, extracted information is represented in RDF(S), augmented with Dublin
Core meta data (¢f. (DC, 2003)) wherever possible, and submitted to the Sesame data
repository mentioned previously.

CORPROUM is developed by the project partner CognIT, NO'6.

11.2.2 OIL: Ontology Inference Layer for the Semantic Web

The OTK tool suite discussed above exploits ontologies as its common operating
ground: e.g. an ontology was created and refined manually (OntoEdit) or extracted
semi-automatically (OntoExtract), raw information sources were structured on the ba-
sis of an ontology (OntoWrapper), this structured data was stored and managed in an

15CognIT, see http://www.cognit.no

135

11 On-To-Knowledge

a CognIT a.s, Norway -- CORPORUM OntoExtract and EntiReg -- (IST project 1999-10132) OntoKnowledg - Micro:

JEHE Edit Wew Favorites Tools Help

daBack ~ = - (2 Tat ‘ Qsearch (GFavortes EfMeda &4 | B S =

j @Gn

J Address IE htkp:)fontoserver, cognit.nofindes. hkml

GOOSIC'Ico\ormaster osla j % Search web @5 Search Site ‘ PageRiank @ page Info ~ fEJUp + 9 Highlight | [&] colormaster >

| ks]

ON, dg*
TO

Automatic Ontology Generation

Sesame Database that is to be used

CognlT OntoExtract test

Document description vectar

Macimum number of concepts that describe a document. These concepts will
appear in the Dublin Core "Subject” field

1]

B

Provide the URL with the HTML pages you want to analyse
Ihﬂp:ﬂ,l\nr\mnv.omoknowledge orgl

Daomain recursion
Recursion level is caloulated with the URL above as root
Recursian level, [0] [C1][€ 2]

Threshold on concept relates
Select a threshold from the list

Instantiation of all concepts

Some applications need all classes to be instantiated. Although doing so is not
too neat, you might to tick this one off if you want to try. Please, add "dummy”
instances to all concept definitions [~

URL identi round ke ¢

Frovide the URL that is used for identification of background knowledge
Ihﬂp {{background knowledge.org

[&] Dore [T [ntermet

N[N

Figure 11.8: OntoExtract: Automatic ontology generation

ontology-based repository (Sesame and OMM), and the data could be queried using
the vocabulary from an ontology. Finally, information could be shared (OntoShare),
searched (QuizRDF') or browsed (Spectacle) by users on the basis of such ontological

vocabularies.

All of this of course requires the existence of a language to express such ontologies.

Some basic requirements for such a language are:

e Sufficient expressivity for the applications and tasks mentioned in the preceding

136

11.2 Technical Architecture

/3 CogniIT a.s, Norway - CORPORUM OntoExtract and EntiReg —- (IST project 1999-10132) Ontoknowledg - Microsoft 1 =10l x|
J File Edit Wiew Favorites Tools Help ‘

J Epak ~ = - D 7t | Qhsearch [GFavortes (@Media 4 | = S e |
JAgdrass I hitp: /jonkaserver, cognit.no/indesx, html j an
| Govgle - feolormaster oslo | psearchweb @ysearchsite | F2Rek @pageinfo - Eyup - AHighioht | [colormaster G oslo “Llnks =

menu>\ Edit/create rules Use rules Logout |

Rules [help]
Rulename: |Vi0.depariments - Edit name | Delete Rule I MNew rule | -
DocumeniTemplate Start -
<?xml version="1.0" encoding="I30-5555-1"7> ﬂ
< !-- extracted by OntoWrapper CognIT a.s, Halden, Norway-->
<rdf:RDF]
wmlns:rdf="hoop://www. w3, org/1999/02/22-rdf-syntax—naf" -
xmlns:rdfs="http://wuw,wd.ory/2000/01/ rdf-schemat" ;I
DocumentTemplate End: -
</rdf:RDF> :I
PageTemplate Start:
< '-— Docwnent analyzed="§ DATES" URL: § URLF ——> =1 .

=i -
ol |
]

PageTemplate End:

OccurenceTemplate:
<rdf:Description rdf:ebout="§_ BASEURL3"> -
<oeilsthout:
<nsl:department rdf:about="§_URL$4DEPT_§_WR§">
<oe:hasNamwe xml:lang="no">3$names</oe: haslame>
<oe:hasViskddress

|]
B
|
sl lang="no">§visitors.addressi</oe: hasVishddresss B
| g
| G

<oeihasPostiddress
xml: lang="no":>§post.address§</oe: hasPostiddress »
<pe:hasPhone xml:lang="no">$telefoni</oe:hasPhone>

<oethasFax xml:lang="no">$telefax$</oe:hasFax> |
Sawe Templates Delete Templates |
|&] pone [[intermet v

Figure 11.9: OntoWrapper: Information extraction

sections.
e Sufficiently formalized to allow machine processing.

e Integrated with existing Web technologies and standards.
Although much work has been done on ontology languages in the Al community (see
e.g. (Corcho & Gomez-Pérez, 2000) for a recent overview), it is particularly the 3rd

requirement that motivated the OTK consortium to design a new language (sometimes
called “baptized OIL”) for our purposes. In this section, we will briefly describe the

137

11 On-To-Knowledge

constructions in the OIL language, and then discuss its most important features and
design decisions.

Combining Description Logics with Frame Languages

The OIL language (Fensel et al., 2000c; 1999; 2000b; Fensel, 2002) is designed to com-
bine Frame-like modelling primitives with the increased (in some respects) expressive
power, formal rigor and automated reasoning services of an expressive Description
Logic. OIL also comes “Web enabled” by having both XML and RDF(S) based seri-
alizations (as well as a formally specified “human readable” form, which we will use
here!”). The Frame structure of OIL is based on XOL (Karp et al., 1999), an XML seri-
alization of the OKBC-lite knowledge model (Chaudhri et al., 1998). In these languages
classes (concepts) are described by Frames, which consist of a list of super-classes and
a list of slot-filler pairs. A slot corresponds to a role in a DL, and a slot-filler pair
corresponds to either a universal value restriction or an existential quantification. OIL
extends this basic Frame syntax so that it can capture the full power of an expressive
Description Logic. These extensions include:

e Arbitrary boolean combinations of classes (called class expressions) can be
formed, and used anywhere that a class name can be used. In particular, class
expressions can be used as slot fillers, whereas in typical frame languages slot
fillers are restricted to being class (or individual) names.

e A slot-filler pair (called a slot constraint) can itself be treated as a class: it can
be used anywhere that a class name can be used, and can be combined with other
classes in class expressions.

e Class definitions (frames) have an (optional) additional field that specifies
whether the class definition is primitive (a subsumption axiom) or non-primitive
(an equivalence axiom). If omitted, this defaults to primitive.

e Different types of slot constraint are provided, specifying universal value restric-
tions, existential quantification and various kinds of cardinality constraint.

e Global slot definitions are extended to allow the specification of superslots (sub-
suming slots) and of properties such as transitivity, and symmetry.

e Unlike many frame languages, there is no restriction on the ordering of class and
slot definitions, so classes and slots can be used before they are defined.

"http:/ /www.ontoknowledge.org/oil /syntax/

138

11.2 Technical Architecture

e OIL also provides axioms for asserting disjointness, equivalence and coverings
with respect to class expressions.

Many of these points are standard for a Description Logic, but are novel for a Frame
language. OIL is also more restrictive than typical Frame languages in some respects.
In particular, it does not support collection types other than sets (e.g. lists or bags),
and it does not support the specification of default fillers. These restrictions are nec-
essary in order to maintain the formal properties of the language (e.g. monotonicity)
and the correspondence with Description Logics.

Web Interface

As part of the Semantic Web activity of the W3C, a very simple Web-based ontology
language had already been defined, namely RDF Schema. This language only provides
facilities to define class- and property-names, inclusion axioms for both classes and
properties (subclasses and subproperties), and to define domain and range constraints
on properties. Instances of such classes and properties are defined in RDF.

OIL has been designed to be a superset of the constructions in RDF Schema: all valid
RDF Schema expressions are also valid OIL expressions. Furthermore, the syntax
of OIL has been designed such that any valid OIL document is also a valid RDF(S)
document when all the elements from the OIL-namespace are ignored. The RDF
Schema interpretation of the resulting subdocument is guaranteed to be sound (but of
course incomplete) with respect to the interpretation of the full OIL document.

This guarantees that any RDF Schema agent can correctly process arbitrary OIL docu-
ments, and still correctly capture some of the intended meaning. The full details of how
this has been achieved, and the trade-offs involved in this can be found in (Broekstra
et al., 2001).

Layering

For many of the case study applications shown in Sections 11.4, 11.5 and 11.6, it is
unlikely that a single language will be ideally suited for all uses and all users. In order
to allow users to choose the expressive power appropriate to their application, and to
allow for future extensions, a layered family of OIL languages has been described. The
sub-language OIL Core has been defined to be exactly the part of OIL that coincides
with RDF(S). This amounts to full RDF(S), without some of RDF’s more dubious
constructions: containers and reification.

The standard language is called “Standard OIL”. When extended with the ability to
assert that individuals and tuples are, respectively, instances of classes and slots, it

139

11 On-To-Knowledge

Heavy OIL

(possible Tulura exlensions)

Instance OIL
[Standard OIL +instanceas)

Standard OIL

Core QIL

(Standard OIL ~ ROFS)

reification

Figure 11.10: The layered language model of OIL

is called “Instance OIL”. Finally, “Heavy OIL” is the name given to a further layer
that will include as yet unspecified language extensions. This layering is depicted in
Figure 11.10.

Figure 11.11 illustrates an OIL ontology (using the human readable serialization),
developed in a skills management case study by Swiss Life (¢f. Section 11.4).

class-def Department
instance-of ITDept Department
class-def Skills

slot-constraint SkillsLevel cardinality 1
slot-def HasSkills

demain Employee

range Skills
slot-def WorksInProject

domain Employee

range Project

inverse ProjectMembers
class-def defined ITProject

subclass-of Project

slot-constraint ResponsibleDept has-wvalue ITDept
slot-def ManagementLevel

domain Employes

range one-of "member" "head-of-group"

"head-of-dept" "CEO"

class-def Publishing

subeclass-of Skills
class-def DocumentProcessing

subclass-of Skills
class-def DesktopPublishing

subeclass-of Publishing and DocumentProcessing
instance-of GeorgeMiller Employee
related HasSkills GeorgeMiller DesktopPublishing3
instance-of DesktopPublishing3 DesktopPublishing
related SkillsLevel DesktopPubklishing3 3

Figure 11.11: OIL illustration

140

11.3 Configuration of Tools in the Case Studies

The following points are noteworthy:

e Skills are restricted to being of a single level trough a cardinality constraint
(i.e. a person can only have one particular skill level in any given skill),

e WorksInProject and ProjectMembers are defined to be each others inverse,

e ITProjects are defined to be exactly those projects whose
ResponsibleDept is the ITDept,

e DeskTopPublishing is defined to be in the intersection of Publishing
and DocumentProcessing.

Current Status

Meanwhile, OIL has been adopted by a joined EU/US initiative that developed a lan-
guage called DAML+OIL'8. In November 2001, the W3C started a Working Group
(WG) for defining a Web Ontology language'®. This WG was chartered to take
DAML~+OIL as its starting point, now continuing on the evolving standard OWL
(Ontology Web Language). Over 40 of the W3C members from academia and industry
are currently participating in this effort. One of the core recommendations for this
working group that we distilled from our own experiences is the urgent need for a
layering of such languages.

Other efforts are underway to define extensions for the ontology language, such as an
ontology-query language, or an extension with rules (which would allow for example
role chaining, as done in Horn Logic).

11.3 Configuration of Tools in the Case Studies

Similar to LEGO?? pieces the OTK tools can be plugged together in various ways to

meet specific requirements. Each OTK case study has a different configuration that is

briefly shown in the following subsections?!.

'8For information about DAML-+OIL cf. http://www.daml.org/2001/03/daml-+oil-index and
http://www.w3.org/ TR /daml+oil-reference.

Y9¢f. http://www.w3.org/2001/sw/WebOnt/ for information about the Ontology Working Group,
cf. http://www.w3.org/ TR /webont-req/ for the latest W3C working draft on requirements for a
Ontology Web Language

20The LEGO Group, see http://www.lego.com/

2Tt is noteworthy that BOR could not be explored in any case study due to the fact that the
developing partner OntoText was introduced to the project at a late stage. The tool was designed
and implemented in an impressively short period of time, but was only finished in the final phase
of On-To-Knowledge.

141

11 On-To-Knowledge

By introducing the tools used in each case study, we already present the part on selec-
tion of tools of each feasibility study (cf. Sections 11.4, 11.5 and 11.6). By integrating
the feasibility study parts into a separate section we aim at giving a general overview
of the coverage of tools in the case studies.

11.3.1 Tools @ Swiss Life

The case study at Swiss Life was the first one to start, unfortunately it has been also the
first one to end. An internal restructuring at Swiss Life led to a pre-final closure of the
case study. However, it was planned to cover a broad range of tools (¢f. Figure 11.12,
the dark grey shaded tools were planned to be used).

RQY —— [OntoShare serJ}

——

En |ne r

OlL-Coreg ¢

BOR

OIL-Core ontology repository C)
Annotated Data Repaositol
RDF RgF

-'—4? —’

5

Figure 11.12: Covering of tools @ Swiss Life case study

@
g,
:
!
g

(external)

The case study started right at the beginning of the project and was the first test
ground for the early versions of the tools. On the one hand, the case study was a
major kick-off that leaded in the end to deploying an up-and-running and integrated
tool suite. On the other hand, since the tools were obviously not fully functional from
the very beginning, the first prototype of the case study relied only to some extent on
the tools that were envisioned for the final application (as shown in Figure 11.12).

OntoEdit was used to model the skills domain. The plugins OntoKick, Mind20nto,
OntoFiller and Sesame Plugin (¢f. Sections 7.1, 7.2, 8.1 and 10.1) were actually initiated
by requirements coming out of this first case study and they were partially used in it.
Sesame served as central repository.

OntoExtract and OntoWrapper were envisioned to extract skill profiles out of existing
documents, but they could only be tested. Same holds for QuizRDF and Spectacle,

142

11.3 Configuration of Tools in the Case Studies

they were tested as query and navigation interfaces on top of Sesame. OntoShare and
the Ontology Middleware Module were developed rather late in the project. Similar to
the EnerSearch case study, pre- and post-trials should help to evaluate the technology
and the ontology itself.

11.3.2 Tools @ BT

The BT case study is centered around OntoShare (cf. Figure 11.13, the dark grey
shaded tools are used in this case study).

——>{__QuizRDF |
4

QuizRDF
nowledse)}
OIL-Coreg ¢ ¥

[__ovm | BOR
C OIL-Core ontology repository C)
Annotated Data Repositol
DF RBF
—

Figure 11.13: Covering of tools @ BT case study

OntoEdit was used to develop the underlying ontology, Sesame served as central storage
and query engine (e.g. the user profiles of OntoShare are derived out of RQL queries (cf.
Section 11.2.1)). Though not included into the evaluation (cf. Section 11.5), we used
the information presentation layer of Spectacle as a web-based access to OntoShare
and QuizRDF as an enhanced query facility.

11.3.3 Tools @ EnerSearch

Main parts of the EnerSearch case study consisted of a user-focused and technology-
focused evaluation of the OTK tools (c¢f. Figure 11.13, the dark grey shaded tools are
used in this case study).

Firstly, in a field experiment QuizRDF and Spectacle were compared against the En-
erSEARCHer, a traditional keyword based search engine.

143

11 On-To-Knowledge

~Knowiedge'

OntoShare
nowledge
i Engineer
OlL-Corald | OntoEdit »_ =< Engine

BOR

QIL-Core ontology repository ()
Annotated Data Repositol
RDF RBF

(external)

Figure 11.14: Covering of tools @ EnerSearch case study

Secondly, Sesame and the Ontology Middleware Module were tested on scalability and
interoperability issues. OntoExtract and OntoWrapper, both part of the CORPORUM
tool suite, provided the necessary support for generating automatically ontologies for
the user-focussed scenario.

11.4 Skills Management @ Swiss Life

11.4.1 Introduction

Swiss Life (Switzerland) is a large insurance company serving customers around the
world. Their vision is to build an organizational memory with an intranet based portal
that offers a single entry point to the knowledge space of the company. The case study
(cf. (Lau & Sure, 2002)?2) explores different parts of the intranet with a main focus on
the introduction of an advanced skills management application.

We now describe how we instantiated in close cooperation with our project partner
Swiss Life the On-To-Knowledge Methodology (presented in Part IT) in the case study.

22Further information on the Swiss Life case study can be found in the On-To-Knowledge deliverables
(Novotny & Lau, 2000; 2001; Novotny et al., 2001)

144

11.4 Skills Management @ Swiss Life

11.4.2 Feasibility Study
Problems & Opportunities

“Skills Management” (Edvinson & Malone, 1997; Stader & Macintosh, 1999) makes
skills of employees explicit. There exist only few publications that describe so-
phisticated skills management applications in detail (c¢f., e.g., (Liao et al., 1999;
Becerra-Fernandez, 2000; Sure et al., 2000; Maedche, 2002b); (Dittmann et al., 2003)
addresses the social aspects implied by such sophisticated applications), but many
companies internally build up their own skills management applications, typically on
top of database systems (cf., e.g., (Elbert, 2001)).

The following typical objectives of skills management were taken as a starting point
to develop own application scenarios. The objectives are grouped by their respective
organizational level.

e Employees:

— Help in finding suitable knowledge for specific problems.
— Support in developing own skills in a most focused way. This includes
support for planning ones own career.

e Management:

— Search of suitable employees for projects and positions (staffing).

— Overview of current skills and development needs/potential of employees.
e Company:
— Find the right employee for the right position to enhance the productivity

of the company.

— HR development measures can be deduced by comparing the strategy with
employees’ skills and thereby detecting missing skills.

— Measure and improve the intellectual capital of the company.

We followed the principle “Start small, but think big!” and created a roadmap (cf.
Figure 11.15) that increases stepwise the required level of effort and the level of com-
plexity. As shown in the following enumeration, we start with support for employees
at their desktop and end with support for the decision making process at the strategic
level of the company.

145

11 On-To-Knowledge

i i

Peoplefinder HR Development
E
@@qﬁ 3
fi‘?ﬁ? T
3 : tas @ %
‘&ﬁ : '-.-',.".’.i}.‘.f".\.{:;".n;:i,o&o.iwé-
Intellectual Capital Knowledge Gap Analysis

Figure 11.15: Roadmap for Skills Management @ Swiss Life

1. Peoplefinder: With the switch from line organisation to project organisation
and shorter project running times, assembling staff for a project team is increas-
ingly becoming a management task. This requires an excellent overview of the
skills of the available staff. Making skills explicit allows for an advanced expert
search within the intranet.

2. Human Resource (HR) Development: Similar to skill profiles there exist
also job profiles. Employees might explore their future career path by matching
their current skill profile vs. job profiles. An extension is the subsequent offering
of internal learning modules, that help employees in reaching required levels of
expertise that are required for certain jobs.

3. Knowledge Gap Analysis: Having available all skills of employees, a company
is able to find out knowledge gaps. For instance if a new project is planned one
might find out whether all required skills are available in the company?3. Thus,
a company can detect in which areas they might need to improve the skills of
their employees.

4. Intellectual Capital: Measuring and improving the intellectual capital might
help to improve the shareholder value of a company. Explicit skill profiles as

230f course an equally important aspect that is not covered by this item is to find out whether the
person having the skills is available for the project.

146

11.4 Skills Management @ Swiss Life

an integral part of corporate decision support systems enables an up-to-date
measuring of skills.

Within Swiss Life there already existed several applications, typically databases, that
contained valuable information about employees, e.g. their contact information, their
functions and roles and even (for some of them) skill profiles in a legacy skills database.
The integration of these different knowledge sources offered large potential for the case
study:

e Existing knowledge can be re-used and does not have to be captured again.

e The maintenance of each source is already organized and therefore the mainte-
nance task of the skills management application is significantly reduced.

These benefits made a “Quick Win” solution?* feasible as a starting point for the case
study.

To ensure that all integrated knowledge sources were used in the same way, ontologies
were used as a common mean of interchange to face two major challenges:

e Firstly, being an international company located in Switzerland, Swiss Life has
internally four official languages, viz. German, English, French and Italian.

e Secondly, there exist several spellings of same concepts, e.g. “WinWord” vs. “MS
Word”.

To tackle these problems, the development of OntoFiller, ¢f. Section 8.1, and of the
Domain Lexicon, cf. Section 7.3, were initiated.

Focus of KM Application

This case study serves as a starting point for introducing skills management. The
peoplefinder scenario was therefore the main focus of the resulting KM application.

To illustrate the application we already present a screenshot of the developed proto-
type in Figure 11.16. The prototype enables any employee to integrate personal data
from numerous distributed and heterogeneous sources into a single coherent personal
homepage. Any home page will contain:

241t is often argued that the introduction of new knowledge management solutions should start with
“Quick Wins” that show rather quickly and without much effort the potential value of KM.

147

11 On-To-Knowledge

7 Skills Management - Netscape
Fie Edt Yiew Go Communicator Help

4 » A 4 = <+ & @
Back [owad Reload Home Search Melscape Prnt Secury Giop
. Bookmatks i Location |mp-uskim/smmn 3/5kiMCheckLogin.jsp

perstnliche Homepage =

Homepage von Thorsten Lau

Funktionen

’&Kenntnisse und Fahigkeiten
OE: Informatik Forschung und Entwicklung (CC/ITRD) Explanation

Raum: HG 2151
Email: Thorsten. Lau@swisslife.ch Telefon: 4570 Contact data

versicherung

“ersicherungstechiik

Betriebswirtschaft

Finanz Skills tree

Mertrieb .
Function/role
Alnformatik Funktion
Computersysteme Skill profile

00743 Architekt wissenshasierte Systeme

Betriebsysteme

Netzwerk Weitere Aufgaben
Aniddleware
Webmaster

ABLA

CORBA Kenninisse/Fahighkeiten

ER

IS Betriehswirtschaft

Tuxedo Wissensmanagement (Kategorie: Betriebswirtschafl)

wisiBroker | Personal Computer (Kategorie: Informatik > Computersysteme > Computersysieme, -architelur > Computeridassen)

Citrix Worlcstation (Kategorie: Informatik » Computersysteme > Computersysteme, -architelur > Computeridassen)
Datenbanken und CISC-Architekturen (Kategorie: Informatik > Comg > Comp , -architelur > Comp hitel
Datenmanagement Intel (Katsgotie: Informatik » Conputersystems » Computer Hetstallet)
System-Architekturen Aushau, Erweiterung (Kategotie: Tnformatik > Informatik am Atheitsplatz (1) » Betatung und Support > Hatdwars)
Softwareentwicklung technische Problemanalyse (Kategosie: Informatik > Infosmatik am Asbeitsplatz (IC) > Beratung und Support > Hardware)
Software-Ergonomie Betrichsysteme (Kategotie: Informatik)
Applikationen Solaris (Kategorie: Informatik » Belriehsysteme > Uniz)
Informatik am Windows (Kalegorie: Informatik > Betriehsysteme > Microsofl)
Arbeitsplatz (IC)

= = Middleware (Kategorie: Informatik)
Automationstechnik
CORBA (Kategosie: Informatik > Middlsware)
Telematik -
» EJE (Katsgotie: Informatik > Middlsware) =l
== |Document: Dane 3 7

Figure 11.16: Skills management prototype
e General contact information, such as functional unit, room, or telephone number
(organizational data),
e other public descriptions, such as education, current position,
e details of personal skills, and

e 3 section that employees are free to fill in with personal interests, hobbies and
categories, such as “I am a member of the professional associations...”, or “I am
familiar with the following specialized literature...” (not shown in Figure 11.16,
the section is below the skill profile).

Last, but not least, the complete skills tree is available for navigation and browsing on
the left side.

148

11.4 Skills Management @ Swiss Life

People

The prototype should reflect the skills of employees of different departments. Obvi-
ously, the management of those departments were core stakeholders in the case study.

A major effort was the development of an appropriate ontology for the skills manage-
ment application. Therefore not only management support for the application but also
the help of domain experts from departments was needed to capture relevant aspects of
their domain. Three departments took part in the case study: Human Resource, Pri-
vate Insurance and Information Technology. From each department a domain expert
was named by the management as additional stakeholder who supported the ontology
development.

11.4.3 Kickoff
Capture Requirements Specification

The ontology for the envisaged skills management application needed to reflect two
main requirements:

e Integration of existing sources, therefore the ontology needs to reflect the relevant
conceptual structures of the integrated sources.

e Representation of skills relevant for the three participating departments and their
domains.

We started by capturing competency questions that cover the “competency” an ontology
should have to answer certain questions. Initially that was simply done in a Word
document as shown in Figure 11.17. An example for a competency question is: “Which
of our employees have experience with the programming language ‘Java’?”.

In the formalization step, one might derive the concepts Employee and
Programming Language, the relationship HAVE EXPERIENCE with the domain Employee
and the range Programming Language and the instance Java as a particular
Programming Language out of the competency question. However, the actual modelling
of particular concepts, relationships and instances is done during the formalization
into the target ontology.

The extraction of concepts and relations out of the competency questions does not
exploit the competency questions to their full potential. During later stages of the
ontology development lifecycle the link back from concepts (or relations) to the com-
petency questions gives valuable information why a certain concept or relationship is
modelled, i.e. it provides more context. Especially when the ontology evolves over time

149

11 On-To-Knowledge

=101
DRy 2ad -~ |QBDREBET v -0 F x|= 2

Jgatei Bearbeiten Ansicht Einfigen Format Extras Tabelle Fenster 7

E--.-ﬁ-|-z-|-3‘w%-u-s-lu-s-ﬁ?-ws-u-

Competency Questionnaire 17b

NS LR

ETRNIRETRL EF TR CR ‘15-|-15ﬂAI

Domain OTK Skill Management Case Study (SwissLife)

I Date
z Ontology Engineer

2001-01-26
York Sure, Bernd Novotny, Thorsten Lau

. CQ | Competency C pt Relationshi] Tnst Note
u Nr. | Question
= Ca1 | Which of our employes, employees have |Java Mot yet clear whether
- employees have | programming axperience with “Java"is a
- experience with | language prograrmmin g gsubconzept of
- the programming languages "programeming
= language "Java"? language” ar an
- instance of it.
] COZ [Which telephone | head| research [head hasa
- number has the | department talephone -
- head of the number, head a
T reseatch feads the =
- department? regaarch 5
BEIEEE deooten | 3
JZ&ichnenv[}Gj AgtoFormenv\\DO‘|&v£v&vE ’.’J;{.’E}%gu%zﬁ|@|
[Seite 1 ab 1 11 [Bei 10,2em Ze 18 Sp 5 |MAR [AND [ERW OB [Englisch{Gr | G3K 4

Figure 11.17: Competency questionnaire @ Swiss Life

and people are not so familiar any more with their initial design decisions, this link-
ages gives some kind of explanation. Therefore the OntoKick plugin was developed (cf.
Section 7.1), that captures the requirements for ontologies including the competency
questions within OntoEdit, keeps track of the extraction of concepts and relations
and stores the requirements and links along with the ontology. An example of the
competency questions in OntoKick is shown in Figure 11.18.

First experiments with extracting an ontology semi-automatically by using typical
information extraction tools did not satisfy the needs for a clearly structured and
easily understandable model of the skills. The domain experts and potential users
felt very uncomfortable with the extracted structures and chose rather to build the
ontology “manually”.

It was agreed upon the modelling experts and the domain experts to start with a
rather “lightweight” ontology that consists mainly of a tree-like structure of skills and
to extend it afterwards with cross-taxonomical relationships.

150

11.4 Skills Management @ Swiss Life

L& Ontology Engineering ¥Workbench OntoEdit ¥2.0 =] |

File Edt View Tools ‘Windows Help

EEEIEEEEE
|

Concepts & Relations | Instances | Relation axioms | Disjaint concepts Reduirement Specication | rdentification | Metadata

Knowledge Sources

Source List

Domain & Goal Source Type Status
Cc = CE
ihometontologiestswisslifetskim_funkrionen, ozl
Design Guidelines | (C:thomehOntologiesiswisslifelskim_escample. owml [ontology NEW SOURCE
Knowledge Sources
Users & Use Cases
Deployment oo | eorm | oeere | awavee |
& Analyze CQ Thorsten Lau, 3-3-2001 x|
Xoncept hierarchy Knowledge Engineer Domain Expert Edition Date:
|+ e || [rorksure [Thorsten Lau [g-3-2001
Foct
Match Pattern! 4 |afters v [~ Activate stemming Reset
Edit G Concepts !
Fa}uch skills does an employee have? {
Question List
ADD TO LIST
Question
CHANGE
7
o 3 [Which contact data does an employes have
IMPCRT. .
DOHE CANCEL

Figure 11.18: The skills management competency questionnaire in OntoKick

Create Semi-Formal Ontology Description

During the kickoff phase two workshops with three domain experts®® are held. The
first one introduces the domain experts to the ideas of ontologies. Additional potential
knowledge sources are identified by the domain experts, that are exhaustively used
for the development of the ontologies, e.g. a book of the Swiss Association of Data
Processing (“Schweizerischer Verband fuer Datenverarbeitung”) describing professions
in the computing area in a systematic way similar to an ontology.

To develop the semi-formal description of the ontology we used a commercially avail-
able mind mapping tool. It is typically used for brainstorming sessions and provides
simple facilities for modelling hierarchies very quickly and intuitively. The early mod-
elling stages for ontologies contain elements from such brainstorming sessions, therefore

% Thanks to Urs Gisler, Valentin Schoeb and Patrick Shann from Swiss Life for their efforts during
the ontology modelling.

151

11 On-To-Knowledge

such tool support is very helpful. This triggered the development of the Mind2Onto
framework, cf. Section 7.2, to bridge the gap between semi-formal ontology description
and target ontology.

11.4.4 Refinement
Refine Semi-Formal Description of Ontology

During the refinement phase we integrated and formalized the semi-formal ontology
descriptions into a single coherent skills ontology. The domain experts initially devel-
oped three different skill mind maps™, for each department a separate one. During the
refinement phase it was necessary to combine the three into a single coherent one.

An important first step was the elimination of inconsistencies and of some overlaps,
which had to be resolved. This happened for example in the computer science part of
the skills trees, where the departments IT and private insurance have the same concepts
like “Trofit” (which is a Swiss Life specific application). Both departments use this
concept, but each uses a different view, the IT from the development and the private
insurance from the users view. Additionally the personal skills of any employee are
graded according to a generic scale of four levels: basic knowledge, practical experience,
competency, and top specialist. The employees will grade their own skills themselves.
As known from personal contacts to other companies (e.g. Credit Suisse, ABB and
IBM), such an approach proved to produce highly reliable information.

Figure 11.19 gives an impression of the size the mind map™ reached rather quickly.
Within two weeks the domain experts modelled around 700 skills in a tree-like struc-
ture.

Formalization into Target Ontology

An important aspect during the formalization was (i) to give the skills proper names
that uniquely identify each skill and (ii) to decide on the hierarchical structure of
the skills. We discussed two different approaches for the hierarchical ordering: we
discovered that categorization of skills is typically not based on an 1s A-taxonomy, but
on a much weaker HAS sUBTOPIC relationship. Common to both is the transitivity,
but they differ in their inheritance capabilities. The HAS suBToOPIC relationship does
not imply the inheritance of relations from the superconcept to the subconcept of the
relationship, the 1s A relationship does.

However, for our first prototype this distinction made no difference due to missing
cross-taxonomical relationships, there simply was nothing to inherit. But, according
to (Guarino & Welty, 2002), subsumption provided by 1s A taxonomies is often misused

152

11.4 Skills Management @ Swiss Life

ﬂMindManager - [Kenntnisse_Faehigleiten_Informatik.mmp*] - |EI|5|

E‘;:‘M Datei Bearbeiten Ansicht Einfigen Format Multi-Maps Extras Fenster Hilfe -8 x

DEH SR 7% # 420 oo @as -& 3 2
i *Standard-Hauptzweige + AT A° B 7 U & e é RN RN T R [»

== ABLA
CORBA
EJB
JMS Middleware |

“HDEF VOO R LHDEweh e OAd (1K ¥
Tyt I‘

b Y " Informatik

Hilfe it F1

Figure 11.19: Mind map of skills @ Swiss Life

and a later formal evaluation of the skills ontology according to the proposed OntoClean
Methodology possibly would have resulted changes of the ontology.

A problem that came up very early was the question where to draw the line between
concepts and instances. FE.g. is the programming language Java instantiated by “jdk1.3”

153

11 On-To-Knowledge

or is “jdk1.3” so generic that it still belongs to the concept-hierarchy? Another problem
was the size of the ontology. What is the best depth and width of each skills tree?
During the formalization we encountered several rather typical problems in ontology
engineering like the mentioned ones. We will now present some of our design decisions
that were taken.

Abstraction Levels and Size

In our scenarios typically several people were involved in creating first draft versions
of the ontology during early stages in the kickoff phase. Due to different backgrounds
and mind models of the developers they used different abstraction levels. This made
it in the beginning rather difficult to merge the three models into a single coherent
ontology.

Typical problems rose from differing numbers of branches per node and more general
from how deep and wide the ontology is at all. Many iterations in the ontology devel-
opment process were necessary to align e.g. the three skills ontologies in the Swiss Life
case study and finally to merge them together.

We stress that the ontology modelling process should start with a definition of the
abstraction level, which is strongly dependent on the usage of the ontology. In the
skills management scenario, we had to go down to a more precise level during the
modelling process due to the high number of employees and the need to differentiate
them for the intended project staffing functionality.

First feedback from test users of the skills management system and the underlying
ontology showed that the skills trees were too large for browsing. Most users prefer
shallow trees with a list of concepts on each node on a more abstract level. The reasons
for this were the high time consuming for finding concepts deeply into the structure
and the amount of possible concepts, which can be chosen. The latter reason is based
on the integrated skills ontology of all departments.

A suggestion from the test users was to define user views on the ontology depending
on the department where the user comes from. This would lead to much smaller skills
trees and more usable ones in the according departments. Employees with broader
skills can change from the department/domain view to the interdisciplinary view on the
whole ontology. Though views are common to the database community, no concept for
defining and using views on ontologies was available at that time. An initial approach
is presented in (Volz et al., 2002; 2003).

As a summary, it is a challenging task to find the right balance between the require-
ments of different users of the skills management system. While some want to have a
ontology as large as possible, the other ones feel comfortable with a small ontology.

154

11.4 Skills Management @ Swiss Life

Concepts vs. Instances

To draw the borderline between concepts and instances can be a tricky task, as al-
ready known from expert systems. Though experienced knowledge engineers with a
practical background prefer not to distinguish between concepts and instances during
the modelling process at all (we refer to, e.g. Hans Akkermans from the Free Univer-
sity of Amsterdam, who was pleading for that), our underlying architecture made it
necessary to make this distinction upfront (meanwhile an initial approach for solving
such problems has been presented in (Motik et al., 2002)). As mentioned above it is
difficult to distinguish between leaf nodes of the concept hierarchy and instances.

As a rule of thumb we decided to count the possible instances and decide if this would
be enough to justify a concept or an instance. In the case of the skills “Java” and
“jdk1.3” we assumed that not so many employees will use “jdk1.3” so that our decision
was to take “Java” as leaf node. This decision is also dependent on the definition of the
abstraction and depth/width of the ontology, which builds a trade-off. Though there
exists the simple heuristic to take every leaf node as an instance, this seems not to be
correct for all use cases. But at all it is strongly dependent on the intended usage of
the ontology, which determines the boarder.

De-contextualization of Concepts

Continuing the discussion of the ontology modelling for the skills management case
study, a further difficulty emerged with the “de-contextualisation” of ontology con-
cepts. We had the problem that the ontology developers used concept names, such as
“basics” in the ontology. For a human reader the meaning of such a concept is only
comprehensible if its super-concept is known.

This problem does not occur when browsing the ontology, because super-concepts
remain visible. But when users select an element as a skill then just “basics” occurs
in his homepage, i.e. de-contextualization of this concept is made. The same problem
occurred with “informatics” which occurs as a sub-concept of “skill”, “function” and
“education” resulting in three different meanings of the concept (“informatics-skills”,
“informatics-function” and “informatics-education”).

It is no solution to force the ontology developers to use concept names that include the
context of this concept. This would result in very long concept names. Furthermore,
the engineers often forget about this problem and it is very hard to explain them
why the concept name has to show the whole context. Therefore, we decided to “re-
contextualize” the concept in the homepage by showing the path to the root concept
of the ontology. So far we made good experiences in the skills management case study
and the EnerSearch case study, where Spectacle also shows the navigational paths.

155

11 On-To-Knowledge

At the end of the refinement phase the “target skills ontology” consisted of about 700
concepts, which could be used by the employees to express their skill profile.

11.4.5 Evaluation, Application & Evolution

As mentioned before, the case study was not carried out as it was planned. In particular
the evaluation phase could not be carried out. Still, we considered the following aspects
for the evolution of our skills management application.

Competencies and skills from employees evolve over time. Therefore the ontologies
need to be constantly evaluated and maintained by experts from the human resource
department. New skills might be suggested by the experts themselves, but they are
likely to be suggested by employees that are searching for particular skills and cannot
find them in the current ontology. Suggestions should include both, the new skill itself
as well as the position in the skills tree where it should be placed. To guarantee the
quality of the ontology we planned the following evaluation strategy: While employees
should suggest new skills, the experts should decide which skills should change in name
and/or position in the skills tree and, additionally, decide which skills will be deleted.
This was seen as necessary to keep the ontology consistent and to avoid that e.g.
similar if not the same concept appeared even in the same branch. For each domain
there should exist a designated ontology manager who decides if and how suggested
skills were finally integrated.

11.4.6 Main Lessons Learned @ Swiss Life
Complexity of Ontologies needed

According to the insight we have gained at Swiss Life during our participation in
the On-To- Knowledge project Knowledge Management applications typically need
ontology languages with a medium degree of expressiveness, reaching from simple tax-
onomies to hierarchies of concepts with properties and semantic relationships between
concepts, including simple cardinality constraints. The more complex ontologies mainly
result from the integration with other application systems. For example, the Skills
Management application (SkiM) only uses a simple taxonomy for the available skills.
However, to realize the application logic a more complex ontology lies underneath,
although the user will never see it (c¢f. Figure 11.11). An extension of SkiM to cover
functionalities like gap analysis, the integration with career planning and keeping track
of attended training courses would require an additional degree of detail in the ontology.

156

11.4 Skills Management @ Swiss Life

Lessons Learned from Applying the Methodology

We experienced that the creation of an ontology is in its early phases a brainstorming
activity and not a pure engineering task. Hence, brainstorming tools (e.g. like the
used Mind Manager) are valuable add-ons that support the early stages of ontology
engineering. The main purpose of these tools is to support the quick and intuitive
capturing of knowledge. Especially domain experts not familiar with modelling issues
felt comfortable with this tool, in fact they even suggested to use the Mind Manager
due to the fact that they were familiar with it. However, at a certain point the process
gets less and less brainstorming-driven and more construction-oriented. At Swiss Life,
ontology modelling was done directly by a group of domain experts who have been
guided and supported by experts in ontology design. In our experience, the domain
expert become lost how to structure the ontology when it gets too big or has been
changed around too often, because then they loose their feeling of directedness. It
becomes more and more difficult to decide where to put which concepts and how to
divide the ontology into substructures.

The (not surprising) conclusion is that ontology modelling is a design task which re-
quires certain skills of its own. Ideally, the domain experts have those skills themselves.
As such experts rarely exist (yet) the only way to go is to support domain experts by
people who have those skills (as we did at Swiss Life). However, the interaction be-
tween the domain experts and the ontology design experts is difficult because there is
nearly no common ground upon which they can build a common understanding: the
domain experts do not understand the design issues (including especially too sophis-
ticated design guidelines), the design experts do not understand the domain (in Swiss
Life we had the lucky situation that one domain was IT where the design experts where
also domain experts).

We dealt with this situation by up-skilling the domain experts with some basic mod-
elling knowledge. We held several workshops, in the beginning to train them and then
to support them during the more advanced modelling phases that were more engi-
neering oriented. Within two weeks they were able to model a first skills hierarchy
including over 700 skills from three different domains by themselves. Approximately
six more weeks were needed to restructure their initial versions in collaboration with
modelling experts into an appropriate hierarchy. This was due to time constraints
of the participating domain experts. It has to be mentioned that all domain experts
were highly self-motivated which certainly had a significant influence on the results
produced.

157

11 On-To-Knowledge

11.5 Community of Knowledge Sharing @ BT

11.5.1 Introduction

The case study (cf. (Davies et al., 2003)26) on “Communities of Knowledge Sharing”2”

was carried out within BT’s Research and Development organisation — BTexact Tech-
nologies.

BT (United Kingdom) is a leading company on the telecom market. BTexact Technolo-
gies is the subdivision of BT that focusses on the development and application of new
technologies. Knowledge sharing is regarded as an essential internal business process
and therefore BTexact not only has a tradition in developing and selling knowledge
sharing facilities, but also in applying them internally.

We now describe how we instantiated in close cooperation with our project partner BT
the On-To-Knowledge Methodology (presented in Part IT) in the case study.

11.5.2 Feasibility Study
Problems & Opportunities

The notion of communities of practice (cf. (Seely-Brown & Duguid, 1991)) has attracted
much attention in the field of knowledge management. Communities of practice are
groups within (or sometimes across) organizations who share a common set of infor-
mation needs or problems. They are typically not a formal organizational unit but
an informal network, each sharing in part a common agenda and shared interests or
issues. In one example it was found that a lot of knowledge sharing among copier engi-
neers took place through informal exchanges, often around a water cooler. The trends
towards flexible working and globalization has led to interest in supporting dispersed
communities using Internet technology (cf. (Davies, 2000)).

The challenge for organizations is to support such communities and make them ef-
fective. Provided with an ontology meeting the needs of a particular community of
practice, knowledge management tools can arrange knowledge assets into the prede-
fined conceptual classes of the ontology, allowing more natural and intuitive access
to knowledge. Knowledge management tools must give users the ability to organize
information into a controllable asset. Building an intranet-based store of information
is not sufficient for knowledge management; the relationships within the stored infor-
mation are vital. These relationships cover such diverse issues as relative importance,

*Further information on the BT case study can be found in the On-To-Knowledge deliverables (Krohn
& Davies, 2001; Duke & Davies, 2002b; 2002a)

2"Due to internal restructuring, the case study changed from a call center help desk scenario to the
here described application scenario.

158

11.5 Community of Knowledge Sharing @ BT

context, sequence, significance, causality and association. The potential for knowledge
management tools is vast; not only can they make better use of the raw information
already available, but they can sift, abstract and help to share new information, and
present it to users in new and compelling ways.

Focus of KM Application

The case study is centered around the OntoShare system which facilitates and encour-
ages the sharing of information between communities of practice within (or perhaps
across) organizations and which encourages people — who may not previously have
known of each other’s existence in a large organization — to make contact where there
are mutual concerns or interests. As users contribute information to the community,
a knowledge resource annotated with metadata is created. Ontologies are defined us-
ing RDF Schema (RDFS) and populated using the Resource Description Framework
(RDF).

We will briefly summarize the functionality of OntoShare (Figure 11.20 shows a screen-
shot of the OntoShare system). It is an ontology-based WWW knowledge sharing envi-
ronment for a community of practice that models the interests of each user in the form
of a user profile. In OntoShare, user profiles are a set of topics or ontological concepts
(classes declared in RDFS) in which the user has expressed an interest. OntoShare
has the capability to summarize and extract key words from WWW pages and other
sources of information shared by a user and it then shares this information with other
users in the community of practice whose profiles predict interest in the information.
OntoShare is used to store, retrieve, summarize and inform other users about informa-
tion considered in some sense valuable by an OntoShare user. This information may
be from a number of sources: it can be a note typed by the user him /herself; it can
be an intra/Internet page; or it can be copied from another application on the user’s
computer.

The goal of the case study is to introduce the newly developed ontology based On-
toShare system as a successor of the pre-existing knowledge sharing system. As a
major part this case study therefore includes a user-focussed evaluation of OntoShare.

People

The user group for the study consisted of approximately 30 researchers, developers
and technical marketing professionals from the research and development arm of a
large telecommunications firm. The interests of the users fell into 3 main groupings,
similar to the domains of the domain experts: conferencing, knowledge and informa-
tion management and personalization technologies. It was felt that three separate yet

159

11 On-To-Knowledge

@ OntoShare - alistair duke -0l x|
Concepts Documents View Profile Help |
OntoShare concepts Documents in Virtual Community
@\Iaborationw) Document title | Submitted By | Date v | Relevance|

= p =
\é‘”“f}‘ Cmmﬁ;"w) Wired News: Making Web Design a Team Sport NickKings 20021028 @
mchronous p= =
IjAZynchmnDusG) 1 O'Reilly Metwark: Building Online Communities [Dct. 21, 2002]| Mick Kings 2002-10-22 | (68 b))

[Communities of Interesti47) 9 The Register Martin Crossley 2002-10-16 | (@)]

b Iﬂ Instant Messaging(13) 1\Neh89nﬂces Org - The Web Sericas Community Portal - Th. .| Edward Buckley 2002-10-14 | (@8 5

b [Confereneing(0) 1vnunel.cum Users dontwant Passport or Liberty Martin Crossley| 2002-10-11 | (@)
% Enabling Technologies(1) 1TextAr1|c\e: CIOs slowly turning fo web services Security s...| Martin Crossley) 2002-10-08 | (@B)
i al izg‘xzj;ii:ﬁ”mﬁ::g"m R] 5DULCS Seminar Series MickKings | 2002-10-07 |(@ 5)
b (5 E-Business(s)] Linest.com: The Artsy world of E-Business NickKings | 2002-10-03 | € b]
b %] Semantic Weh (1 &) 1Te»<tAr1ic\e. WMartin Crossley| 2002-10-02 | (@ 3
[securitv(zy | Real Social Networks - how can KM help? - 20 Sep 2002 NickKings | 2002-09-30 | (@)

Companies and Markets{30)
b O Content Syrthesis(D)
Mews : market and technology(2@)
Ij Commercial opportunities(1)

Get next 10 documents &

Annotation: Web design as a g
work in teams? ;-)

e

C

Ao cormaents have been added yet.

e

My concepts

Document List
Eﬁ Mews : market and technology !

Ontol

Eﬂ JCompanies and Markets Summary: Document Details
%Eonahmat;onnnsiam Messaging cept Selection
_'_ﬁ!Semarr(ll: Weh/Ontologies Search: News Animations Wired Magazine HotBot (ihe Web)

_’_ﬂﬁemamn: Web - | Making Weh Design a Team Sport O Good news for kids who like to hunker down and

Az | build top-notch websites: ThinkQuest i3 sticlking around. hd

[Share new document ” & My profile ‘ (&) Documents for me ‘ 2, Search ” 2 Interesting H (£ Not interesting || & Add comment | |

Figure 11.20: Communities of knowledge sharing with OntoShare @ BT

overlapping topic areas would constitute an interesting mix of interests for the purposes
of the trial.

11.5.3 Kickoff & Refinement

Since Kickoff and the Refinement actually were highly connected, we present them
in a single section. The majority of the ontology development was carried out at a
workshop held at the case study company’s premises and run by a knowledge engineer.
A selection of 6 key people from the user group were invited to attend the workshop.
It was felt that as a whole, they would be able to cover the domain of interest for the
whole of the user group. The workshop included a presentation that described in basic
terms what an ontology is and how ontologies can be applied.

It also included a demonstration of the OntoShare tool which introduced the tool to
the users as well as showing the use of an ontology in a practical application. Following
this, the ontology development took place. Similar to the Swiss Life case study (cf.

160

11.5 Community of Knowledge Sharing @ BT

Section 11.4), it was very much brainstorming oriented during the kickoff. The resulting
semi-formal ontology description in form of a mind map™ is depicted in Figure 11.21.

gdMindManager - [Ontoshare Ontology.mmp] =10lx|
M Dotsi Bearbsiten Ansicht Einfligen Format MubiMaps Extras Esnster hilfe -8 X

‘DER SR FY A LB8 oo @er 0 Fa-0 HEOE D -
S A BrUmE A DO AT G e

§ * Standard-Hauptaweige

" orke Mindvap Http:f/BTexact.OntoSharef2002-03-15

Ve U LHE@=el e ®Ad [k ¥

Senice_Discovery

Web_Semices

Synchrensus

Asynchronous
Communities_ot_Interest
Mirtual_Community
Instant_Messaging

Conferencing

Flatform_SDK

K|

Collaboration == M _Commerce

User_Interface_Design

Software_Development

Enabling_Technologies

_and_Information_|

— .

E_Business
Http://BTexact.OnteShare/2002-03-15

Z204AAR - 124 RGF
——— ic_Webh

Ontologies

Companies_and_Markets

Wiedia_batup
Object Database

Content_Synthesis
Frofile_Matohing

Metadata

_ o

Keine Auswahl 03,09,2002 15:45

Figure 11.21: Mind map @ BT

The following is a description of the steps that were carried out subsequently.

1. A brief discussion took place on the number of concepts that was felt to be
appropriate. Two suggestions of 20 and 50 were made. These were made in the
context of the OntoShare tool and how its interface dealt with the ontology.

2. Each participant was asked to come up with 5+ topics that they felt were im-
portant to them. These were then collected. Some early organisation of the
hierarchy took place at this stage.

3. Further organisation into a hierarchy then took place. This included adding and
removing concepts and moving whole sub-branches of the proposed ontology.

4. The depth of the hierarchy was considered to be too deep. The UI aspects were
considered at this stage and a decision taken to restrict the depth to a maximum
of three levels where possible.

161

11 On-To-Knowledge

5. It was remarked that organizational groupings (i.e. knowledge management, con-
ferencing, etc.) had been introduced at the top level of the hierarchy. It was
decided that this might introduce unwanted boundaries for the users and that
they might feel that they could only add documents to their particular part of
the hierarchy. Also, some of the sub-branches straddled the top-level areas. The
top-level was then removed.

6. The number of subconcepts per concept was considered in terms of the UL It
was felt that a maximum of 10-15 subconcepts would be manageable by the user.
Concepts of minor importance were then removed or combined at this stage in
order to achieve this.

7. The suitability of the overall ontology was then considered and a few additional
refinements were made. The resulting ontology contained 10 top-level concepts
and a total of 52 concepts with a maximum depth of three levels.

The group was able to produce this ontology at the workshop which meant that most
of the refinement stage (i.e. the organization of concepts and relationships) had been
carried out in tandem with the kickoff stage.

The over-riding lesson learned here is that user groups such as the one in this trial can
be expected to produce lightweight ontologies.

11.5.4 User-Focused Evaluation

Of the three forms of evaluation in the On-To-Knowledge methodology, the most ap-
propriate for use in the case study is user-focused. The tools rely on a high degree of
user interaction and as such the users are the best resource for determining whether
they meet their objectives. Various user-focused evaluation methods were employed.
This section will describe these and the rationale for their use. The objectives of the
evaluation were to determine:

e what the users think of sharing knowledge in an environment such as that used
in the case study;

e whether the use of an ontology helps with the storing and sharing of knowledge
e whether the ontology evolution process is effective;
e whether the ontology developed as part of the case study was effective; and

e the good and bad points of the knowledge sharing environment.

162

11.5 Community of Knowledge Sharing @ BT

The principal means of evaluating the views of the users was with the use of question-
naires. Questionnaires have the benefit of allowing the views of a high proportion of
the users to be canvassed without burdening them a great deal. The questionnaires
consisted of a mixture of open questions that required a qualitative response and a
series of statements that required a quantitative response indicating the level to which
the respondent agreed or disagreed. This mixed approach is endorsed by Eason who
states:

“Structured questions have the virtue of easy analysis and direct comparabil-
ity. Their weakness is that they pre-define the answers it is possible to give
and may not therefore permit the user to report the most important issues.
We have always found it useful to use a structured approach to reveal issues
and, once an issue is located, to use an unstructured method to explore the
nature of the issue.”

(Eason, 1988)

A ‘pre-trial’ questionnaire and a ‘post-trial’ questionnaire were developed. The ‘pre-
trial” questionnaire was intended to determine the nature of the users in the case study
in terms of the way (and how often) they access, receive and share information. The
‘post-trial’ questionnaire was intended to extract the user’s views of and experiences
with the OntoShare system.

Particular focus was placed upon the users’ views on the usage of an ontology within
the tool and the evolution of that ontology. An additional form of evaluation involved
the analysis of usage statistics that were collected by an OntoShare module developed
exactly for this purpose. This was able to record every interaction that occurred on the
OntoShare server along with the user who performed it. This allows analysis to take
place on the use of different OntoShare functions by the group as a whole as well as
the behavior of individuals (which can then be cross-referenced with the questionnaire
responses).

The combination of methods should allow an evaluation of the individual OntoShare
functions to be made. The usage of the ontology can also be analyzed by recording
the distribution of documents added to the concepts in the ontology and the evolution
of the ontology over the course of the case study period. The final form of evaluation
was an expert usability analysis. This involved an assessment of the OntoShare user
interface and allowed a thorough inspection to be made by an independent expert. It
generally results in a more objective and far reaching analysis than would be the case if
it was carried out by someone connected to the development of the tool. The detailed
results of the evaluation can be found in (Duke & Davies, 2002a). In Section 11.5.6 we
will mention the most important results of the evaluation.

163

11 On-To-Knowledge

11.5.5 Application & Evolution

When a user shares some information in OntoShare, the system will match the content
being shared against each known concept in the community’s ontology. Each ontolog-
ical concept is characterized in OntoShare by a set of terms (keywords and phrases).
Following the matching process, the system suggests to the sharer a set of concepts
to which the information could be assigned. The user is then able to accept the sys-
tem recommendation or to modify it by suggesting alternative concept(s) to which the
document should be assigned.

It is at this point that an opportunity for ontology evolution arises. Should the user in-
deed override the system’s recommended classification of the information being shared,
the system will attempt to modify the ontology to better reflect the user’s conceptu-
alization, as follows. The system will automatically extract the keywords and key
phrases from the information given by the user. The set of such words and phrases
are then presented to the user as candidate terms to represent the class to which the
user has assigned the information. The user is free to select zero or more terms from
this list and/or type in words and phrases of his own. The set of terms so identified is
then added to the set of terms associated with the given concept, thus modifying its
characterization.

We call this approach usage-based ontology evolution and in this way the characteri-
zation of a given concept evolves over time, this evolution being based on input from
the community of users. We believe that this ability to change as users’ own concep-
tualization of the given domain changes is a powerful feature which allows the system
to better model the consensual ontology of the community.

Clearly, this level of evolution is limited to changing the semantic characterization of
ontological classes and does not support, for example, the automatic suggestion of new
concepts to be added to the ontology. More advanced ontology evolution is the subject
of ongoing research (cf., e.g., (Stojanovic et al., 2002a)) .

We have seen above how users also indirectly annotate the information as a side-effect
of sharing it with the community and we discuss and motivate this approach below.
Pragmatically speaking, it is the case at the time of writing that only a very small
proportion of WWW- and intranet-based information resources are annotated with
RDF (meta)data. It is therefore beneficial to provide a system wherein such annotation
effectively occurs as a side-effect of normal usage.

Another important observation is that it is in the general case impossible to cover the
content of a document exhaustively by an RDF description. In practice, RDF descrip-
tions can never replace the original document’s content: any given RDF description
of a set of resources will inevitably give one particular perspective on the information
described. Essentially, a metadata description can never be complete since all possible

164

11.5 Community of Knowledge Sharing @ BT

uses for or perspectives on data can never enumerated in advance. Our approach ac-
commodates this observation however in the sense that each community will create its
own set of metadata according to its own interest in and perception of information that
is added to its storage facility. It is very possible that the same information could be
shared in two separate communities and emerge with different metadata annotations
in each.

11.5.6 Main Lessons Learned @ BT

This section will suggest and discuss a number of recommendations for the evolution of
the case study tools and deployment process. A set of lessons learned from the experi-
ence of carrying out the case study is presented. Firstly, recommendations concerned
with improving OntoShare are considered. These have come to light as a direct result
of the user-focused evaluation exercise.

e Give careful consideration to the nature of the virtual community.
The evaluation showed that the majority of users were passive in their use of
OntoShare i.e. they were happy to receive e-mails and read documents but did
not add items to the system. As a result, the experience of the majority of On-
toShare users is determined by the actions of the few who actually add items
to the system. If those few users did not exist, the knowledge sharing benefits
would not be forthcoming. Depending on the local organizational culture, depen-
dence on a relatively small proportion of the user community may or may not be
appropriate. Many successful communities are of this nature but in some cases al-
ternative strategies may be required to reduce the dependence upon active users.
In their responses to questionnaires, users made some useful suggestions in this
regard. One user made the suggestion that OntoShare needed to be “regularly
seeded with potentially relevant information or gain critical mass usage to offer a
positive benefit and justify the effort of maintaining profiles and entering articles
or information”. This could be carried out manually by a knowledge engineer or
automatically by an information agent and could benefit the system by ensuring
sufficient data was added that was of interest to a wider cross section of the users.
Both methods have drawbacks in that the manual process is time-consuming and
the automatic method introduces the risk of downgrading the quality of informa-
tion that is shared. The recommendation is to experiment with a combination
of user, knowledge engineer and agent added data that can be varied depending
upon user input and the nature of the community.

e Provide better interface access. A commonly occurring criticism of the
system was its use of a Java applet to provide the interface. This proved to be
slow to load and required a login step in order that the user could be recognized.

165

11 On-To-Knowledge

It was originally preferred instead of a HI'ML-based interface because displaying
the Ontology (with a collapsing folder structure) would have proved difficult
in that format. An alternative would be to provide an application, however
this needs to be installed and re-installed every time a change is required which
would have been disruptive for a system in its infancy. Also, different versions are
required for different operating systems. The Java applet was so unpopular that
using one of the alternatives now seems more attractive. The use of JavaScript
and DHTML should be considered to allow the interface to operate in a standard
browser. If this is not appropriate then the use of an installed application would
probably be the best course of action.

e Provide wider access to functions. Another drawback with the system that
was widely mentioned was the need to login to the system to provide comments,
add items, etc. Alternative methods of accessing individual functions of On-
toShare should be explored. These might include direct links in notification
e-mails to a comment adding facility and support in a web browser for dropping
a URL into the system. The intention should be to reduce the effort that is
required to use each function.

e Use richer ontological representation. The OntoShare ontology currently
contains concept relationships of the topic/subtopic type. Other relations are
inferred by OntoShare and the user can request to see these. A better way
of presenting these to the user is required. This might be a toggle where the
relationships are indicated on screen when it is turned on.

e Provide better support to new users. When users first login they are often
daunted by the interface. Better support should be provided to help them set
up their profile and gain familiarity with the available functions. This could be
in the form of a ‘splash screen’ that is shown on the first use of the tool or that
can be disabled once users become familiar. This would show tips on usage and
a short description of each function.

e Inform users about an ontology change. When changes to the ontology
are accepted or rejected by the users, they should be notified of the outcome
and invited to adjust their profiles accordingly. This will ensure that users can
gain access to items added to new areas without having to login and browse the
concepts.

The following lessons in relation to the development of ontologies have been learnt:
e Physical presence is required. The approach used to produce a domain

ontology i.e. a group of experts in a focused workshop led by a knowledge engineer

166

11.5 Community of Knowledge Sharing @ BT

who is physically present, proved to be fruitful. The domain experts have limited
time available, hence it is necessary to be very focused. Had this capture been
carried out over a period of time involving a number of disparate people it would
have probably been a drawn out process, lacking in focus.

e Domain experts can be expected to produce a taxonomy. A simple
ontology in the form of a taxonomy is the most likely outcome from a group of
domain experts asked to contribute in this way. More complex ontologies require
considerably more effort. The OntoShare system is suited to a simple ontology
with topic / subtopic relations.

e The methodology provides an effective framework for the introduction
of an ontology-based application. The application of the methodology to the
case study resulted in the rapid development of an ontology that performed well
in its intended application. Users reported that they found it to be an appropriate
ontology for their domains despite the limited amount of time that was available
for ontology development.

In terms of the evaluation objectives introduced in Section 11.5.4, the following can be
stated:

e Users are generally happy to receive shared knowledge from OntoShare and will
often read it if it appears interesting and they have enough time. Only a minority
of users actively share documents in OntoShare (mainly due to time pressures)
so steps should be taken to make it as easy as possible to share. Data shared
by users should be augmented with data added by a Knowledge Engineer or an
information agent.

e Users reported that they found it useful to have the ontology available both when
browsing for items and when adding items to the system.

e The ontology evolution process proved to be effective. Users were happy to create
new concepts and these were accepted by the other users. Users reported that
they found this facility useful although they were less inclined to make use of the
interesting / not interesting features to evolve individual concept characterisa-
tions. Better access to facilities such as these has been recommended in order to
further their usage.

e The ontology that was developed proved to be effective in the case study. It
performed well in its intended application - measured by the distribution of doc-
uments that were added to its concepts. Users reported that they found it to be
an appropriate ontology for their domains of interest.

167

11 On-To-Knowledge

The results of this evaluation will be used in the continued development and exploita-
tion of OntoShare and related tools.

11.6 Virtual Organization @ EnerSearch

11.6.1 Introduction

EnerSearch is an industrial research consortium focused on IT and energy. Its aim is
to create and disseminate knowledge on how the use of advanced IT will impact the
energy utility sector, particularly in view of the fact that this industry branch is being
liberalized across Europe. EnerSearch has a structure that is very different from a tra-
ditional research company. Research projects are carried out by a varied and changing
group of researchers spread over different countries (Sweden, US, Netherlands, Ger-
many, France). Many of them, although funded for their work, are not even employees
of EnerSearch. Thus, for its knowledge creation function EnerSearch is organized as
a virtual research organization. Due to this wide geographical spread, EnerSearch has
the character of a virtual organization also from the knowledge distribution point of
view. In addition, for the general public interest it maintains a website?® where it pub-
lishes many of its research results as papers, reports and books. Thus, dissemination
of produced knowledge on IT and energy is a key function for EnerSearch. Within the
On-To-Knowledge project, EnerSearch investigates whether Semantic Web methods
and tools might be helpful to improve on this function, especially focused on its web
information provisioning.

Goal of the case study (cf. (Sure & Tosif, 2002)2?) on “Virtual Organization” is to
enhance the knowledge transfer to researchers in different disciplines and countries, and
to specialists from shareholding companies interested in getting up-to-date information
about R&D results on IT in Energy. Ontologies will help to enable a content based
search on research topics. A special focus in this case study is on the user focussed
evaluation of ontology based tools from OTK (QuizRDF and Spectacle) wvs. typical
keyword based retrieval (EnerSEARCHer) during an experiment.

We now describe how we instantiated in close cooperation with our project partner
EnerSearch the On-To-Knowledge Methodology (presented in Part II) in the case study.

*8EnerSearch, see http://www.enersearch.se/
2Further information on the EnerSearch case study can be found in the On-To-Knowledge deliverables
(Tosif et al., 2001; Iosif & Ygge, 2002; Iosif & Mika, 2002)

168

11.6 Virtual Organization @ EnerSearch

11.6.2 User-Focussed Evaluation

Since the ontology development was not within the main focus of the case study, we
restrict our attention to the experiment about the user-focussed evaluation. In the
following we describe how we designed the experiment and present some results. We
start by naming potential threads for the experiment and how we face them. Next, we
enumerate potential hypothesis for our experiment. Then we show the setting up of
the experiment, including the selection of users and the technical solution. Last, but
not least, we present some results of the experiment and conclude by a brief summary.

Potential Threads

We identified several potential threads that might affect the experiment. We list the
threads and explain our strategy for avoiding them:

e Users have not time: One of the major problem with conducting a case study
is to make the users interested in doing an evaluation. The test scenario will
take 1 to 1.5 hours to finish. Even though our test persons are well aware of the
project there has always been the risk that the test users will have problem of
finding the time to finish the tests. We designed our experiments from the user
perspective. Instruction guides on how to use the tools were sent out in advance,
in this way we minimised the chance of getting user problems with the actual
test scenario.

e Users are not interested: By introducing the case study for our users before
the actual test scenario we increased the interest for the project. The major part
of the test users also had earlier experiences of the semantic web.

e Too few users for a comparative study: An important issue is the choice
of subjects who are going to participate. Practical concerns often constraint
the experimentation possibilities, for example the accessibility and availability of
certain types of subjects. We have identified several types of users and divided
them into three different groups according to their background and skills, partic-
ularly with respect to their familiarity and expertise with the EnerSearch web,
knowledge management, knowledge acquisition tools and techniques. We ended
up with 45 test persons that we believe is enough to do statistical comparative
studies.

e Too few comparable tools for a comparative study: The EnerSearch con-
sortium already uses a tool, the EnerSEARCHer, that is an non-ontology based
search tool. It is a normal free text search tool. By combining two other ontol-
ogy based tools, QuizRDF and Spectacle, we think that we have a good mix for

169

11 On-To-Knowledge

the case study. With the ontology based search tool , QuizRDF, the user could
start simple query consisting of only small number of search terms in order to
get a picture on what kind of information that is available in the database. The
second ontology based search tool, Spectacle, presents the information according
to the inherent structuring that is offered by the ontology and thus gives valuable
context for the user.

Transfer error for a comparative study: A problem within the subject
experiments is that if one gives a subject the same exact search task to do with
two different tools there will be most probably be a transfer error. This means
that is rather certain that they will be unlikely to repeat errors the second time
they do the task, and that they will remember how they did something and will
not need to figure it out the second time around. To avoid this transfer effect, we
design three different but comparable scenarios, each involving the same kind of
knowledge acquisition task in the same domain but involving a different aspect
of the knowledge base.

e System design: The system must be logical and effective to use.

Hypotheses to be explored

In sum, in designing Semantic Web experiments different design dimensions are of
importance: variations in information modes, in target user groups, and in individual
information-processing styles (c¢f. (Iosif & Mika, 2002)). Any experiment must be
based on one or more clearly formulated hypotheses that can be verified or falsified,
for example by empirical-statistical methods. A possible list of testable hypotheses
regarding Semantic Web-based information seeking is:

170

Users will be able to complete information-finding tasks in less time using the
ontology-based semantic access tools than with the current mainstream keyword-
based free text search.

. Users will make fewer mistakes during a search task using the ontology-based

semantic access tools than with the current mainstream keyword-based free text
search.

. The reduction in completion and number of mistakes will be more noticeable for

less experienced users.

The reduction in time will also be more noticeable for users lacking a detailed
knowledge of the underlying technical system implementation.

11.6 Virtual Organization @ EnerSearch

5. The ontology-based semantic access tools will be perceived as more useful than
free text search by different types of persons for a broad range of domains and
knowledge-acquisition scenarios.

6. The effort for developing and maintaining the ontology and information structure
will not significantly exceed the effort to develop and maintaine the free text
approach.

In a field experiment we tested hypotheses such as these for their significance. Fur-
thermore we investigated how their validity varies with different information modes,
target user groups, and individual information-processing styles.

Setting up the Experiment

The involvement of knowledge users in the experiment from the beginning is important
because of the interaction between the users and tasks on the one hand, and their
pre-knowledge, or lack thereof, of domain and/or systems on the other hand. We
identified several types of target users for the tests through conducting a set of pre-
trial interviews. As a result, the evaluation experiment includes three different types
of interest groups.

One group consists of staff members from four different shareholder companies (the
companies involved in the case study are: Sydkraft AB, Sweden, Iberdrola from Spain,
Electricidade de Portugal, and ECN, The Netherlands). A second group consists of
researchers from different scientific fields, several having at some time participated
in EnerSearch projects. The third and final group intends to represent more or less
a general outside audience and consists of students (studying at the department of
software engineering and computer science at the Blekinge Institute of Technology in
Sweden).

Finding information on a personal basis is important for all of these three groups,
but for various reasons (that well reflect those found in geographically spread virtual
organizations) they are generally limited in their time to invest for searching knowledge.
The majority of the test users are familiar with the EnerSearch web and have used it
before. There were of course also those who had never heard of the EnerSearch web
but were introduced to and instructed on how the EnerSearch web is functioning.

We divided the total of 45 test users into six groups. We then mixed up the order of
the questions for each group as well as the tool that each user group should use for
answering each question, i.e. each group had three blocks — one block per available
tool — with ten questions each. We now enumerate the questions that we posed to the
test users:

171

11 On-To-Knowledge

10.
11.
12.
13.

14.

15.

16.
17.
18.

19.
20.

172

. Name a Knowledge Management methodology?
. What approaches are used to describe business processes?

. How large energy savings did the multi-agent system simulation of building con-

trol indicate?

When is it reasonable to adapt to changing communication conditions of a chan-
nel?

. How does energy prices in Sweden compare to prices in Europe?

. How does the liberation of an energy market influence the effectiveness of DSM

measures?

How can you model the communication between intelligent agents on a society
level?

. How can spot pricing affect a distributor?

Name an organization that works with preparing protocol and equipment stan-
dards?

Who are the owners of EnerSearch?
What will happen to the price levels of electricity in Europe the next few years?
In what project has Claes Badenschneider been active?

Which are the three main mechanisms for a proper utility strategy according to
Brousseau et al.?

What is the name of the building in Ronneby where a lot of field tests have been
performed?

When did Hans Ottosson design and implement his first load management sys-
tem?

To whom should a registration for ISPLC 2001 be sent?
What are the case studies in the On-To-Knowledge project?

What are the two technology-related problem areas where improvements are
needed with respect to PLT?

To what e-mail address should general questions to EnerSearch be sent?

How can agents communicate with devices in an intelligent building?

11.6 Virtual Organization @ EnerSearch

21.
22.
23.
24.

25.

26.
27.
28.

29.

30.

What is life cycle cost and how to calculate it?

Which approach could be used to improve utility -customer relationship?
How does agent load management benefits the customer?

What styles of decision making could be distinguished?

What are some of the aspects to consider when assessing the costs of agent based
load management?

How does load management effects pricing?
What are some of the weaknesses of the existing tools used to manage documents?
How is Information Technology changing the way organizations operate?

What is the name for an interorganizational relationship in which independent
organizations share their resources, knowledge, costs and risks in order to produce
a product?

Where can we find information on virtual organizations?

Please note that some questions were misleading or misspelled on purpose to check
how fault-tolerant the used tools are.

The test persons used three different tools: the two ontology-based semantic tools
QuizRDF and Spectacle on the one hand and the free text search tool EnerSEARCHer
on the other hand. The On-To-Knowledge tools QuizZRDF and Spectacle have the
following advantages compared to a free text search tool like the EnerSEARCHER:

1.

QuizRDF has the advantage that the user can start with simple queries consisting
of only small number of search terms in order to get a picture of what kind of
information is available in the EnerSearch knowledge base. There is a continuum
here from the common keyword-based search to different levels of semantic search.

. The browsing tool Spectacle presents information according to the inherent struc-

turing that is offered by an underlying domain ontology. This gives a valuable
semantic context for the user not available through standard information retrieval
tools. The information is presented in such a way that the path that leads to
the information adds to the users’ understanding of the semantic role of the in-
formation. Each concept chosen is “surrounded” by other ontologically similar
concepts. Semantic generalizations and specializations (in different dimensions)
are also offered to the user when browsing for information.

173

11 On-To-Knowledge

Technical Settings of the Experiment

The following Figures 11.22 — 11.25 show screenshots of all three tools during a user
trial including the GUI that was used to guide users through the questionnaire during
the experiment. The tools are all accessible with a typical browser.

Cidion b ¢ EnerSEARCHer

Ferforms a full text search on the EnerSearch OTH Evaluation Website!

How does load management effects Thi= engine uses an index file of the entire site. Put phrazes within "quotes".
pricing?
‘ load management |7 +
" Case Sensitive I I
Wwhat page(s) helped you answer this = Sort by |Matches =
question (title or file name)? v \Whole Wards Only .
Display |5 'l

™ Include Stop-Terms

. . . Search Content
Wias it easy to answer this question?) .
{1is very sasy, 5 is very hard) I Body W Title ™ url T alt-Text T Links [~ Default
[SN SIS I Sl & ¥ Meta-Description [~ Meta-Keywords [~ Meta-authors
1 2 3 4 5
Tips/Help
Next question

Fage1ofl Powered by KSearch

Send | Erase

| give up If you want to use the old search engine (which is much slower
because it searches through the files themselves and not an index)
— - go ahead!
a paqge
Log out

Figure 11.22: EnerSEARCHer (free text)

Figure 11.22 shows the setting during the experiment for the EnerSEARCHer. The
screen is splitted into two parts, viz. frames.

On the left hand one sees a frame that is used to guide users through the questionnaire
during the experiment. After a user is logged into the system, (s)he gets presented
question by question in the upper part and can type in the answers. Along with each
answer a user should also note how easy (s)he found to answer a particular question
(on a scale from 1-“easy” to 5-“very hard”). If a user could not find any answer (s)he
could push the “I give up button”. Each user had to answer 30 questions, i.e. 10 with
each tool. The questions were mixed up for different user groups.

On the right hand the currently active tool for answering a question (EnerSEARCHer,
QuizRDF or Spectacle) was presented to the user, i.e. the tool a user had to use for
answering a question was given in this frame. Here one sees the GUI of EnerSEARCHer,

174

11.6 Virtual Organization @ EnerSearch

where one can easily recognize a typical query interface for keyword based search
engines.

Fesults 1-5 of 7 (2009KB) for +lead « management +effect +pricing with 917 total matches Eorm Tios
Searchad whole words in: Body, Title, Meta-Description
Reguired Time: 3.95 seconds

Logged in user: Victor losif *
Quéstion number 26 1567 Hewas

How does load management effects
cing?

2 smmer ben- was - The uereuulated
ok afzablicationsfby pralect/lSLRALas AR LIS
Hiatvens 577 Somras 155" Luwk Updabeds Hy - 3002 File Shees 422K8

what page(s) helped you snswer ths n,,,. Human Sido of M
auastion (tele or fila name}?

vl
i ot hism
05 Pde Siems 1651

3. PALA!
Was it easy to answer this question?
(1 15 very sasy, 5 is vory hard)
cecececc

1% 3 a s

4. Interactiog Intelligent Softveare Auents in Demand Management
Mt question Inkeracong :Innemuen(uokw.re Agents in Demand Management
E— bt 43,517, 9% 1 2ewalustiondknowledasbarefsablicasioa i'canierence m38/dadsm 38 Licaidedam s Lhoml
Matcoees £1 Searar 180" Lunt Updatnd: Do 103001 Pl Sres 106¥E

ine Telecommunications Report June 199§ 1 Report on The Transmission of Data over the
KM, The Nethorlands David Hoal
i it/ B S BN P By e b

MI Ernze Page Navigation Panel P,
Hm-mr.nr | cwar 1 ines

Zeealy

I ghve mnm 0 s«mosa Last
Start pags
Lon aut 1-56-7 Moo
[laad maregement efiect prcing Sanrch IF * Tips
I Search Within Besults gorr by [Maches =1
I Case Senss

F whols Wards Only
I include Stop-Terms

Search Content
W dody P Tide I U T ak-Test [Links ™ Defaulk
¥ Meta-Description ™ Meta-Keywords [Meta-Authors

™ show Matches in Descriptions

Figure 11.23: EnerSEARCHer results

In our first example screenshot Figure 11.22 the user “Victor losif” was currently trying
to answer the question 26 “How does load management effects pricing?”. He had to
answer the question with EnerSEARCHer. FE.g. other users were given QuizRDF or
Spectacle. Figure 11.23 shows how EnerSEARCHer presents a result list corresponding
to a query to the user (in a typical keyword based search engine like manner).

Figure 11.24 depicts the query interface of QuizZRDF. The user can start with entering
keywords that (s)he is looking for — similar to a typical keyword based search like En-
erSEARCHer. Additionally, (s)he can choose a concept (or “Class”) from a predefined
ontology in the upper text box of QuizRDF. QuizRDF then returns documents that
are relevant to the chosen concept and/or the given keywords. In the lower part a
typical search result is presented. Additionally to the name of a document, QuizRDF
gives a short summary of a found document and metadata according to the predefined
ontology.

Figure 11.25 illustrates the interface of Spectacle. On the left hand one sees an explorer-
tree like browsing structure which is according to the underlying ontology. Spectacle
offers the user some predefined views on the ontological structure, e.g. to start a search

175

11 On-To-Knowledge

—(@

How large energy savings did the multi-
agent system simulation of building contral
indicate?

What pageis) helped you answer this [91] energy

question (title or file namel?

Was it easy to answer this question? multiagent, building

(1is very easy, 5 is very hard)
[l SISl i

e
Next question

Figure 11.24: QuizRDF (ontology based)

weroier/ ONTOKnowledge
BonSewch AB Sinlact snother cancapt to narsom dowe your aarch:
ann cortain topic eifart Iead e
whiat are tha case studing inthe "00 To Epraie
Knowledgn® propet? f Akkermans chosen electronic commerce line repart
(3] wollaboration energy market mnachine repasil
| U collaboration while watity ﬂ:‘,‘:.":.:;:;"’" reanar
EnerSearch community environment methedolegy sales
What) helped th
B b ey Hans Akkermans complement wwihange netherlands sectior
L coneept framomark el I"II :';.".‘.':,::L"“ sectar
KL 1081 HY amsterdam contact (R RIS o seman
Hui ey u:-u wn:;)““ geaeration semi
 wbry ea3y, 5 5 vory Hetherl %
P ﬂk-:ﬂ:m'dﬂ!ﬂw content based search :‘mnhmwon alfice semi
T2 3 4 5 ontalogy based
on contribution i knowledae il
Noxt auest management
Bttpif £142,217, 135, C00-1,heml
Summary: OnToknowledge: Ontology based Tools I\nr knowledge Managament, Auﬂ'\w Dieter Fansal, Frank van Harmelan, M
5] | kaywords: nTaknowledge: Ontology based To s fon ge: Ontalogy based
Managamant,
i | nm. £143.217.135,

rasparch affiliates and sharsholders ane spread aver many countring: &5 sharshalding companies indude 1BM ILI

ary: Ies
[imean.’swm-nmk Preussenklektra (Germany). [bardrola (Soain). iCNlemaniI] . and Elecncidade do Portucal. Essel

Figure 11.25: Spectacle (ontology based)

by looking for “Authors”, “Projects” or “Year”. These concepts were identified as an
intuitive starting point for the search. Known Projects are shown as childs of the
“Projects”™Node, e.g. the On-To-Knowledge project. On the right hand of the interface
one can see on the upper side the currently chosen navigational path, e.g. “By Projec-
t/OnToKnowledge”. Below the user gets presented the context of a chosen concept,

176

11.6 Virtual Organization @ EnerSearch

viz. related concepts. Users may follow these links to narrow down their navigational
search. At the bottom one can see a result list indicating the relevant documents for
the currently chosen navigational path in the ontology.

Some Results

Each log entry of the experiment contains the following items: question number, answer
(text), name of the user, time duration for answering the question, the user group to
which the user belongs, the tool used for getting the answer and how easy the user
found to answer this question with the particular tool (on a scale from 1-“easy” to
5-“hard” plus 6-“T give up”). In this analysis we concentrated on getting an impression
for the hypothesis 1 and 2 (¢f. Section 11.6.2), the complete results can be found in
(Tosif & Mika, 2002).

Figure 11.26 shows the calculated results for answering the question: “How relatively
often did users give (W)rong, (R)ight or (N)o answers with each tool?”. The figure
shows the following preliminary results: For EnerSEARCHER, 23,19% of the ques-
tions answered in total (with EnerSEARCHer) were wrongly answered, 37,68% were
answered right and in 39,19% of the cases the user gave up, thus resulting in having no
answer at all for the question. 10,20% of the questions answered by using QuizRDF
were answered wrong, 57,14% were answered right and in 32,65% the user gave up.
23,73% of the questions answered by using Spectacle were answered wrong, 40,68%
were answered right and in 35,59% cases the user gave up.

Anzahl - IDI

100%
90%
80%
70% -
60% -
50% -
40% -
30%
fg; SElky 32,65% 35,50%

(']
0% T
EnerSEARCHer QuizRDF Spectacle

[Tools]

10,20%

23,19% 23,73%

RAVN
ow
ER
ON

[Relative amount of answers given per tool

Figure 11.26: How relatively often did users give (W)rong, (R)ight or (N)o answers
with each tool?

Thus, as a first result, our hypothesis 2, “Users will make fewer mistakes during a search
task using the ontology-based semantic access tools than with the current mainstream

177

11 On-To-Knowledge

keyword-based free text search”, is supported by this result.

Figure 11.27 shows the calculated results for answering the question: “What relative
average amount of time needed users for (W)rong, (R)ight or (N)o answering of one
single question?”. We highlight the most relevant detail of this figure (the reader
might use the figure for further interpretations): To answer a question right, users
needed in average the shortest amount of time with QuizRDF (25,77%), followed by
EnerSEARCHer (34,71%) and Spectacle (39,52%).

100%
L]
o 90%
3) 26,179 26,54%
3 80% 7% 39,52%
=
£ 70%
‘2 E 80% 7 [Spectacle
8% 50% - B QuizRDF
=
§) 5 40% B EnerSEARCHer
L]
g 30%
[
42,23¢
% 20% 4 34,71% 34,21%
3 10%
- 0% : :
N R w

[(N}o, (R}ight or (Wjrong answers]

Figure 11.27: What relative average amount of time needed users for (W)rong, (R)ight
or (N)o answering of one single question?

Thus, as a second result, our hypothesis 1, “Users will be able to complete information-
finding tasks in less time using the ontology-based semantic access tools than with
the current mainstream keyword-based free text search”, is partially supported by this
result.

11.6.3 Main Lessons Learned @ EnerSearch

To demonstrate the real value of Semantic Web we need to carry out field experiments.
We have outlined a number of hypotheses that we tried to answer to in our case study.
We also have described what kind of variables have to be taken into account, how data
collection, evaluation, experiment procedure and system design can be done, and we
have sketched the importance of the information processing.

Our results indicate that

178

11.7 Overall Lessons Learned in On-To-Knowledge

1. our hypothesis 2, “Users will make fewer mistakes during a search task using the
ontology-based semantic access tools than with the current mainstream keyword-
based free text search”, is supported by our results, and

2. our hypothesis 1, “Users will be able to complete information-finding tasks in
less time using the ontology-based semantic access tools than with the current
mainstream keyword-based free text search”, is partially supported by our
result.

As a general conclusion we summarize that the ontology based tools are generally at
least as good as the keyword based tool and to some extent they are better. The
complete results, e.g. including also the results for other hypotheses, can be found in
(Iosif & Mika, 2002). This deliverable also contains a chapter on technology-focussed
evaluation of the On-To-Knowledge tool suite.

11.7 Overall Lessons Learned in On-To-Knowledge

We conclude this chapter presenting the main lessons learned from applying the
methodology in the case studies of On-To-Knowledge. Further information about the
project can e.g. be found in the Final Project Report (Fensel et al., 2002).

e Early ontology development is often unstructured brainstorming rather
than careful design. Such brainstorming is currently unsupported by many on-
tology engineering tools like Protégé or OilEd (c¢f. Section 13.2). We relied on
an integrated a commercially successful and widely used brainstorming tool. We
extended the functionalities of this tool to meet our requirements, in particular
we connected the tool and OntoEdit via the plug-in Mind2Onto to close the gap
between capturing and formalization of knowledge.

e Different processes drive KM projects, but “Human Issues” might dom-
inate other ones (as already outlined by Davenport). We had to learn hard
lessons there, two of the case studies were heavily affected by major internal
restructurings of the companies, viz. the Swiss Life and the BT case studies.

e Guidelines for domain experts in industrial contexts have to be prag-
matic, otherwise they are unlikely to be understood and to be used at all.

e Collaborative ontology engineering requires physical presence and ad-
vanced tool support. On the one hand we not only had to train, support and
guide domain experts, but also to personally motivate them to contribute to our
project. On the other hand they could work in the mean time by themselves on
“their part of the ontology” due to the strong support of the tools.

179

11 On-To-Knowledge

180

12 OntoWeb

In this chapter we present work performed within the the-
matic network OntoWeb. In Section 12.1 we introduce the
main goals of the network and present an overview of our
contributions within the network. The focus in the following
sections is on two topics: (i) the creation of the OntoWeb
Semantic Portal on top of our conceptual architecture for
SEmantic portALs (SEAL) (¢f. Section 12.2) and (ii) the
evaluation of ontology based tools in the workshop on “Eval-
uation of Ontology based Tools (EON)” (cf. Section 12.3).

References: This chapter is mainly based on (Studer et al.,
2002), (Maedche et al., 2002b), (Sure, 2002c), and (Sure &
Angele, 2002).

Overview

12.1 About the Thematic Network

The EU IST-2000-29243 “OntoWeb: Ontology-based Information Exchange for Knowl-
edge Management and Electronic Commerce” thematic network! is a part of the In-
formation Societies Technologies (IST) Programme of the European Union (EU). The
thematic network has currently over 100 partners coming from academia and industry.
Most of them are located in Europe, but there exist also strong links to communities in
the United States of America and Asia. The main objectives of OntoWeb are described
in the OntoWeb Annex:

“The goal of OntoWeb Network is to bring researcher and industrials to-
gether enabling the full power ontologies may have to improve information
exchange in areas such as: information retrieval, knowledge management,
electronic commerce, and bioinformatics. It will also strengthen the Euro-
pean influence on standardization efforts in areas such as web languages

'OntoWeb, see http://wuw.ontoweb.org

181

12 OntoWeb

The

(RDF, XML), upper-layer ontologies, and content standards such as cata-
logues in electronic commerce.”
(OntoWeb, 2001)

OntoWeb Annex continues with the expected main results:

. A technical roadmap on the state of the art of the WWW of the next generation

plus guides to Industrial and Commercial Applications.

. A series of European and international workshops that bring together leading

researchers and industrials.

. A web portal on advanced knowledge management and electronic commerce.
. Contributions in content and language standardization.

. A scientific journal and educational material.

Inherently the major goal of the thematic network OntoWeb is the dissem-
ination of related research in numerous deliverables as well as workshop
and conference proceedings. The work described in this thesis contributed
mainly to the items 1, 2 and 3 as described in the following enumeration
that is corresponding to the previous one.

1.

The main Parts II, TII and IV of this work, i.e. the On-To-Knowledge
Methodology, OntoEdit and the case studies, have been contributed to a se-
ries of technical roadmap deliverables, cf. (Gomez-Pérez et al., 2002b; 2002a;
Fernandéz-Lopez et al., 2002; Léger et al., 2002a; 2002b).

. As part of the activities in the “Special Interest Group on Tools (SIG4)” a work-

shop on “Evaluation of Ontology-based Tools (EON2002)” was held (cf. (Sure &
Angele, 2002)). The workshop included an experiment for evaluating different
state-of-the-art Ontology Engineering Environments. We describe the aims, re-
sults and lessons learned of the workshop in Section 12.3.

Furthermore, OntoEdit’s collaborative and inferencing capabilities (cf. Part III)
have been presented at two OntoWeb sponsored conferences, viz. at the ISWC
20022 (cf. (Sure et al., 2002a))and the ODBASE 20023 (cf. (Sure et al., 2002b)).

*«First International Semantic Web Conference: The Semantic Web (ISWC 2002)”, cf. (Horrocks &
Hendler, 2002), see http://iswc.semanticweb.org/.

3«Pirst International Conference on Ontologies, Databases, and Applications of Semantics for Large-
Scale Information Systems (ODBASE 2002)”, co-located with the “Confederated International
Conferences: On the Move to Meaningful Internet Systems (CoopIS, DOA, and ODBASE 2002)”,
¢f. (Meersman et al., 2002), see http://www.cs.rmit.edu.au/fedconf/.

182

12.2 SEmantic portAL (SEAL) of OntoWeb

3. A Semantic Portal for the OntoWeb Community has been established (¢f. (Spyns
et al., 2002b)) on top of the conceptual architecture SEAL for “SEmantic por-
tALs” (¢f. (Maedche et al., 2002b; Studer et al., 2002)). The work on the portal
has also been described in a series of OntoWeb deliverables, c¢f. (Studer et al.,
2001b; 2001a; Majer et al., 2002). This work was performed in collaboration with
our partner, the StarLab at the Free University of Brussels headed by Robert
Meersman. They provided the advanced browsing and querying facilities of the
OntoWeb Semantic Portal based on the DOGMA Server (¢f. (Meersman, 1999;
Jarrar & Meersman, 2002; Spyns et al., 2002a)). A detailed description of the
collaborative results can be found in (Spyns et al., 2002b). We illustrate the
OntoWeb Semantic Portal in the following Section 12.2.

12.2 SEmantic portAL (SEAL) of OntoWeb

In this section we present the AIFB part of the OntoWeb Semantic Portal. Providing
the complete picture (including the work of our project partner, the StarLab of the Free
University of Brussels (VUB)) is beyond the scope of this work, a detailed description of
the complete portal, including the advanced querying and browsing facilities provided
by the DOGMA Server (cf. (Meersman, 1999; Jarrar & Meersman, 2002; Spyns et al.,
2002a)) can be found in (Spyns et al., 2002b).

We start with a motivation for our architecture for Semantic Portals in Section 12.2.1
and show different aspects on web information integration in Section 12.2.2 and web site
management in Section 12.2.3. Then we illustrate the implementation of the OntoWeb
Semantic Portal in Section 12.2.4 with a focus on the underlying process model for
publishing content in Section 12.2.5. We conclude by describing future directions for
SEAL and OntoWeb in Section 12.2.6.

12.2.1 Motivation for Semantic Portals

The recent decade has seen a tremendous progress in managing semantically heteroge-
neous data sources. Core to the semantic reconcilation between the different sources
is a rich conceptual model that the various stakeholders agree on, an ontology. The
conceptual architecture developed for this purpose now generally consists of a three
layer architecture comprising (¢f. (Wiederhold, 1993; Wiederhold & Genesereth, 1997))

1. heterogeneous data sources (e.g., databases, XML documents, but also data
found in HTML tables),

2. wrappers that lift these data sources onto a common data model (e.g. OEM
(Papakonstantinou et al., 1995) or RDF (Lassila & Swick, 1999)),

183

12 OntoWeb

3. integration modules (mediators in the dynamic case) that reconcile the varying
semantics of the different data sources.

Thus, the complexity of the integration/mediation task could be greatly reduced.

Similarly, in recent years the information system community has successfully strived
to reduce the effort for managing complex web sites (Anderson et al., 1999; Ceri
et al., 1999; 2000; Fraternali & Paolini, 1998; Fernandez et al., 2000; Mecca et al.,
1999)). Previously ill-structured web site management has been structured with pro-
cess models, redundancy of data has been avoided by generating it from database
systems and web site generation (including management, authoring, business logic
and design) has profited from recent, also commercially viable, successes (Ander-
son et al., 1999). Again we may recognize that core to these different web site
management approaches is a rich conceptual model that allows for accurate and
flexible access to data. Similarly, in the hypertext community conceptual mod-
els have been explored that im- or explicitly exploit ontologies as underlying struc-
tures for hypertext generation and use (Crampes & Ranwez, 2000; Rossi et al., 2000;
Goble et al., 2001).

SEAL is our conceptual architecture for SEmantic PortALs that aims at facilitating
the management of community web sites and web portals on an ontology basis. The
ontology supports queries to multiple sources (a task also supported by semi-structured
data models (Fernandez et al., 2000)), but beyond that it also includes the intensive
use of the schema information itself allowing for automatic generation of navigational
views? and mixed ontology and content-based presentation. The core idea of SEAL is
that Semantic Portals for a community of users that contribute and consume informa-
tion (Staab et al., 2000) require web site management and web information integration.
In order to reduce engineering and maintenance efforts SEAL uses an ontology for se-
mantic integration of existing data sources as well as for web site management and
presentation to the outside world. SEAL exploits the ontology to offer mechanisms for
acquiring, structuring and sharing information between human and/or machine agents.

The SEAL conceptual architecture (cf. Figure 12.1; details to be explained subse-
quently below) depicts the general scheme. Approaches for web site management em-
phasize on the upper part of the figure and approaches for web information integration
focus on the lower part while SEAL combines both with an ontology as the knot in the
middle.

The origins of SEAL lie in Ontobroker (cf. (Decker et al., 1999)), which was conceived
for semantic search of knowledge on the Web and also used for sharing knowledge
on the Web (¢f. (Benjamins & Fensel, 1998; Benjamins et al., 1999)), also taking

‘Examples are navigation hierarchies that appear as has-part-trees or has-subtopic trees in the
ontology.

184

12.2 SEmantic portAL (SEAL) of OntoWeb

A -
GATION

Presentation | reF
and Use ouTPUT

PRESE M-
TATIOMN

PRESEM-
TATIOM

GATIOMN

Selection

W EW

1
1
1
1
1
]
1
1
1
1
1
1
1
1
1
1
1
ONTOLOEY - I
1
Co mmgn !
Semantics .
1
1
1
1
1
1
- 1
1
1
1
1
]
1
1
1
1
1
1
1
1
1
1

Common
Data Model

K-EDUTELLA
__WRAFFER

HIHTIML

Data
Sources

ReEL-DB
WRAPPER

*
RELATIONAL ;q' Y'Y

DATABASE

Figure 12.1: SEAL conceptual architecture

advantage of the mediation capabilities of ontologies (cf. (Fensel et al., 2000a)). It
then developed into an overarching framework for search and presentation offering
access at a portal site (¢f. (Staab et al., 2000)). This concept was then transferred
to further applications (c¢f. (Angele et al., 2000; Sure et al., 2000)) and constitutes
the technological basis for several Semantic Portals, viz. (i) the “OntoWeb Semantic
Portal”® (which is, as mentioned before, also based on the DOGMA Server approach of
the StarLab, cf. (Spyns et al., 2002b)), (ii) the portal of the Institute AIFB that is also
called “ATFB Semantic Portal”®, and (iii) the “KA2 Community Web Portal””. Tt now
combines the roles of information integration in order to provide data for the Semantic
Web and for a Peer-to-Peer network with presentation to human Web surfers.

12.2.2 Web Information Integration

One of the core challenges when building a data-intensive web site is the integration
of heterogeneous information on the WWW. The recent decade has seen a tremendous

*OntoWeb Semantic Portal, http://www.ontoweb.org
SATFB Semantic Portal, http://www.aifb.uni-karlsruhe.de
"KA2 Community Web Portal, http://ka2portal.aifb.uni-karlsruhe.de

185

12 OntoWeb

progress in managing semantically heterogeneous data sources (Wiederhold & Gene-
sereth, 1997; Fernandez et al., 2000). The general approach we pursue is to “lift” all the
different input sources onto a common data model, in our case RDF(S) (c¢f. (Lassila
& Swick, 1999; Brickley & Guha, 2002)). Additionally, an ontology acts as a semantic
model for the heterogeneous input sources. As mentioned earlier and visualized in our
conceptual architecture in Figure 12.1, we consider different kinds of data sources of
the Web as input.

1. First of all, to a large part the Web consists of static HTML pages, often semi-
structured, including tables, lists, etc. We have developed an ontology-based
HTML wrapper that is based on a semi-supervised annotation approach. Thus,
based on a set of predefined manually annotated HTML pages, the structure of
new HTML pages is analyzed, compared with the annotated HTML pages and
relevant information is extracted from the HTML page. The HTML wrapper is
currently extended to also deal with heterogeneous XML files.

2. We use an automatic XML (c¢f. (Bray et al., 2000)) wrapping approach that has
been introduced in (Erdmann & Studer, 2001; Erdmann, 2001). The idea behind
this wrapping approach is that these XML documents refer to an DTD that
has been generated from the ontology. Therefore we automatically generate a
mapping from XML to our data model so that integration comes for free.

3. Data-intensive applications typically rely on relational databases. A relational
database wrapping approach (Stojanovic et al., 2002c) maps relational database
schemas onto ontologies that form the semantic basis for the RDF statements
that are automatically created from the relational database.

4. In an ideal case content providers have been registered and agreed to describe and
enrich their content with RDF-based meta data according to a shared ontology.
In this case, we may easily integrate the content automatically by executing an
integration process. If content providers have not been registered, but provide
RDF-based meta data on their Web pages, we use ontology-focused meta data
discovery and crawling techniques to detect relevant RDF statements.

12.2.3 Web Site Management

One difficulty of community portals lies in integrating heterogeneous data sources.
Each source may be hosted by different community members or external parties and
fulfills different requirements. Therefore typically all sources vary in structure and de-
sign. Community portals like (in our case) the web site of our own institute require
coherence in hosted information on different levels. While the information integration

186

12.2 SEmantic portAL (SEAL) of OntoWeb

aspect (see previous section) satisfies the need for a coherent structure that is provided
by the ontology we will now introduce various facilities for construction and mainte-
nance of web sites to offer coherent style and design. Each facility is illustrated by our
conceptual architecture (cf. Figure 12.1).

e Presentation view: Based on the integrated data in the warehouse we define
user-dependent presentation views. First, as a contribution to the Semantic Web,
our architecture is dedicated to satisfy the needs of software agents and produces
machine understandable RDF. Second, we render HTML pages for human agents.
Typically queries for content of the warehouse (cf. Figure 12.1) define presenta-
tion views by selecting content, but also queries for schema might be used, e.g.
to label table headers.

e Input view: To maintain a portal and keep it alive its content needs to be
updated frequently not only by information integration of different sources but
also by additional inputs from human experts. The input view is defined by
queries to the schema, i.e. queries to the ontology itself. Similar to (Grosso
et al., 1999) we support the knowledge acquisition task by generating forms out
of the ontology. The forms capture data according to the ontology in a consistent
way which are stored afterwards in the warehouse.

e Navigation view: To navigate and browse the warehouse we automatically gen-
erate navigational structures by using combined queries for schema and content.
First, we offer different user views on the ontology by using different types of hi-
erarchies (e.g. is-a, part-of) for the creation of top level navigational structures.
Second, for each shown part of the ontology the corresponding content in the
warehouse is presented. Therefore especially users that are unfamiliar with the
portal are supported to explore the schema and corresponding content.

e (General) View: In the future it is planned to explore techniques of handling
updates on these views. A first approach has been presented in (Volz et al., 2002;
2003).

12.2.4 Implementation of the OntoWeb Semantic Portal
The OntoWeb Semantic Portal serves as a platform for the OntoWeb community mem-

bers to disseminate their activities, events, publications and other related information.
The general objective of the portal is described in the OntoWeb Annex:

“The network will provide a portal offering an integrated access to all kind
of information related to the network. This portal will offer browsing as well

187

12 OntoWeb

as advanced querying facilities as provided by ontology-based approaches to
community portals.”

(OntoWeb, 2001)

The OntoWeb Semantic Portal (cf. Figure 12.2) combines the SEAL architecture with
the DOGMA approach (cf. (Spyns et al., 2002b)) and as such it is structured according
to an ontology which serves as a shared basis for supporting communication between

humans and machines (

cf. Section 3.3). Our approach aims at semi-automatical con-

struction of a community portal using the community’s meta data to enable information

provision, querying and browsing of the portal.

/3 Ontoweb Portal - Ontoweb Portal - Microsoft Internet Explorer

JQatei Bearbeiten Ansicht Faworiten Extras 7

J dazwick ~ = - @ 7l ‘ Qsuchen [(GdFavoriten & Averlauf ||%v =R

you are hara: home

zearch

search

4 January 2003 >
Su Mo Tu We Th Fr Sa

10z 3 4
5 & 7 8 91011
121314 15 18 17 18
19 20 21 22 23 24 25

26 27 28 29 30 31

irnportant links

How to becormne a
rnermber

Mailling Lists

where can I find
the old stuff?

Want to give
feedback?

Meed help?

Cntoweb Portal
Tutarial

Go to the old
portal

Jnd[essel hittp: funn. orkoweb. org/| j (@ Wechseln zu |JL|nks i
m -
P OntoWeb
o) d)ntoWe|
- @ &
Ol K ient ci
about avents jobs rmembers news publications

zigs browse antolagy
% login % join! & help!

01/13/200% 04:40 prn

Welcome to the Ontoweb Portal

-OntoWeb

Project Co-ordinator

Prof. Dieter Fensel
(dieter.fensel@uibk.ac.at)
Mext Wweb Generation Group,
Institute of computer science,
University of Innsbruck

Contact Person

Dr. ¥ing Ding (ying.ding@uibk. ac.at)
Mext Web Generation Group,
Institute of computer science,
University of Innsbruck

Mohile: +31 652098022

News: Upcoming OntoWeb Meeting

|@ mailto:dieter Fensel@uibk. ac. at

l_l_ [2F Lokales Intramet

Figure 12.2: The OntoWeb Semantic Portal

For this purpose we could reuse the SEAL architecture and the DOGMA approach,
but we also had to provide facilities for content management. In particular, to ensure

188

12.2 SEmantic portAL (SEAL) of OntoWeb

the content quality of the portal we added a process model for reviewing newly in-
serted content. The process model and its implementation in a publishing workflow
are described in the next section.

The ontology is used for several purposes, as sketched in the following.

e Portal generation & navigation: The top level navigational structure of the
portal is derived from the ontology, i.e. the portal itself is generated from the
ontology. As indicated above, this allows for a flexible conceptual modelling of
the portal instead of hardwired structure.

e Acquisition of internal content: Content can be directly feeded into the por-
tal through automatically generated forms. The fields of the forms are derived
from the ontology, e.g. for the concept Publication exists the relation HASAUTHOR
with the range Person. When entering data about a new publication a specific
form for Publication has therefore a field for capturing authors. This kind of
knowledge acquisition was already successfully applied in the Protégé commu-
nity® and is an integral part of Protégé 2000 (cf. (Noy et al., 2000)).

e Integration of external content: Each community member can provide meta
data, e.g. meta data describing his organization, staff, research directions or pub-
lications. All meta data that are structured according to the OntoWeb ontology
are transferred into the portal via syndication. The meta data are typically stored
in the headers of HTML documents. The enrichment of documents with meta
data is usually called annotation (see also Section 5.3).

¢ Querying & browsing: The query and browsing facility on top of DOGMA
makes use of the ontology to provide an enhanced searching. Users not only
can use keywords for queries, but they also can use the ontology itself to create
queries. Typically the precision of the derived answers is much higher than
in purely keyword-based retrieval search engines. Also, the user has similar to
the well-known Yahoo! directory (¢f. (Labrou & Finin, 1999)) a context that
allows for refining or generalizing a query. An example is shown in Section 5.4
in Figure 5.3.

In a nutshell, the upper two levels in the conceptual architecture of SEAL (as shown
in Figure 12.1) are implemented as KAON Portal (further details can be found e.g. in
(Motik et al., 2002; Bozsak et al., 2002)). It generates content objects and provides
browsing as well as a query frontend. The lower part of the conceptual architecture,
viz. the replication of distributed knowledge into the storage facility of the portal, is
done by the collaboration of the KAON Syndicator and the DOGMA Server. Please

8Protégeé Project, see http://protege.stanford.edu/

189

12 OntoWeb

note that only gathered meta data is replicated and not, e.g., documents. The storage
consists of (i) a content management system that allows for creation and management
of documents (but not annotations), (ii) the RDF management system that stores
ontologies and associated annotations, i.e. meta data, of the content management
System.

The syndication process works as follows: the OntoWeb community members provide
meta data on their web sites. The meta data are then syndicated into the OntoWeb
portal with the KAON Syndicator and are available through the query and browsing
interface of the OntoWeb portal. Since these issues exceed the scope of the work we
would like to mention the following links to further information:

e Detailed information about the querying and browsing interface that is provided
by our project partner StarLab at the Free University of Brussels can be found
in (Spyns et al., 2002b). The underlying DOGMA approach, also provided by
StarLab, is described e.g. in (Jarrar & Meersman, 2002; Spyns et al., 2002a).

e Further information on how to annotate documents, e.g. by using the OntoMat—
Annotizer, are provided by the S-CREAM methodology for (semi-automatically)
annotating documents with meta data (¢f. (Handschuh et al., 2001; 2002)).

e The idea on collecting meta data from community members originates from the
KA2 Community Web Portal, ¢f. (Benjamins & Fensel, 1998; Benjamins et al.,
1999; Staab et al., 2000) for further information. They proposed an extension of
HTML 4.0 (¢f. (Raggett et al., 1998)), viz. HTML-A (cf. (Erdmann et al., 2000),
to annotate HTML pages.

The basic content management features, including the workflow component described
in the next section, are provided by the CMF framework”, an extension of the ZOPE
web application server'?. ZOPE and CMF provide the necessary basic infrastructure
for the portal, viz. a basic content management framework (CMF) that is flexible and
easily extensible. They are both available as open source software, therefore we could
re-use the existing components and could extend them with our own (ontology-based)
modules.

12.2.5 Process Model

OntoWeb as such is an open community. Open communities pose additional constraints
since data that is (re)published through the portal could be provided by arbitrary

9CMF stands for “Content Management Framework”, see http://cmf .zope .org/
'9ZOPE, see http://www.zope.org/

190

12.2 SEmantic portAL (SEAL) of OntoWeb

people. In order to guarantee quality of data in such an environment an additional
model regulating the publishing process is required, which prevents foreseeable misuses.
To support this requirement the established SEAL architecture was extended with a
workflow component which regulates the publishing process. In the following we will
begin with introducing the concept of a publishing workflow in general. Afterwards we
explain how we instantiated this generic component in OntoWeb.

Publishing Workflows

A publishing workflow is the series of interactions that should happen to complete
the task of publishing data. Business organizations have many kinds of workflow.
Our notion of workflow is centered around tasks. Workflows consist of several tasks
and several transitions between these tasks. Additionally workflows have the follow-
ing characteristics: (i) they might involve several people, (ii) they might take a long
time, (iii) they vary significantly in organizations and in the computer applications
supporting these organizations respectively, (iv) sometimes information must be kept
across states, and last but not least, (v) the communication between people must be
supported in order to facilitate decision making. Thus, a workflow component must be
customizable. It must support the assignment of tasks to (possibly multiple) individual
users. In our architecture these users are grouped into roles and tasks are represented
within a workflow as a set of transitions which cause state changes. Each object in the
system is assigned a state, which corresponds to the current position within the work-
flow and can be used to determine the possible transitions that can validly be applied
to the object. This state is persistent supporting the second characteristic mentioned
above. Due to the individuality of workflows within organizations and applications we
propose a generic component that supports the creation and customization of several
workflows.

In fact, each concept in the ontology, which is used to capture structured data within a
portal, can be assigned a different workflow with different states, transitions and task
assignments. As mentioned above, sometimes data is required to be kept across states.
For example, envision the process of passing bills in legislature, a bill might be allowed
to be revised and resubmitted once it is vetoed, but only if it has been vetoed once. If
it is vetoed a second time, it is rejected forever. To model this behavior, the state ma-
chine underlying our workflow model needs to keep information that “remembers” the
past veto. Thus, variables are attached to objects and used to provide persistent infor-
mation that transcends states. Within our approach variables also serve the purpose
of establishing a simple form of communication between the involved parties. Thus,
each transition can attach comments to support the decision made by future actors.
Also meta data like the time and initiator of a transition is kept within the system.

191

12 OntoWeb

Workflow in the OntoWeb Portal

Figure 12.3 depicts the default publishing workflow within the OntoWeb portal. In
the portal there exist three different types of user roles: wuser, reviewer and manager.
Typically, all portal users have assigned the role wuser, additionally they might be
reviewer or manager. Furthermore, there exist three states: private, pending, and

published.

I | »

1 | 4+

] = .Illl
E\ /

Figure 12.3: Publishing workflow in the OntoWeb portal (i)

In the private state the respective object is only visible to a user himself, the pending
state makes it additionally visible to reviewers. In the published state, a given object
is visible to all (possibly anonymous) users of the portal. If a user creates a new
object!! the object is in private state. If a user has additionally either a reviewer
or a manager role the published state is immediately available through the publish
transition. For “normal” wusers such a transition is not available, instead the object
can only be sent for a review leading to the pending state. In the pending state either
managers or reviewers can do the transition to the published state (by applying the
transition publish) or retract the object leading back to the private state.

The reject transition deletes the object completely. When an object is in the private
state, only the user who created it and users with manager roles can view and change

UThis is currently only true within the portal, the content syndicated from other OntoWeb member
web sites is trusted. We assume that this kind of data already went through some kind of review.

192

12.2 SEmantic portAL (SEAL) of OntoWeb

it. Once an object is in published state the modification by the user who created it
resets the object into pending state, thus the modification must be reviewed again.
This does not apply to modifications by site managers.

We will illustrate the publishing process by an example from the OntoWeb portal itself.
Figure 12.4 shows a compilation of a series of relevant parts of screenshots that were
captured during a typical review process. The numbers shown in the figure refer to
the following actions:

o OntoWeb
S 2 new conference . ;
o202 2 wladlas Page for new confersnoe .. 2. Submit for review
™" 1. Status: visible
=—— 4. Pending review
review list et e nn-:n-.dl:,n
L tfvindified : May 24, 11:44 — ;;:.::g;.;];:n:
OSZRS2002 11:44 AW o
. g D)
Reviewer 5. Publish — _
3. Status: pending 6. Status:
published

Figure 12.4: Publishing workflow in the OntoWeb portal (ii)

1. After a user entered a new conference, this newly created content object has the
state wvisible. It is now visible for the user, but not for other users.

2. The user submits the object for review.

3. The object has now the state pending.

12

4. A reviewer'? is assigned to review the pending object.

12Currently all reviewers get reviewing requests, in the future it is planned to assign reviews according

193

12 OntoWeb

5. After checking the content the reviewer publishes the object.

6. The object is now in the state published and therefore publicly available.

However, the work on the OntoWeb portal is an ongoing effort, we will now sketch the
future directions for the development of the OntoWeb portal.

12.2.6 Future Directions

It is important to mention that in our current SEAL architecture (and implementation)
we mainly apply static information integration building on a warehousing approach.
Means for dynamic information integration are currently approached for Peer-2-Peer
(P2P) networks, e.g. in the PADLR project'®. P2P applications for searching and ex-
changing information over the Web have become increasingly popular. The “Edutella”'4
approach (cf. (Nejdl et al., 2002b; 2002a)) builds upon the RDF meta data standard
aiming to provide an RDF-based meta data infrastructure for P2P applications, build-
ing on the recently announced JXTA framework!®.

Currently there exist two other ontology-based portals developed by members of On-
toWeb, viz. the Roadmap Portal'6 and the Edu Portal'”, each portal having its own
ontology as a backbone. Currently the next task for the AIFB and related partners is
to integrate all three portals. There exist three different layers for a possible integration
approach, each requiring different steps.

1. Meta data integration:

a) Align the three ontologies to meet different requirements'®.

b) Publish meta data according to aligned ontology in all three portals.

to personal profiles of the reviewers.

3PADLR stands for “Personalized Access to Distributed Learning Repositories”, see
http://wuw.learninglab.de/workspace/padlr/

“Edutella project, see http://edutella. jxta.org

I5IXTA “s short for Juztapose, as in side by side. It is a recognition that peer to peer is juztapose to
client server or Web based computing — what is considered today’s traditional computing model”,
cf http://www.jxta.org/

Roadmap Portal, provided by the Universidad Politecnica de Madrid (UPM), see
http://babage.dia.fi.upm.es/ontoweb/wpl/0OntoRoadMap/index .html

'"Edu Portal, provided by the Knowledge Media Institute at the Open University and the Queen
Mary University of London, see http://gmir.dcs.qmul.ac.uk/ontoweb/

18 An approach for mapping ontologies is e.g. presented in (Maedche et al., 2002a). The OntoMap
plugin presented in Section 8.3 already provides an initial implementation for generating mappings.
However, all related partners in OntoWeb agreed to start with one single consolidated ontology
and to extend the scenario in the future. Main reason for this is to get up and running integrated
portals as soon as possible.

194

12.2 SEmantic portAL (SEAL) of OntoWeb

c¢) Syndicate meta data from Edu/Roadmap Portals into the Semantic Portal.

d) Note: This means that contents of the Edu/Roadmap Portals are exported
to RDF (according to the OntoWeb ontology) and syndicated into the Se-
mantic Portal. This would actually reflect the current architecture of On-
toWeb.

2. Layout alignment:

a) Use the layout from the OntoWeb Semantic Portal, i.e. use Edu/Roadmap
Portal technology, but align layouts to the Semantic Portal to create a
uniform look & feel

b) Unify website layout to the one from the Semantic Portal by using the style
files of the Semantic Portal.

¢) Add additional navigational tabs in the interface of the Semantic Portal for
Edu/Roadmap Portals that link to the other — still separate — portals.

d) Note: This means that the existing portals remain separate, but a uniform
look is provided and the top level navigational structure is the same for all
three portals.

3. Technology integration:

a) The content and functionalities of the Edu/Roadmap Portals are transferred
into the Semantic Portal, ¢.e. the Semantic Portal is extended by needed
functionalities and covers afterwards also the content and functionalities of
the Edu/Roadmap Portals.

b) Note: This requires the complete re-implementation of the Edu/Roadmap
Portals.

Discussions between all related partners led to the consensus to head for the first
option. This consensus is mainly based on the following reasons:

e The solution fits perfectly in the overall OntoWeb portal architecture. The two
additional portals are treated as any other web site of OntoWeb members that
contributes meta data to the OntoWeb Semantic Portal via syndication.

e The Semantic Web is likely to be highly distributed, the three portals serve as
show cases for Semantic Web technologies and should reflect that.

195

12 OntoWeb

12.3 Evaluation Efforts

In this section we present work on evaluation of ontology based tools. This work was
performed as part of the work of the “Special Interest Group on Tools (SIG4)” of the
OntoWeb thematic network and it presents the state-of-the-art on evaluation of such
tools. We introduce the aims of the EON workshop in Section 12.3.1 and illustrate the
experiment that was carried out as part of it in the Section 12.3.2 and our contribution
to the experiment in Section 12.3.3. After presenting the results of the workshop in
Section 12.3.4, we finally sketch future directions for evaluation research on ontology
based tools in Section 12.3.5.

12.3.1 Workshop Description

In the “Evaluation of Ontology-based Tools (EON 2002)”'? workshop the intention was
to bring together researchers and practitioners from the quickly developing research ar-
eas “ontologies” and “Semantic Web”. Currently the semantic web attracts researchers
from all around the world. Numerous tools and applications of Semantic Web technolo-
gies are already available and the number is growing fast. However, deploying large
scale ontology solutions typically involves several separate tasks and requires applying
multiple tools. Therefore pragmatic issues such as interoperability are key if industry
is to be encouraged to take up ontology technology rapidly.

The main aim of this workshop was therefore to encourage and stimulate discussions
about the evaluation of ontology-based tools. For the future this effort might lead to
benchmarks and certifications.

The workshop was divided in two parts: (i) presentations of accepted papers and
(ii) discussion of the “EON 2002 Experiment”. The experiment was initiated during
the OntoWeb—3 meeting?® by the participants of the Special Interest Group on Tools
(SIG3). The general question was how to evaluate ontology related technologies. To
brake down this rather complex task into a pragmatic one, the group decided to focus
on ontology engineering environments (OEE) as a starting point. These tools are
rather common and widely used by the Semantic Web Community and some of the
participating members were even tool provider themselves.

It was not intended to provide “yet another ranking of tools”, e.g. XML.com recently

YEON 2002, held on 30th September 2002 in Siguenza, Spain (cf. (Sure & Angele, 2002)). The
workshop was co-located with the conference EKAW 2002 (cf. (Gomez-Pérez & Benjamins, 2002)).
Further information, including the proceedings and the experiment contributions, can be found at
http://km.aifb.uni-karlsruhe.de/eon2002/.

20The OntoWeb-3 meeting was held from 12-14th June 2002 in Sardinia, cf.
http://www.ontoweb.org/ for further information.

196

12.3 Evaluation Efforts

provided a list of currently available “ontology editors”!. Interestingly enough, many

of the tools were unknown even to participants of the OntoWeb Special Interest Group
on Tools (SIG3). Tools were listed with their sets of features, but simply listing those
features does unreveal how to use them for modelling! Thus, in the experiment it
was rather intended to stimulate discussions about design rationales behind the tools
that point to directions for future evaluation series. Therefore, an important aspect of
the experiment was to keep it as open as possible without putting constraints on the
participants to get unbiased pictures of their modelling habits.

For the future the experiment should provide a first basis for “ontology developers
guidelines” to support their decision which tool to use for modelling ontologies for
specific purposes.

The experiment was based on a domain description, wviz. the travelling domain, for
which an ontology should be modelled by using a preferred OEE. Submissions to the
experiment should include (i) a brief description about design decisions and (ii) the
resulting ontology itself. The description should answer the following items with respect
to the used OEE:

What modeling decisions need to be considered during the design?

What limitations occur?

e ... and why?

What problems arise due to using different representation languages for export?

e What are the lessons learned from modelling this experiment?

The generated ontologies should be exported into a common representation language.
However, most OEEs were designed having specific design rationales from represen-
tation formalisms in mind. Therefore they typically have a strong support for their
“home language”. To make the results more comparable people were encouraged to
provide not only an “home language” export, but also an RDF(S) export.

The next Sections 12.3.2 and 12.3.3 contain the domain description for the travelling
domain and a description on how the domain was modelled with OntoEdit. We then
conclude by presenting some overall results of the workshop in Section 12.3.4.

12.3.2 Travelling Domain Description

This description of the domain was initially taken for the experiment from (Gomez-
Pérez et al., 2002a).

*'XML.com, cf. http://www.xml.com/pub/a/2002/11/06/ontologies.html

197

12 OntoWeb

198

“Let’s consider that we are in charge of developing an application for our
travel agent in New York, and that we have decided to make use of an
ontology to represent explicitly the knowledge that will be used by it. We
will focus to travelling and lodging, but leisure time, cultural events, tours,
etc., will be considered in further stages of our ontology.

We know that when a client makes a trip, he chooses: transport and accom-
modation.

Hence, we start by determining the means of transport that are currently
available for a travel agency. We will have in our ontology the following
ones: planes, trains, cars, ferries, motorbikes and ships. There are no other
kinds of transport. From all of them, the travel agency is specially interested
in flights, as it is the means of transport mostly used by its customers. In
fact, customers are usually interested in the kind of planes that they will fly
on: Is it a Boeing, or is it an Airbus? Furthermore, they are even interested
in the specific model of the plane in which they will fly (a Boeing 717 or
a Boeing 777). We know that each model of transport belongs only to one
kind of transportation (e.g., it’s either a plane, or a bus, or a car, etc.).

For each flight, the agency knows: the arrival date, the departure date, the
arrival city, the departure city, the arrival airport, the departure airport,
the prices on first class, business class and economy class, the departure
time and arrival time. Time and date will be considered as absolute date.

As for the destinations of customers’ travels, they are diverse. Some cus-
tomers ask for trips to the Statue of Liberty in New York; other ask for
trips to Washington, San Francisco, Seattle. There are customers inter-
ested 1n visiting Europe: the most common destinations are London, Paris
(either the city or Disneyland Paris) and Madrid. Others are interested in
more places, such as Cairo (Egypt). We know that the client can use the
following transport to mowve inside the city: underground, city buses, tazis,
and rental cars.

Concerning hotels, the agency recommends in all the cities: hotels, and Bed
and Breakfasts. Hotels rank from 1 star hotels to & star hotels and each
hotel belongs to one of these five categories. For all of them, the agency
knows their facilities: address, telephone number, URL, capacity, number
of rooms, available rooms, descriptions, dogs allowed, distance to the beach,
distance to skiing, etc. The agency also knows the facilities of the rooms:
number of beds, rates, TV available, Internet connection, etc.

Once we have defined what are the main elements in our domain, we can go
further and try to represent some common sense constraints and deductions
that can be performed with them. For instance, we know that it is not

12.3 Evaluation Efforts

possible to go from America to Europe by train, car, bike nor motorbike.
Having this information in our system will avoid it to search for possible
itineraries using these means of transport when a customer wants to travel
to FEurope. Another example of this kind of constraint may be related to
the distance between the origin and destination of our trip and the available
means of transport. If distance between two cities is between 400 and 800
miles, and there is no airport close to one of them, the customer will prefer
going by car or by train. The customer also prefer to go by car or train if
he hates travel by plane. Distances can be either in km or miles.

Finally, we want to represent knowledge about a concrete trip. John is
travelling from Madrid to NY on April 5th, 2002 to see the Statue of Liberty
and continuing on to Washington on April 11th. He plans to return to
Madrid on April 15th. He has selected two hotels belonging to the Holiday
Inn chain in New York and Washington.

http:/ /www.boeing.com/commercial /717/71 Ttechnical. html provides Boeing
717 technical description.”

12.3.3 Engineering the Model with OntoEdit

For engineering the travelling domain model with OntoEdit (¢f. (Sure, 2002c¢)) we
performed the two Knowledge Meta Process steps “Kickoff” and “Refinement” of the
On-To-Knowledge Methodology.

Kickoff

In the first step, a semi-formal description of the ontology is created by sketching the
most relevant elements of the domain. The early stages of ontology development are
often driven by brainstorming like knowledge acquisition sessions. In other projects
(cf., e.g., Chapter 11) we made good experiences with creating mind maps™ as a
first draft of relevant elements for a domain. Especially domain experts who were
not familiar with modeling preferred using a mind mapping tool instead of directly
modeling with an ontology editor. Figure 12.5 shows the mind map™ created from
the natural language description of the domain. We rely on a commercial tool for the
creation of electronically mind maps™, the MindManager 2002 Business Edition??.

When collaborating with domain experts the time needed for knowledge acquisition is
essential, especially in industrial environments. The advantage of using mind maps™
is (i) the quick generation of a graphical representation of relevant domain elements

*MindManager 2002 Business Edition, http://www.mindjet.com/

199

12 OntoWeb

@dMindManager - [Experiment Mindmap.mmp] B
= M Datel Bearbeiten Ansicht Einfigen Format Multi-Maps Extras Fenster Hife -8 x
DEd & 29V A LEB o @Q w - FAa-0- M 12 .

£ * Standardzweige rA N B UmiE A-F-E@-@ T A |

Boeing 717
Boeing 777
Airbus ..

Plane

Arrival Date
Departure Date

transport

Means of transport

Departure City
Arrival Airport
Departure Airport
First class

Business class
Economy class

Hotel

Rating: 1 to 5 stars

Bed and Breakfast

Address
Telephone number

Travelling Domain

Statue of Libierty intdew York
ashimgton

Landan _Accomodation
Destination accomodation

Known facilities

T available per room
Intemet connection per roorm
L« _’l_I
vy Travelling Domain

Hilfe mit F1 Keine Auswahl 16.09.2002 11:02 -

LHRPEVOOMe R ENE@E~= b e @4 (R %

Figure 12.5: MindMap of the travelling domain

(ii) by using an intuitive and rather well-known tool. The creation of this mind map™
took less than 20 minutes.

However, when it comes to terms of a formal model of the domain, this representation
is no longer suitable. This representation does not clearly distinguish between the
notions of concepts, relations etc. The only semantics for connections (branches or
directed edges) in a mind map™ is that these elements are “associatively linked”. Closer
related elements are typically marked with the same colors. Typically a mind map™
represents the key concepts and their relationships and to formalize it into an ontology,
the ontology engineer has now to decide which elements are concepts, how is the
hierarchical “is—a” structure and which elements are other named relationships. In
some cases one might find prototypical instances, but constraints like the ones given
at the end of the domain description are typically not found in mind maps™.

200

12.3 Evaluation Efforts

Refinement

The Mind20nto framework supports
the transfer of the mind map™ into
OntoEdit (cf. Section 7.2). To for-
malize the mind map™ we followed
the steps (i) creation of an “is-a” hi-
erarchy of concepts, (i) adding at-
tributes of concepts and relationships
between concepts other than “is—a”,
(iii) including prototypical instances
and (iv) adding axioms that repre-
sent constraints and common sense
deductions. At several points we
needed to introduce further concepts,
that were not obvious at first hand
from the domain description but nec-
essary to build a complete model.
E.g. we introduced a concept Journey
to combine several trips, some oth-
ers are mentioned in the text below.
This reflects the fact that the mind
map™ is typically covering only the
most relevant elements of a domain,
but is not intended to represent more
complex relationships in a formally
consistent way.

Figure 12.6 shows the resulting con-
cept hierarchy. When defining a Trip
we made the following assumption
to narrow down multiple possible in-
terpretations in the description: Not
only for flights, but for every Trip
the arrival and departure date, ar-
rival and departure city is known.

1. http:/ /www.ontoweb.org,/sig3/experiment,/ontoedit

General fxioms | InFerencing | Analyzer | Yisualiz
Zoncepts & Relations | Instances | f

IZoncept hierarchy Relations

Q| & +| -] e
B~ DEFAULT_ROOT_CONCEPT
.- @Trip
L. @Flght
). @Means_of _transpart

=) @ Accomodation

= @ Hatel

. @0ne_Star_Hotel
..... (& Two_Skars_Hotel
‘... @ Three_Stars_Hotel
..... (@ Four_Stars_Hatel
i (BFive_Stars_Hotel

..... {(#EBed_and_Breakfast

(=) @ Destination

Figure 12.6: Concept hierarchy

A Flight is a specialization of Trip for which in addition the arrival and departure
airport and the prices for first, business and economy class are known. The grey
shaded relationships shown in Figure 12.7 illustrate the inherited relationships for the
selected concept Flight, i.e. the domain of them is Trip. The relationships without

shading have as a domain Flight itself.

201

12 OntoWeb

1. http://www.ontoweb.org,sig3/esperiment/ontoedit (C:, home'\eon200240

ceneral dxioms | Inferencing | Analvzer | ‘isualizer | Debugger | Damain-L

Concepks & Relations Instances I Relation axioms I Query
Concepk higrarchy Felations Range
& +| - | & |[|arrival_ty [estination
= DEFALLT_ROOT_CONCERT EIOVELBEED pTRING
- . departure_city Destination
E"'GTHD _ departure_date STRING
(& Flight part_of Nourmey
(= @ Means_of_transport ckay_at_accomodation Wocormodation
(BPlane arrival_airport GTRING
@ Train Heparture_airport GTRING
@car means_of_transport Flane
.@Ferr price_business_class TMTEGER
’ ¥ . price_economy_dlass MMTEGER.
: gm:turblke price_first_class TMTEGER.
(@ 5hip

Figure 12.7: Relationships of Flight

We made some simple assumptions for defining ranges of the relationships: e.g. the
dates are coded as STRING which directly points to the XML Schema definition
for strings (http://www.w3.org/2001/XMLSchema#String) — the same holds e.g. for
prices/INTEGER. The relationship MEANS OF TRANSPORT is firstly defined for Trip with
the range Means of transport. We then refined it for Flight by specializing the range to

Plane that is a subconcept of Means of transport (cf. Figure 12.8).

1. http:/ /www.ontoweb.org/sig3/experiment,/ontoedit (C:\ home eon2002%0

ceneral Axioms | Inferencing | Analyzer | Wisualizer | Debugger | Dar
Concepts & Relations Inskances | Relation axioms | G
IZoncepk hierarchy Felations Range
Q& +] -] e anufactured_by [Manufacturer
= GDEFALLT_ROOT_COMCERT ¥RENAME PTRING
...GTrip
= @Means_af _transport
§ i (@Flane

L. (@ Train

Figure 12.8: Relationships for Plane

202

12.3 Evaluation Efforts

Accomodation (cf. Figure 12.9) has the subconcepts Hotel and Bed and Breakfast.
Beside relationships for the facilities mentioned in the description (ADDRESS,
AVAILABLE ROOMS etc. ..) one can see relationships to Room and City.

1. http:/ /www.ontoweb.org/sig3/experiment /ontoedit {C: home'eon2002'.0

Gzeneral Axioms | Inferencing | Analvzer | Misualizer | Debugger | C
Concepts & Relations I Instances | Relation axioms
_oncept higrarchy F.elations Fange
A&+ - | e |feddress TRIMG
= ADEFALLT_ROOT_CONCEPT vailable_rooms MTEGER
- . apacity GTRING
- @ Trip escription S TRING
(®Means_of_transport istance_to_beach MTEGER,
= @ Accomodation istance_to_sking MTEGER.
= @ Hotel ogs_allowed EOOLEAN
5 L. @One_Star_Hatel a5_room RF":"""
i {(®Two_Stars_Hotel n_city ity
@Three_Stars_Hotel umber_of_rooms [IMTEGER
o = = elephone_number STRIMG
= {(®Four_Stars_Hotel ¥ =TRING
i (®Five_Stars_Hokel

Figure 12.9: Relationships of Accomodation

To model the star ranking schema for hotels we added further specializations of Hotel,
e.g. One-Star-Hotel (see later in the subsection about instances how we model a partic-
ular hotel as an instance). To model that each hotel belongs to one star category, we
defined Hotel as an “abstract” concept, i.e. there are no instances of this concept al-
lowed, and all subconcepts like One-Star-Hotel as “concrete” concepts (cf. Figure 12.10).
Same holds e.g. for Means of transport and its subconcepts.

x|

£ Edit One_star_Hotel

External repres

IHDtEI External representation{en) Dacurnentation

IOnE_Btar_H otel Language Docy

Instantiakion

Iabstra ot Instantiation
Il: oncrete ll

External Repre

Figure 12.10: “Abstract” vs. “concrete” concepts

203

12 OntoWeb

We introduced Destination as a superconcept of City (¢f. Figure 12.11). For further
axioms on top we also included Attraction, Country and Continent. The concepts are
related via the LOCATED IN relationship, e.g. an Attraction 1s LocaTED IN a City, a City
1s LOCATED IN a Country and a Country 15 LOCATED IN a Continent. As shown later this
relationship is transitive. City and Attraction are also subconcepts of Destination, i.e.
they are multiply inherited. Alternatively one could consider to add Destination as a
subconcept of Place, too. In the current scenario that would have no effect. Modelling
it this way seemed more intuitive to us.

Last but not least, a Journey has potentially many parts, ¢.e. it can be related via
HAS PART to many instances of Trip that belong to this Journey. For completeness
we included also the inverse relationship pPART or for Trip with the range Journey and
defined these two relationships as invers (see later paragraph on axioms).

v http:/ /www.ontoweb.org,/ sig3,/experiment; ontoedit {C:\home',eonZ002%

General Axioms | Inferencina | Analyzer | Visualizer | Debugger | Daomair
Concepts & Relations Instances | Relation axioms | et
I_oncept higrarchy: Felations Fange
A&+ - | | name STRING
= GDEFALLT_ROOT_CONCERT as_airport FOOLEAM
- T - as_local_transport | ocal_transport
@Trip osts_accomodation Accomodation
- @Means_of_transport ocated _in Caunktry
.- @Accomodation
). @ Destination
L @dity
i (Maktraction

Figure 12.11: Relationships of City

We modelled several instances, e.g. shown in Figures 12.12, 12.13 and 12.14?3. Part of
them were given in the first part of the description (e.g. the cities New York, Washington
etc. and the attractions Statue of Liberty and EuroDisney), others were given in the
last section with an example journey for John (c¢f. Figure 12.14). As shown, John
makes two flights (from Madrid to NY and from Washington to Madrid) and one trip
with a motorcycle (from NY to Washington).

2Tt is noteworthy that the instances shown in Figure 12.13 are not directly instances of
Means of Transport, but rather of it’s subconcepts. However, OntoEdit shows in this instance
view for a selected concept all instances from the concept itself and its subconcepts.

204

12.3 Evaluation Efforts

ww.ontoweb.org/si

General Axioms | Inferencing

/experiment /ontoedit

| analvzer | visualizer |

Debuge
Concepts & Relations Instances Relation axioms
KConcept hierarchy Instances
alal# | effee

[@DEFALLT_ROOT_CONCERT
- @ Trip

. (@Means_of _transport
- @ Accomodation

=.. @ Destination

@ity

(@ Attraction

@ Journey

. @Manufacturer

. @Flace

. @Room

. @Local_transport

-~ 3 Mew_vark
------ # located_in{USA)
- 3 Washington

+-) San_Francisco

3 3 Seattle
+- 3 London
- 3 Paris

- {3 Madrid
3 - 3 Cairo

% http:/ /www.ontoweb.org/sig3/experiment;/ontoedit (C: home' eon200

Alaf+|-|e

General Axioms | Inferencing | analvzer | visualizer | Debugger |
Concepts & Relations Instances Relation axioms
Concept hierarchy Inskances

(& Atkraction

m- @ Trip

. (@ Accomodation
. @ Destination
@ity

... (@ Attraction

= (BDEFALLT_ROCT_COMCERT

.(@Means_of _transport

[€3 EurcDisney
located_in(Paris)
[€3 Statue_of_Liberty
----- # located_in(Mew_York)

Figure 12.12: Instances of City and Attraction

v http://wew.ontoweb.org/sig3/experiment fontoedit (C: home' eon2002' 0

General Axioms I Inferencing | analveer | visualizer | Debugger |
Concepts & Relations Instances Relation axioms
IConcept higrarchy Inskances

alal+|-|ef

@ Means_of_transpork

@ Trip
=) @Means_of_transport

i @Maotorbike

=8 3 DEFALLT_ROOT_CONCEPT

=63 Boeing_747

=) @ Bosing_717

13 Harley_Davidson

manufactured_by(Boeing)
- % bype_name("747")

oo g manufackured_by(Boeing)
L@ type_name("717

.1 http:/ /'www.ontoweb.org,/sig3/experiment /ontoedit {C: home" eonZ0i

General Axioms | Inferencing | anavezer | Visualizer | Debugger
Concepts & Relations Instances Relation axioms
IZoncept hierarchy [nskances
&+ - e ||® Hotel

=) GDEFAULT _ROOT_COMCEPT
0. @ Trip

@Means_aof_transport

EI @ Accomodation

i . (@Hotel

i (@Bed_and_Breakfast

- 8 Holiday_Inn_MY
-~ il Holiday_Inn_washington

Figure 12.13: Instances of Means of transport and Three Stars Hotel

205

12 OntoWeb

ww.ontoweb.org,/sig3/experiment;/ontoedit {C: home' eonZ2002% 0

General Axioms | Inferencing | anabezer | Wisualizer | Debugger | Domain-Le;

Concepts & Relations Instances Relation axioms Query Tt
KConcept hierarchy nstances

af] | -[efforn

= ADEFALLT ROOT COMCERT - @ Madrid_to_NY

. @Trip part_of{Johns_journey’
(@Flight departure_airport{"Madrid")
. ®Means_of _transport artival_airport{"N¥ JFK")
. @ Accomodation departure_datel"april Sth 2002")
.. @ Destination means_of_transport(Boeing_747)
. @ Journey departure_city(Madrid)
. @Manufacturer arrival_city(Mew_tork)
- @Place stay_at_accomodation{Holiday _Tnn_M
. @Room shington_fMadrid

part_of{Johns_journey) [nstances

departure_airport("washington™) @ Trip

arrival_airport{"Madrid") = 3 MY_to_Washington

departure_date("april 15th 2002") part_of{ Johns_journey)

means_of _transportiBoeing_747) departure_city{New_York)
departure_city(Washington) arrival_city(Washington)
atrival_city(Madrid) departure_date("april 11th 2002")
means_of _transport{Harley _Davidson)
stay _at_accomodation{Holiday_Inn_Washington)
5 Madrid_to My

B £ Washington_Madrid

i @Local_transport

teseese esseseee

-
-
-
-
-
-

Figure 12.14: Instances of Flight and Trip

On top we defined several axioms: LOCATED IN is transitive (c¢f. Figure 12.15), e.g.
HAS PART is inverse to PART OF (cf. Figure 12.16), the subconcepts of Hotel are pairwise
disjoint (cf. Figure 12.17).

ww.ontoweb.org/sig3 /experiment /onto =10l x|
Debugger | Domain-Lexican | CntoFiler | Identification | Metadata
Disjoint concepts | Rule Editor | General &xioms | Inferencing | Analvzer | Wisualizer
Concepks & Relations I Inskances Relation axioms Query Tool
Felations Relation axioms Transitive relations Ll

=13 located_in ﬂ Transitive relations
1@ (Akbraction, Gty +

foo 38 (Country, Continent)

E b3 (Ciky, Country)
[manuFactured_by
---Ei means_of_transpork

[l

Figure 12.15: Transitive relationships

206

12.3 Evaluation Efforts

=10lx|
Identification | Metadata

Inferencing | Analyzer | ‘isualizer
Relation axioms Cuery Tool

1. http:/ /www.ontoweb.org,/sig3,/experiment,/ontoed

Debugger | Domain-Lexicon | onkoFiler |
Disjoint concepts | Rule Editar | General fxioms |
Concepts & Relations Instances

Felations Relation axioms Inverse relations LI
=@ has_part ;I Relation | Inverse relation I
L b (Journey, Trip) n belongs_to_accomaodation |has_room
+--§3 has_room L has_part part_of
#-E hosts_accomadation = |hosts_accomodation in_city
[150 in_ciky
---E,i internet_connection

Figure 12.16: Inverse relationships

=10l %
Concepks & Relations | Instances | Relation axioms | Query Tool

Debuooer Domain-Lexicon | CntoFiller | Identification | Metadata
Disjoint concepts Rule Editar | General Sxioms | Inferencing | analyzer | Yisualizer

o1 http:/ /www.ontoweb.org/sig3/experiment/ontoedit {

IConcept hierarchy Disjoint concepts

=) I;ﬁl +| - | 4 | disj. concept1 | disj. concepkz I

B E DEFALLT _ROOT _COMNCEPT

2. (B Trip

_@Means_of _transport

|_:_| (® Accomodation

- @Hotel

i i (@One_Skar Hotel
(@ Twio_Stars_Hotel

(@ Three_Stars_Hotel
(®Four_Stars_Hotel

i .. (@Five_Stars_Hotel
... (®Bed_and_Breakfast

Figure 12.17: Disjoint concepts

Cne_Star_Haotel

Two_Stars_Hotel

Cne_Star_Hotel

Three_Stars_Haotel

= ||One_Star_Hotel

Four_Stars_Hatel

Cne_Star_Hotel

Five_Stars_Hotel

Twio_Stars_Hatel

Three_Stars_Hatel

Two_Stars_Hotel

Four_Stars_Hotel

Twio_Stars_Hatel

Five_Stars_Haotel

Three_3Stars_Hotel

Four_Stars_Hotel

Three_Stars_Hatel

Five_Stars_Haotel

Four_5Stars_Hokel

Five_Stars_Hotel

207

12 OntoWeb

A more complex axiom is given in the description by “it is not possible to go from
America to Europe by train, car, bike or motorbike” (without restricting the generality
we excluded bike because it was not given in the previous section for means of trans-
port). We defined a general axiom in F-Logic that can be used to check whether this
constraint holds for all given instances (see also Figure 12.18):

FORALL T check(‘“You cannot travel from North-America to Europe

by train, car or motorbike!’’,T)

<- EXISTS M,D,A

T:Trip[departure_city->>D;arrival_city->>A;

means_of_transport->>M]

AND D:City[located_in->>‘North_America’’]

AND A:City[located_in->>‘‘Europe’’]

AND (M:Train OR M:Car OR M:Motorbike).

Other given constraints can be formalized similar to this (cf., e.g., Section 9.2 for more
examples). To perform a check we simply query for all values of the 2-ary predicate
check.

r1: http:/ /www.ontoweb.org/sig3/experiment/ontoedit {C:\home'eon2002 OntoEdik

Conceots & Relations | Instances | Relation axioms | CQuery Tool
General Axionms Inferencing | Analyzer | Yisualizer | Debugger | Domain-Lexicon
FLogic Axioms S ——
F_xioms EE 8
[#-] inverse

FORLLL T [check("Vou cannhot trawvel from North-ame

or motorbike!™,T))
<- [EXI3TS M,D,A((T:Trip[departure_city->>D;arr

and (D:City[located_in->>"Horth America™]
and (A:City[located in->>"Europe™]
and [M:Train
or [(M:Car
or M:Motorbikel)ll)) 1.

fee] symmektic
E3 [| transitive
g Flogic_axiom1

Figure 12.18: General axioms

OntoEdit can be connected to the inference engine Ontobroker (cf. Section 6.6). We are
thereby able to perform queries for concepts, relationships, instances etc. E.g. we can
ask for all cities and where they are located in. If we enable the axiom for transitivity
of the relationship LocaTED IN (like shown in Figure 12.19) we receive as an answer to
that query that e.g. New York IS LOCATED IN USA (an instance of the concept Country) as
well as the fact the New York 1S LOCATED IN North America (an instance of the concept
Continent).

Disabling the axiom for transitivity of the relationship rocatep N (like shown in

208

12.3 Evaluation Efforts

+1. http:/ /www.ontoweb.org/sig3/experiment/ontoedit {C:\ home' eon2002%0nk =| EI 5[
Concepts & Relations | Instances | Feelation axioms Query Tool | Disjoint concepts | Fuule Editor
General Axioms Inferencing I Analyzer | Wisualizer | Debugger Domain-Lexicon | ontaFiller | Identification | Metadata
ioms FORALL XY =- X#Cityl#located_in-==Y] query |
-] inverse |
] symmetric .

E|J transitive
LBy transitive(located_in)
..... &,/ Flogic_axioml

Hit"#lashington; "http: /v, ontoweb, org//eigl3/experinent fontoedi
Ait"gashington; "http: ffww. ontoweb. org/eigl3/experinent fontoedit"#lorth Auerica
Hit"#3an_Francisco:; "http: /vy, ontoweb. org/sigi/experiment/ontoedit™#U54

Hit"#%an Francisco; "http: /v, ontoweb. org/sigd/experiment/ontoedit™#North dmerica

Figure 12.19: Inferencing with Ontobroker in OntoEdit

Figure 12.20) obviously leads to less answers. Thus, only the fact that New York
IS LOCATED IN USA is derived.

.1 htkp:/ /www.ontoweb.org/sig3/experiment /ontoedit {C:\home',eon20; =lOolxl
Concepts & Relations | Instances | Relation axioms | Query Tool | Disjoint concepts | Rule Editar
General Axioms Inferencing I Analyzer | Wisualizer | Debugger | Domain-Lexicon | OntoFiller Identification | Metadata
oxioms FORALL XY =- X#CityRlocated_in-==Y]. query
] inverse
(| symmetric — - - - ==
D] transitive oedit”#Washington; "http: fAwng, ontoweb, org/sig3sexperinent/ontoedi T #USA
TOE o transitive(located_in) oedit"#ian Francisco; "http://www.ontoweb. org/sigi/experiment/ontoedic#U54A
BJ flogic_axiom1 pedit”"#ieattle; "http: /. ontoweb, org/sig3fexperinent/ontoedi T #U5A
oedit”#London; "http: /A, ontoweb, org/sig3sexperinent/ontoedi T #Eny
oedit"#Paris; "http: /. ontoweb. org/sig3fexperinent /ontoedit #Fra
oedit”§Madrid; "http: /. ontoweb, org/sig3fexperinent/ontoedit #35pa
oedit"#Cairo; "http: /. ontoweb, org/sig3/experinent /ontoedic #E gy
4 [»]

Figure 12.20: Switching axioms off in OntoEdit

12.3.4 Main Lessons Learned in EON2002

We conclude this chapter by summarizing the main lessons learned in the EON2002
workshop.

e There exist at least three main categories in which tools can be divided: (i)
Frame-oriented tools, (ii) Description Logic-oriented tools and (iii) Natural Lan-
guage Processing-oriented tools. From the experiment descriptions and discus-
sions at the workshop we derived the following main distinctions of tools and
related modelling habits of their users. Quite naturally, the usage of a particular
type of tool typically reflected the background of its user since most of the par-
ticipants in the experiment were members of the corresponding tool developing
Crews.

209

12

OntoWeb

210

— Frame-oriented tools included OntoEdit (Sure, 2002c), Protégé (Noy, 2002),
SemTalk (Fillies, 2002) and WebODE (Corcho et al., 2002). Their users
tried to stay as close as possible to the given domain description while mod-
elling the domain ontology (cf. Section 3.2) according to the description.
E.g. they used as concept names the concepts given in the description and
modelled only very few additional concepts, that were in the text not ex-
plicitly stated.

— Description Logic-oriented tools included OilEd (Bechhofer, 2002), Loom
(Gangemi, 2002) and OpenKnoME (Rogers, 2002). Most noteworthy was,
that DL models require a rather complete covering of a domain. Therefore
some users tended to model numerous additional concepts. One included
numerous concepts from a top-level ontology (cf. Section 3.2). Another one
modelled a detailed description of available transport vehicles and included
atypic forms of vehicles such as amphibious vehicles, flying cars or water
taxis.

— Natural Language Processing-oriented tools included TERMINAE
(Aussenac-Gilles et al., 2002). An important aspect for their users is
that the meaning of words and phrases is specific to a domain and can
be inferred by observing the regularities of their use (in documents for
instance). Thus, they also tend to model those concepts given in the
description. The main interest is not to provide a powerful representation
but rather the linkage of an ontology and corresponding texts. FE.g. for
given terminological forms the different occurrences of the corresponding
terms in the text are given as well as an enumeration of used synonyms.
For instance, the terminological form means0fTransport gives the different
occurrences of the term in the text, and it says that other terms in the text,
“kind of transport” and “kinds of transportation”, are used as synonyms
(this example is taken from (Aussenac-Gilles et al., 2002)).

e Another important result of the discussion was regarding the use of the mod-
elled ontologies as a backbone for application systems, e.g. a tourist booking
system. From a systems point of view, the derived models imply different imple-
mentations based on the different notions for modelling constraints. The focus
of the discussion was on the distinction between Frame-based and Description
Logic-based ontologies, since they presented the majority in the experiment.

— In the Frame-based ontologies the constraints were modelled by using pred-
icates that are “true” or “false” (cf. Section 12.3.3). A violation of these
constraints would typically result in an error message, that can be displayed
to users. E.g. when considering the constraint “it is not possible to go from
America to Europe by train, car, bike or motorbike”, one would get an error

12.3 Evaluation Efforts

message if telling the system that one travels by car from Europe to Amer-
ica. In Description Logic-based models, the model itself does not allow for
such facts. However, during the discussion it was unclear how systems based
on such ontologies would handle this.

— In Frame-based ontologies the concept hierarchy is explicitly defined whereas
in Description Logic models the hierarchy is derived by an inference engine
by using subsumption and might change whenever definitions for concepts
change. Compared on a qualitative level, Frame-based ontologies are there-
fore likely to be more stable in their taxonomical structure than Description
Logic-based ontologies. When using ontologies for navigational purposes,
the Frame-based ontologies therefore seem to be more user-friendly, since
users like to follow known paths through navigational structures.

In the end all participants found the discussion and the results very fruitful and agreed
that this workshop as a starting point should lead to more formal evaluations of such
tools.

12.3.5 Future Directions for EON Experiments

It is planned to continue with performing experiments in different directions. A
roadmap for further experiments was set up?* considering different dimensions that
need to be evaluated. Thereby the more general evaluation framework for technology
oriented evaluation presented in Section 4.6 was refined particularly for OEEs.

We will briefly describe the objectives of the experiments, what needs to be done to
set up the experiments, who are the intended participants and what is the expected
output.

Experiment 1. Evaluation of knowledge models

e Objective

— To analyze which aspects can be and cannot be represented in each tool

— To analyze how different ontology aspects must be represented in each tool
o What

— Provide problem description in a domain that must be modelled in each tool

2The author would like to thank Oscar Corcho, Asuncién Goémez-Pérez and Natalya F. Noy, who
initiated this roadmap for future experiments. It was presented by Oscar Corcho at the EON 2002
workshop.

211

12 OntoWeb

— What characteristic does the description needs to fulfill?

* Clear and concise?

* Ambiguous enough? — it allows exploiting the main features of each
tool

— No commitments about how ontologies should be modelled
o Who

— KR?> experts from each group use their own ontology development tool to
model the problem

o QOutput

— Conclusions and guidelines

* Which components can be represented with each tool
* Which information has not been represented

* Which workarounds are needed in each tool to represent components
that are not directly supported in their model (for instance, reification
of n-ary relations, need for creating complex logical axioms to represent
some pieces of information, etc.)

x How to represent axioms or constraints

* How to represent components that allow obtaining new knowledge

Experiment 2. Usability and edition functionality

e Objective

— To analyze the usability of ontology tools.

x Clarity and consistency of the user interface
*x Learning time

x Stability, help system, etc.
o What

— A description of a problem in a domain

— We can reuse the description of experiment 126

o Who

254KR” stands for “Knowledge Representation”.
26That means the description of the EON 2002 experiment *, ¢f. Section 12.3.2.

212

12.3 Evaluation Efforts

— KR experts (usability, stability, clarity of the tool’s knowledge model, etc.)
— KR novices (learning)

* How much training is needed?
o Output

— Conclusions and guidelines

* Which functionalities, knowledge models, etc., are easier to learn and
use

* How much knowledge was represented, how long it took, etc.

Experiment 3. Scalability

e Objective

— To analyze hardware and time resources needed to manage large ontologies

* Thousands of components
o What

— Select the set of ontologies

* Mainly concept taxonomies (e.g., UNSPSC)
x With many relationships between concepts: densely interconnected
graphs (e.g., WordNet, Cyc)
* With many thousands of instances (e.g., UMLS)
— Which measures?

* Time needed to open/save ontologies
* Time needed to show the concept hierarchy
* Time needed to create/update/remove ontology components

* Time needed to compute simple/complex queries Memory resources
needed

o Who
— No special requirements on people
o Output

— Conclusions and metrics

* How large are the ontologies that can be managed in each tool

213

12 OntoWeb

Experiment 4. Navigability

e Objective
— To analyze how ontology tools allow navigating large ontologies

o What

— Select the set of ontologies
* As in previous experiment
— Which measures?

* How easy is it to search for a component (graphically, text based, etc.)

* How easy is it to extend the ontology with new components (concepts,
instances, relations, etc.)

- The user must first have an idea about where are the terms he
needs, how to extend them, whether what he is trying to do has
been already represented somewhere else or not, etc.

* How easy is it to obtain a small part of the ontology
*x How easy is it to integrate components from different ontologies

* How easy is it to read the documentation provided (in whatever formats
it is provided by the tool)

x Eic.
o Who
— No special requirements on people
e Qutput

— Conclusions and metrics

x How large are the ontologies that can be navigated in each tool

* How well did tools perform with respect to the above mentioned mea-
sures

Experiment 5. Interoperability

e Objective

— To analyze how ontologies can be exchanged (exported and/or imported)
between:

x Tools

214

12.3 Evaluation Efforts

- Ontology-related tools
- General knowledge & software-engineering tools
* Ontology languages

o What

— Select the set of ontologies

% The ontologies developed in experiment 127
o Who
— KR experts to evaluate results
e Qutput

— Conclusions, metrics and guidelines:

* Quality of exportations and importations
* Interoperability

x How exported/imported ontologies can be integrated in different sys-
tems

* In which cases it is better to use one ontology tool or another for dif-
ferent domains and with different modelling/reasoning needs.

Experiment 6. Other functionalities

e Objective
— To create a list of functionalities of each tool
The proposal for the next EON 2003 workshop is already submitted (¢f. (Sure et al.,

2003b)), it is currently being discussed which of the described experiments will be
carried out as part of the workshop.

2TThat means the description of the EON 2002 experiment, ¢f. Section 12.3.2

215

12 OntoWeb

216

Part V

Related Work & Conclusions

“The 1mportant thing is not to stop questioning.”
— Albert Einstein

217

13 Related Work

This part contains (i) related work and (ii) conclusions.

In this chapter we present related work on methodologies
in Section 13.1, on tools in Section 13.2 and on related case
Overview studies in Section 13.3.

13.1 Related Work on Methodologies

A first overview on methodologies for ontology engineering can be found in (Fernandez-
Lopez, 1999). More recently, there have been joint efforts of OntoWeb members (cf.
Chapter 12), who produced an extensive state-of-the-art overview of methodologies for
ontology engineering (cf. (Gémez-Pérez et al., 2002b; Fernandéz-Lopez et al., 2002)).
There exist also deliverables on guidelines and best practices for industry (cf. (Léger
et al., 2002a; 2002b)) with a focus on applications for E-Commerce, Information Re-
trieval, Portals and Web Communities. With respect to this work, especially the
following approaches are noteworthy.

Since we believe that one of the main strong points is the tool support we offer for
our methodology, we already give pointers to tools in the next section, whenever tool
support is available for a methodology.

CommonKADS (Schreiber et al., 1999) is not per se a methodology for ontology de-
velopment. It covers aspects from corporate knowledge management, through knowl-
edge analysis and engineering, to the design and implementation of knowledge-intensive
information systems. CommonKADS has a focus on the initial phases for developing
knowledge management applications, we therefore relied on CommonKADS for the
early feasibility stage. E.g. a number of worksheets is proposed that guide through the
process of finding potential users and scenarios for successful implementation of knowl-
edge management. CommonKADS is supported by PC PACK, a knowledge elicitation
tool set, that provides support for the use of elicitation techniques such as interviewing,
i.e. it supports the collaboration of knowledge engineers and domain experts.

219

13 Related Work

Cyc (Lenat & Guha, 1990) arose from experience of the development of the Cyc knowl-
edge base (KB)!, which contains a huge amount of common sense knowledge. Cyc
has been used during the experimentation in the High Performance Knowledge Bases
(HPKB), a research program to advance the technology of how computers acquire,
represent and manipulate knowledge?. Until now, this methodology is only used for
building the Cyc KB. However, Cyc has different micro-theories showing the knowledge
of different domains from different viewpoints. In some areas, several micro-theories
can be used, and each micro-theory can be seen from different perspectives and with
different assumptions. The Cyc project strongly enhanced the visibility of the knowl-
edge engineering community, but at the same time it suffered from his very high goal
to model “the world”. Recently this goal has been lowered and now one has divided
this too complex task into smaller ones,e.g. the Cyc top-level ontology was separated.

Recently, the DOGMA modelling approach (Jarrar & Meersman, 2002; Spyns et al.,
2002a) has been presented. The database-inspired approach relies on the explicit de-
composition of ontological resources into ontology bases in the form of simple binary
facts called lexons and into so-called ontological commitments in the form of descrip-
tion rules and constraints. The modelling approach is implemented in the DOGMA
Server, e.g. underlying (jointly with AIFB technology) the OntoWeb Semantic Portal
(¢f. Chapter 12), and accompanying tools such as the DOGMAModeler tool set.

The Enterprise Ontology (Uschold & King, 1995) (Uschold et al., 1998) proposed
three main steps to engineer ontologies: (i) to identify the purpose, (ii) to capture
the concepts and relationships between these concepts, and the terms used to refer
to these concepts and relationships, and (iii) to codify the ontology. In fact, the
principles behind this methodology influenced many work in the ontology community
and they are also reflected in the steps kickoff and refinement of our On-To-Knowledge
Methodology and extended them. Explicit tool support is given by the Ontolingua
Server, but actually these principles heavily influenced the design of most of the more
advanced ontology editors.

The KACTUS (Bernaras et al., 1996) approach requires an existing knowledge base
for the ontology development. They propose to use means of abstraction, i.e. a bottom-
up strategy, to extract on ontology out of the knowledge base as soon as an application
in a similar domain is built. There is no specific tool support known for this method-
ology.

METHONTOLOGY (Gomez-Pérez, 1996; Fernandez-Lopez et al., 1999) is a
methodology for building ontologies either from scratch, reusing other ontologies as
they are, or by a process of re-engineering them. The framework enables the construc-
tion of ontologies at the “knowledge level”. The framework consists of: identification

!Cyc knowledge base, see http://www.cyc.com
*HPKB, see http://reliant.teknowledge.com/HPKB/about/about . html

220

13.2 Related Work on Tools

of the ontology development process where the main activities are identified (evalua-
tion, configuration, management, conceptualization, integration implementation, etc.);
a lifecycle based on evolving prototypes; and the methodology itself, which specifies
the steps to be taken to perform each activity, the techniques used, the products to be
output and how they are to be evaluated. METHONTOLOGY is partially supported
by WebODE. Our combination of the On-To-Knowledge Methodology and OntoEdit
is quite similar to the combinations of METHONTOLOGY and WebODE. In fact,
they are the only duet that has reached a comparable level of integration of tool and
methodology. However, we not only cover the development of ontologies, but have a
much broader spectrum and include e.g. also the subsequent usage of ontology-based
applications in our methodological framework. Also the support for collaboration is
much stronger in the On-To-Knowledge Methodology and OntoEdit.

SENSUS (Swartout et al., 1997) is a top-down and middle-out approach for deriving
domain specific ontologies from huge ontologies. The methodology is supported by On-
tosaurus. The approach does not cover the engineering of ontologies as such, therefore
offers a very specialized methodology.

TOVE (Uschold & Grueninger, 1996) proposes a formalized method for building on-
tologies based on competency questions. We found the approach of using competency
questions, that describe the questions that an ontology should be able to answer, very
helpful and integrated it in our On-To-Knowledge Methodology.

13.2 Related Work on Tools

An early overview of tools that support ontology engineering can be found in (Duineveld
et al., 2000). However, like in the previous section on related work on methodologies,
there have been recently joint efforts of OntoWeb members (¢f. Chapter 12), who
provided an extensive state-of-the-art overview on ontology related tools, including
Ontology Engineering Environments (cf. (Gomez-Pérez et al., 2002a)). A sign for the
growing interest in Ontologies and tools that support ontology engineering is the (also
recently) published comparison of ontology editors on XML.com (cf. (Denny, 2002)).
An evaluation of ontology engineering environments has been performed as part of the
EON 2002 workshop (cf. Section 12.3 and (Sure & Angele, 2002)). With respect to
this work, especially the following tools are noteworthy.

APECKS (Tennison & Shadbolt, 1998) is targeted mainly for use by domain experts,
possibly in the absence of a knowledge engineer, and its aim is to foster and support
debate about domain ontologies. It does not enforce consistency nor correctness, and
instead allows different conceptualisations of a domain to coexist.

Chimaera (McGuinness et al., 2000a) is primarily a merging tool for ontologies. It

221

13 Related Work

contains only a simple editing environment and relies on the Ontolingua Server for
more advanced modelling.

The DOGMAModeler is a set of tools for ontology engineering. It relies on ORM
(cf., e.g., (Halpin, 2001)) as graphical notion and its cross-bonding ORM-ML to ensure
easy exchange (cf. (Demey et al., 2002)). It supports the database-inspired DOGMA
ontology engineering approach and is coupled with the DOGMA Server as a backend.

KAON OImodeller (Motik et al., 2002; Bozsak et al., 2002) belongs to the KAON
tool suite that is currently evolving in collaboration with our partner institute FZI. The
system is designed to be highly scalable and relies on an advanced conceptual modelling
approach that balances some typical trade-offs to enable a more easily integration into
existing enterprise information infrastructure. Compared to this work, the KAON
tool suite does not provide such a range of specialized support for collaboration and
inferencing. However, since both approaches rely on the OntoMat plugin framework
(but they differ in their internal data structures) it is foreseen to integrate the two
approaches to make e.g. the methodology plugins exchangeable.

OilEd (Bechhofer et al., 2001)is a graphical ontology editor that is dedicated to mod-
elling of DAML+OIL ontologies. Thus, on the one hand it is dependent on a particular
representation language, but on the other hand offers strong support for modelling
such ontologies. A key aspect of OilEd is the use for FaCT (Horrocks, 1998) to classify
ontologies and check consistency via translation from DAML+OIL to the SHIQ de-
scription logic. However, the tool is not extensible e.g. by plugins, nor does is provide
sophisticated support for collaboration aspects.

The Ontolingua (Farquhar et al., 1996) Server is a set of tools and services that
support the building of shared ontologies between distributed groups. It provides access
to a library of ontologies and translators to languages such as Prolog, CLIPS and Loom.
The set of tools was one of the first sophisticated ontology engineering environments
with a special focus on the collaboration aspects. However, the development has not
kept pace with the evolving current standards such as RDF or DAML-+OIL, nor with
the state-of-the-art technology.

Ontosaurus (Swartout et al., 1996) consists of two modules: an ontology server, which
uses Loom as knowledge representation system, and an ontology ‘browser server’ that
dynamically creates HTML pages to display the ontology hierarchy. Translators exist
from Loom to Ontolingua, KIF, KRSS and C++. Similar to the Ontolingua Server, it
was a milestone in the development of OEEs, but the development has not kept pace
with the evolving standards and technologies.

Protégé (Noy et al., 2000) is a well established ontology editor with a large user
community. The design of the tool is very similar to OntoEdit since it actually was
the first editor with an extensible plugin structure and it also relies on the frame
paradigm for modelling. Numerous plugins from external developers exist. It also

222

13.3 Related Work on Case Studies

supports current standards like RDF(S) and DAML+OIL. Recently also support for
axioms was added through the “PAL tab” (Protégé axiom language, c¢f. (Hou et al.,
2002)). However, compared to OntoEdit, the inferencing support is not as strong since
Ontobroker is fully integrated into OntoEdit. OntoEdit also has advanced capabilities
for the distributed development of ontologies. In a nutshell, both tools are quite equal,
but each tool has its strengths on particular areas.

WebODE (Arpirez et al., 2001) is an “ontology engineering workbench” that provides
various service for ontology engineering. Similar to OntoEdit, it is accompanied by
a sophisticated methodology of ontology engineering, viz. METHONTOLOGY (cf.
(Gomez-Pérez, 1996; Fernandez-Lopez et al., 1999)). In contrast to OntoEdit and
Protégé it (both Java standalone applications) is purely web-based and is built on
top of an application server. At the same time this gives WebODE an equal level of
extensibility. For inferencing services it relies on Prolog. It provides translators to
current standards such as RDF(S) and DAML+OIL. OntoEdit has particularly more
advanced support for collaboration through specialized plugins and a better integration
of the inferencing capabilities. OntoEdit also makes use of inferencing for various
purposes. In a nutshell, WebODE is comparable to OntoEdit and Protégé, but again,
each tool has its strength on particular areas.

WebOnto (Domingue, 1998) and the accompanying tool Tadzebao support graphi-
cal ontology engineering and in particular the argument between users on the ontology
design, using text, GIF images and even hand drawn sketches. The strength of this ap-
proach lies in the advanced support for communication between ontology engineers and
domain experts. However, the tool is not extensible nor does it provide sophisticated
and specialized inferencing support.

13.3 Related Work on Case Studies

The growing interest in the Semantic Web is explicated in a growing number of projects
in that area. Again, similar to the sections on related work on methodologies and
tools, there exist joint efforts of OntoWeb members (¢f. Chapter 12), who provided an
extensive state-of-the-art overview on projects, business scenarios, initiatives and case
studies (c¢f. (Gomez-Pérez et al., 2002b; Léger et al., 2002a; Brown et al., 2002)). With
respect to this work, especially the following initiatives are noteworthy.

The DARPA-DAML programme? is a huge effort in the US that actually combines
numerous projects in the area of the Semantic Web. The project has similar objectives
as the On-To-Knowledge project (¢f. Chapter 11). As sketched in Section 6.1, their
efforts for designing representation languages, viz. DAML and OIL, were joint into

3Darpa Agent Markup Language, see http://uww.daml.org/

223

13 Related Work

DAML+OIL. In general, there exist strong links and numerous collaborations between
DAML and On-To-Knowledge/OntoWeb.

KA2 (Benjamins & Fensel, 1998; Benjamins et al., 1999) was an initial effort that
formed the community around “Knowledge Acquisition”. As such it is the predecessor
of OntoWeb and many partners from KA2 are now continuing their collaboration within
OntoWeb. As shown in Section 12.2, the community portal of KA2 provided ideas and
technology that is re-used in the OntoWeb Semantic Portal.

With respect to our conceptual architecture for SEmantic portALs, SEAL, we would
like to mention the following related work. Given the aforementioned difficulties with
managing complex Web content (c¢f. Section 12.2.1), several approaches tried to facil-
itate database technology to simplify the creation and maintenance of data-intensive
web-sites. Systems, such as ARANEUS (¢f. (Mecca et al., 1999)) and AutoWeb (cf.
(Ceri et al., 2000)) also take a declarative approach. In contrast to SEAL that relies
on standard Semantic Web technologies these systems introduce their own data mod-
els and query languages, although all approaches share the idea to provide high-level
descriptions of web-sites by distinct orthogonal dimensions. The idea of leveraging me-
diation technologies for the acquisition of data is also found in approaches like Strudel
(cf. (Fernandez et al., 2000)) and Tiramisu (¢f. (Anderson et al., 1999)), they pro-
pose a separation according to the aforementioned task profiles as well. Strudel does
not concern the aspects of site maintenance and personalization. It is actually only
an implementation tool, not a management system. Closest to our approach come
OntoWebber (cf. (Y. Jin, 2001)) and IIPS, the “Intelligent Information Presentation
System”, (cf. (Lei et al., 2002)), but both concentrate more on the aspect of modelling
explicit site models that include also layout information. From our point of view the
SEAL framework and it’s application as the OntoWeb portal is rather unique with
respect to the collection of methods used and the functionality provided.

224

14 Conclusions

In this chapter we summarize the main contributions of
this work in Section 14.1 and, last but not least, present
an outlook to future work and research directions in Sec-

Overview tion 14.2.

14.1 Summary

The On-To-Knowledge Methodology and its accompanying tool support pro-
vide an advanced framework for engineering ontology based applications that is highly
re-usable for different kinds of domains. We integrated, adapted and extended ex-
isting (similar) methodologies. The On-To-Knowledge Methodology is based on the
separation of two processes:

(i) the Knowledge Meta Process for developing and employing ontology based
knowledge management applications, and

(i) the Knowledge Process for running them.

The accompanying tools are an extension of the already existing ontology engineering
environment OntoEdit and provide specialized support for steps of the Knowledge Meta
Process.

We presented the application of the On-To-Knowledge Methodology and its accompa-
nying tool support in a large spectrum of practical scenarios for ontology based
knowledge management applications. The scenarios and implementations range

(i) from corporate intranets to the Web,
(ii) from industry to academia, and

(iii) from prototypes to productive systems.

225

14 Conclusions

The presented work has been performed in the EU project On-To-Knowledge and the
EU thematic network OntoWeb, both having a large visibility in the Semantic Web
community. The lessons learned in On-To-Knowledge are (in a nutshell):

e Early ontology development is often unstructured brainstorming rather
than careful design.

e Different processes drive KM projects, but “Human Issues” might dominate
other ones.

e Guidelines for domain experts in industrial contexts have to be prag-
matic, otherwise they are unlikely to be understood and to be used at all.

e Collaborative ontology engineering requires physical presence and ad-
vanced tool support.

The lessons learned in OntoWeb are (in a nutshell):

e There currently exist (at least) three main categories in which ontology engineer-
ing tools can be divided:

1. Frame-oriented tools: their users tend to model ontologies as close as pos-
sible to a given natural language domain description.

2. Description Logic-oriented (DL) tools: in comparison to the Frame-
oriented tools, these users tend to model numerous additional concepts to
get a rather complete coverage of a domain.

3. Natural Language Processing-oriented tools: their users have a main
interest in providing a linkage of an ontology and corresponding texts. Thus,
in comparison to Frame- and DL-oriented tools, their aim is not to provide
a powerful representation.

e Applications that are built on top of ontologies and that are modelled with such
tools have the following specialities:

1. In the Frame-based ontologies constraints are modelled by using predicates
that are “true” or “false”. A violation of these constraints would typically
result in an error message, that can be displayed to users. In Description
Logic-based models, the model itself does not allow for such facts.

2. In Frame-based ontologies the concept hierarchy is explicitly defined
whereas in Description Logic models the hierarchy is derived by an infer-
ence engine by using subsumption and might change whenever definitions

226

14.2 Impacts & Outlook

for concepts change. Compared on a qualitative level, Frame-based ontolo-
gies are therefore likely to be more stable in their taxonomical structure
than Description Logic-based ontologies. When using ontologies for navi-
gational purposes, the Frame-based ontologies therefore seem to be more
user-friendly, since users like to follow known paths through navigational
structures.

The following outlook presents future extensions and indicates already existing impact
of this work on other projects.

14.2 Impacts & Outlook

We finally conclude by presenting some impact that this work already has on current
research projects combined with a future outlook on the upcoming research agenda for
ontology based knowledge management.

Tighter Integration of Mind Maps

The usage of mind maps™ for the initial stages of ontology engineering (by using the
Mind20nto framework, cf. Sections 7.2, 11.4 and 11.5) has already successfully been
reused in other projects, e.g. in the German thematic network “Kompetenznetzwerk
Wissensmanagement”!. What is needed next is the tighter technical integration which
enables a round-tripping between mind maps™ and ontologies to overcome the mod-
elling gap in between. Ideally, domain experts could create and maintain mind maps™
while ontology engineers create and maintain accompanying ontologies. Elements of
such mind maps™ would need to be dynamically mapped into an ontology, changes in
one of the entities would result e.g. in a structured To-Do list for the other entity.

User-friendly Implementation of OntoClean

Though a mature methodology like OntoClean (c¢f. (Guarino & Welty, 2002)) exists
for the evaluation of ontologies, the research field is still rather immature in terms of
applicability. The implementation of OntoClean in OntoEdit (cf. Section 9.3) was a
first step to operationalize the methodology. Still, a typical ontology engineer without
special training will unlikely be able to apply the methodology efficiently and effec-
tively. Therefore, a more user-friendly implementation of OntoClean is needed, that
encapsules the philosophical notions into understandable tasks. First discussions with

"Kompetenznetzwerk Wissensmanagement, see http://wiman.server.de

227

14 Conclusions

some of the authors of the OntoClean methodology based on our initial implementa-
tion resulted in the idea to create a catalog of questions that helps classifying concepts
according to the taxonomy of properties. However, a clear design concept is on the
upcoming research agenda.

Integrating Manual Ontology Engineering and Ontology Learning

In this work we deal with the manual engineering of ontologies in contrast to (semi-)
automatic learning of ontologies. Ontology learning (cf. (Maedche, 2002a)) is motivated
by the need for quickly generated ontologies that reflect a large volume of content. The
main advantage of applying machine learning techniques for ontology learning is seen
in avoiding the “knowledge acquisition bottleneck” for the creation of large amounts of
ontologies, some drawbacks are (i) the generation of rather weakly structured ontologies
and (ii) missing methodological guidelines for integrating ontology learning in ontology
engineering. A combination of manual engineering and automatic learning could (i)
reduce the time needed during manual engineering and (ii) increase the level of quality
gained during learning ontologies. A possible scenario for the tight integration of
both approaches could be the manual creation of an initial ontology that is refined in
alternating learning and manual sessions.

Combining Ontologies with Data Mining

The On-To-Knowledge Methodology has already been applied in other projects, e.g.
the “SemiPort” project? that aims at combining ontologies with data mining techniques
to close the loops of engineering ontologies and using them (¢f. (Gonzalez-Olalla &
Stumme, 2002)). Usage patterns derived from the navigational footprints users of an
ontology based system leave are potentially valuable, e.g. for evaluating how frequently
certain ontology parts are used. In the Swiss Life case study on skills management (cf.
Section 11.4) it was initially planned to keep track of the usage patterns to provide
suggestions which parts of an ontology might need modifications. However, the Semi-
Port project goes a step further and explores how to use such usage patterns for a
more efficient searching in knowledge portals (¢f. (Stojanovic et al., 2002d)) such as
constituted by our SEAL approach (c¢f. Section 12.2).

Maturity Levels for Knowledge Management

The VISION project® will provide a strategic roadmap towards next-generation organ-
isational knowledge management. The On-To-Knowledge Methodology and related

http://km.aifb.uni-karlsruhe.de/semiport/
3EU IST-2002-38513 VISION project, see http://www.fzi.de/vision/

228

14.2 Impacts & Outlook

case studies already served as a valuable input for the collection of best KM practices
in the “VISION” project. However, in this work we only partially covered aspects of
introducing knowledge management into organizations (cf. Section 4.1). As part of the
work in VISION, a holistic approach for the introduction and improvement of KM in
organizations is developed (cf. (Hefke & Trunko, 2002)) with a special focus on guide-
lines for enabling ambient access to knowledge within next-generation applications.

Making the Semantic Web a Success

A key issue for making the Semantic Web a large success story is to make the creation
of meta data as easy as possible. On the one hand that requires support for the (semi-
) automatic annotation of textual documents and the “deep web”, i.e. databases, on
the other hand Semantic Web technologies need to be integrated into sophisticated
applications (cf., e.g., (Smolle & Sure, 2002)) and, even more important, into standard
products (cf., e.g., (Fillies & Sure, 2002)).

Ideally, such technologies are deeply embedded into the daily working desktop (cf.
(Staab & Schnurr, 2002)).

Finally, knowledge workers will not perceive technologies anymore, but are used to
receive the right answers at the right time in the right context.

229

14 Conclusions

230

Part VI

Appendix

‘Synonyms, ordered by estimated frequency’ search for noun ‘appendix’:

Sense 1
appendix — (supplementary material that is collected and appended
at the back of a book)
=> addendum, supplement, postscript — (textual matter that
is added onto a publication; usually at the end)

Sense 2
appendir, vermiform appendix, vermiform process, cecal ap-
pendage — (a vestigial process that extends from the lower end
of the cecum and that resembles a small pouch)
=> process, outgrowth, appendage — (a natural prolongation
or projection from a part of an organism either
animal or plant; ‘a bony process’)

— Derived from WordNet 1.7.1, Copyright 2001 by Princeton University.
All rights reserved.

231

A OntoEdit Outside

This appendix provides (i) a detailed view on OntoEdit from
a users perspective (it therefore extends the description On-
toEdit in Section 6.2) and (ii) the example ontology that
was used as a running example in Parts II and III. In this
chapter, we start the more detailed description of OntoEdit
by depicting the historical evolution of OntoEdit and then
illustrate step by step the basic functionalities of OntoEdit

Overview (rom a users perspective. The next Chapter B focusses on
the internal aspects of OntoEdit, viz. the implementation of
the OntoMat framework. Then, in Chapter C we present the
DAML~+OIL features, that OntoEdit supports. Finally, we
present the example ontology in Chapter D.

History & Facts

The development of OntoEdit was initiated at the Institute AIFB by Alexander Maed-
che (now: Research Center FZI, Research Group WIM, Karlsruhe) and Dirk Wenke
(now: chief developer of OntoEdit at Ontoprise GmbH, Karlsruhe, Germany), and is
currently being continued by the constant efforts of Dirk. OntoEdit evolved during the
last years from the status of university prototype to commercial product and is now
distributed by the company Ontoprise GmbH®.

During the course of the On-To-Knowledge project (see Chapter 11) OntoEdit was
re-implemented by instantiating the OntoMat plugin framework. Several additional
plugins for OntoEdit were developed driven by the requirements coming from the case
studies in On-To-Knowledge to support different steps of the methodology (see Chap-
ters 4 and 5). These plugins will be described in the following sections. The experiences
made with OntoEdit within the project resulted in valuable feedback and guided further
directions of OntoEdit’s development (e.g. bug fixes, requirements, functionalities).

"http://www.ontoprise.de

233

A OntoEdit Outside

OntoEdit is developed purely in Java. There exist several distributions aiming at dif-
ferent audiences. F.g. while the freely available OntoEdit Free Edition offers basic
functionalities, the OntoEdit Inferencing Edition provides also sophisticated inferenc-
ing and, e.g. visualization. The following descriptions are based on OntoEdit version
2.6.

We will now briefly introduce the basic functionalities of OntoEdit.

Main GUI

Figure A.1 depicts the main elements of the GUI. The different menu items on top will
be described in the following sections. The buttons represent short cuts to functional-
ities provided in the menus like “New ontology” or “Save ontology”.

i;:jl]ntulugr Engineering Yorkbench OntoEdit ¥2.6 {inferen 10| x|
File Edit Wiew Tools Windows Help

| Al || o] & [

Figure A.1: The main GUI of OntoEdit

File Menu

The “File” menu (cf. Figure A.2) allows for the following actions:

e New ontology: cf. Section A

e Open ontology: Allows for browsing through local directories to open existing
ontologies.

e Import / Export: One may import and export ontologies in numerous repre-
sentation languages like F-Logic (Kifer et al., 1995), RDF(S) (Brickley & Guha,
2002), DAML+OIL (Horrocks et al., 2001) and in future OWL (Smith et al.,
2002). Future evolving formats may be supported by plugins for OntoEdit (cf.
Section 6.3).

e Save ontology / Save ontology as ...: Usually ontologies are stored in On-
toEdits internal format, viz. OXML (Ontoprise, 2002c). Other formats are sup-
ported by 'Import / Export’.

234

ﬂ!ﬂntulugr Engineering Yorkbench OntoEdit ¥2.6
File Edit View Tools Windows Help

Mew onkology

% [Ba |

Cpen antalogy

Impork k
Expork DaML+OIL export

FLogic expark
RODF(S) expork

Save onkology
Save onkology as ...

Close ontology

Exit

Figure A.2: File Menu

e Close ontology: Closes an open ontology window (an example for an ontology
window is shown in the next section).

o Exit: Terminates the execution of OntoEdit.

New Ontology

To create a “New ontology” one first has to enter a URI that identifies this ontology
uniquely (cf. Figure A.3), e.g. like http://this.is.an/example. If this ontology is to
be put on the WWW, one might prefer to chose an URL where the ontology will be
made available.

Creating new ontology ﬂ

An URI makes vour ontology accessible For other ontologies.
Please enter the URI of the new ontology ilike http:f e, bestri, de’.

|http:mhis.is.anfexample

Ok, I Cancell

Figure A.3: Insert a URI

A new ontology window (cf. Figure A.4) opens showing several tabs. The “Concepts &
Relations” tab is opened with just a root concept called DEFAULT ROOT _CONCEPT.

235

A OntoEdit Outside

We will now describe the tabs shown in Figure A.4 except for the tabs “General Axioms”
and “Inferencing” that are described in the Sections 8.3 and 9.4.

¢1 http:/ /this.is.an/example (New ontology) =2 %]
Disioint conceots | General Axioms | Inferencing | Identification | Metadata
_oncepts & Relations i Instances | Relation axioms
IZoncept hierarchy Felations Range
Alal+]-|e]

. (AUEFALLT_ROOT_COMCEPT

Figure A.4: Create a new ontology

Concepts & Relations

Possible actions in the “Concepts & Relations” tab are:

e Search for a specific concept (cf. Figure A.5)

— To search for a specific concept you can enter the concept name to search
for, e.g. “Person”. Finally click the lens button to search.

Concepts & Relations

Concept hierarchy

Ferson
...... DEFALLT _ROoT _COMCEPT

Figure A.5: Search for a specific concept

e Concept context menu (cf. Figure A.6)

— To open the context menu one may right click a concept.

e Insert a new concept (cf. Figure A.7)

— To insert a concept one may either click on the insert-button or select it
from the popup-menu that appears after a right-mouse-button click. Then
one may “windows-like” enter the identifier of the new concept.

236

Concepks & Relations I Instancesl Relation axiam

‘_oncept hierarchy

...... DEFALLT RO p =
Insert Concepk

Remove Concepk

Insert Relakion

Rearganize b

Edit concept

Figure A.6: Concept context menu

Concepts & Relations | Instarn:esl Relation axiom:

IZoncept hierarchy
Q&+ -] e
- GLDEFALLT_ROOT_COMCEPT
(@ Persor]

Figure A.7: Insert a new concept

e Delete a concept (not possible for the root concept)

— Select a concept and press the minus button to delete it. One may also use
the context menu (right click) to delete a concept.

— All subconcepts of the selected concept will be deleted, too, if they don’t
exist in another tree-branch.

e Edit a concept / concept properties (cf. Figure A.8)

— External representation(s): any name or number that identifies uniquely
the new concept in a certain language.

— Instantiation:

* concrete: it may exist an object of the given concept.

x abstract: the concept describes only an abstract concept and needs to
be specified with a subconcept in order to get a concrete concept (e.g.
the root concept).

237

A OntoEdit Outside

238

:;1'.'. Edit Person EI

External representationfen) Documentation +| - | [|

IPerSDn Language | Diocurmenkation |

Instantiakion

External Representation +| - | [|

Language I External Represent. .. I

1=

|=:http:,|',l'this.is.an,l'e. " |

ok cancel

Figure A.8: Edit selected concept / concept properties

— Documentation: you should document any assumptions and thoughts

about the concept so other persons can understand and use the ontology,
too. This can be done in multiple languages.

— Insert, Delete and Edit: one may use the “+”, “” and “¢” buttons to

insert, delete and edit external representations and documentations.

e Reorganize — Copy/Move (similar to well-known “copy-and-paste” functionality)

— This options allows for copying a concept as an new subconcept of another

concept (multiple inheritance) or to move it to another placement in the
concept-hierarchy. If one chooses one of these options, a dialog appears
where one has to select the new superconcept.

e Relation context menu (cf. Figure A.9)

— To open the context menu right click in the relation area or on a relation

e Insert a new relation (cf. Figure A.10)

— To insert a new relation you need to select a concept first. Right click the

concept to open it’s context menu. Select ’insert relation’ from the context
menu.

Felations

Fange

Insert Relakion

Remowve Relation

Edit relation

Figure A.9: Relation context menu

Edit relation "hasName" of Person |
Relation 1D External Representation +| - | (4 |
IhasName Language I External Represent. .. I

en |q:http:,|',l'this.is.an,l'e... |
Range
|sTRING ~|
Min Card. 1 Docurnentation + | - | (4 |
Max Card. n Language Docurnentakion I
ak, cancel

Figure A.10: Insert new relation

x Relation ID: any name or number that identifies uniquely the new

relation.

* Range: range of the relation (typically another concept, but the XML
Schema data types (Biron & Malhotra, 2001) String, Integer and
Boolean are supported for defining attributes)

239

A OntoEdit Outside

* Some examples for defining ranges:

- A concept Person has the relation CcOOPERATES WITH(PERSON, PERSON),

SO COOPERATES WITH has the range ’person’ and tells with what
other person (range) the person cooperates.

- The relation owNs CAR(PERSON, BOOLEAN) has the range
BOOLEAN and says whether a person owns a car or not.

- For relations inherited from superconcepts OntoEdit lets one refine
/ restrict the range of a relation. Ie. the superconcept Organization
has a relation oraaNizEs with the range Events, the subconcept
Institute inherits the relation orRGANIZES, but should be restricted to
organizing Workshops. So, one may double click the relation (has a
gray background, because it is inherited) in the relation view and
change the range from event to workshop.

* Min Card:The minimum cardinality is described best with an example:

- A Car usually has exactly one Car owner: 'Min Card’ and 'Max
Card’ are set to '1’.
- A Car owner has at least one Car (otherwise it wouldn’t be a
car owner): 'Min Card’ is set to ’1’.
- A Person e.g. can own a Car, but doesn’t need to own one: set 'Min
Card’ to ’0’.
- For relations inherited form superconcepts OntoEdit allows to refine
/ restrict the Min Card (see Range).
Max Card.:
- A Car owner can own more than one car so ’Max Card’ is set to the
maximum allowed number of cars, i.e. 'Max Card’ set to "10’.
- For relations inherited form superconcepts OntokEdit allows to refine
/ restrict the the Min Card. (see Range).
External Representation: one may enter a relation name for external
representation in different languages including special characters.
Documentation: one should document any assumptions and thoughts
about the relation so other persons can understand and use the ontology,
too.
Insert, Delete and Edit: this represents the usual functionality for
external representations and documentations.

Instances Tab

Possible actions in the “Instances” tab are:

240

e Insert a new instance
e Delete an instance

e Edit an instance (instance properties)

Instances will be displayed for each concept. So if you select a concept in the concept
hierarchy, its instances will be displayed in the right area. One should have in mind
that all instances of a subconcept are also instances of the concept itself. That means
that an instance of Student will be an instance of Person, too, if Student is defined as
a subconcept of Person.

To see all instances of the ontology, one simply clicks on the root concept. If relations
of an instance contain values, one may expand the instance node to see its values.

Instance Context Menu

To open the instance context menu right click in the instances area (cf. Figure A.11).

Instances |

[nstances

(¥ Person

Insert instance

Remove instance

Edit instance

Figure A.11: Context menu for instances

e Insert a new instance: to insert a new instance one has to select it from
the popup menu that appears after a right-mouse-button click. Then one may
“windows-like” enter the identifier of the new instance.

e Remove an instance: to remove an instance one has to select the instance
and then to select “remove instance” from the popup menu that appears after a
right-mouse-button click.

e Editing an instance: selecting an instance and selecting “edit instance” from
the popup menu enables the editing of it. The following dialog appears (Fig-
ure A.12), where one can select in the first column a relation and in the second
column the value this instance should be related to. If the range of the relation

241

A OntoEdit Outside

is String, Integer or Boolean one may enter the value in a text field, otherwise
a combo box appears where one can select one of the possible instances.

=
Identifier IperSDnEH
Concept IPerSDn LI
Slot entries
relations values |
ork Sure

Figure A.12: Editing an instance

Relation Axioms Tab

The “Relation Axioms” tab is used to browse existing relations and to enter axioms

for relations, that means special properties of relations and relations to other relations
(cf. Figure A.13).

w1 http:/ /this.is.an/example {(New ontology) =|i|5|
Disjoinkt concepts | General Axioms | Inferencing | Identification | Metadata
Concepts & Relations I Instances Relation axioms
F.elations Relation axioms IS'y'mmetriu: relations LI
@ DEFALLT _ROOT_RELATION Symmettic relations |

=6 cooperateiwith
i3 (Person,Person)
-5 hasMame o

cooperatevith |

Figure A.13: Relation axioms tab

e Symmetric relation a R b == b R a

— I.e. COOPERATES WITH(PERSON A, PERSON B)
== COOPERATES WITH(PERSON B, PERSON A)
If Person A cooperates with Person B it is true that Person B does also

cooperate with Person A, therefore you might declare this relation to be
symmetric.

242

e Transitive relationa Rband bR c==>aRc

— Il.e. CAN COMMUNICATE IN ENGLISH WITH(PERSON A, PERSON B)
and CAN COMMUNICATE IN ENGLISH WITH(PERSON B, PERSON C)
== CAN COMMUNICATE IN ENGLISH WITH(PERSON A, PERSON C)
If Person A is able to communicate with Person B in English and Person B
speaks English with Person C it is probably true that Person A is able to
communicate in English with Person C.

e Inverse relation

— Le. SLOWER THAN(CAR, CAR) is the inverse relation to
FASTER THAN(CAR, CAR)

— Relations can be defined as globally or locally inverse.

Disjoint Concepts Tab

The “Disjoint Concepts” tab allows to define disjoint concepts (c¢f. Figure A.14). One
needs to multi-select concepts in the concept hierarchy an then click on the '+’ button
to define them as pairwise disjoint. The editor automatically generates the necessary
pairs if one selects more than two concepts.

To delete such a pair one needs to select the row in the right window and press '-’. Or
one may select it from the popup menu that appears after a right mouse click.

1. http:/,/this.is.an/example (New ontology) ;|g|
Conceots & Relations | Insktances | Relation axioms
Disjoint concepts General Axioms | Inferencing | Identification | Metadata
I“oncept hierarchy Disjoint concepts
Q .5 +| - & disj. concepti I disj. concept2
- DEFAULT_ROOT_COMCEPT 3| Man |raman
- @Person
L. @Man =
. @Woman

Figure A.14: Disjoint concepts tab

Identification Tab and Metadata Tab

The two tabs “Identification” and “Metadata” (cf. Figures A.15 and A.16) offer the pos-
sibility of giving information about the ontology, e.g. the URI, authors, documentation,
etc.

243

A OntoEdit Outside

Disjoink cancepts | General Axioms | Inferencing Identification I Metadata

Sources/Lisk +| - &

LRI Ihﬂp:fﬂhis.is.aniexample

A source
Another source

Title IExampIe antology

Domain IExampIe domain

Application area IPdeuctiDn of OntoEdit screenshol

Related onkalogies Sources/Descripkion
Another example ontology L Fource

‘et another example ontology

Figure A.15: Identification tab

Disjoint concepts I General Axioms I Inferencing I Identification Metadata
Developers List of documentations + - & Statistics
- Murmber of concepts |4
language docurientation
Murmber of relations |3
de Dies ist eine Beispiel-0...
Murnber of instances |1
Mumnber of Axioms ID
Mame L
anguage)
IYD tk Sure |en Highest depth lewvel |3
nddres.s Detailed documentation Average depth |2_25
Institute ATFE |2 This iz an example ontology.
University of Ki Creation date I
76123 Karlsruhe
-
o omnnanea Last modified I
4 I I *
Ernail
Isure@aifb.uni—karlsrur
Y
hitp: i 2ifh.uni-karl

Figure A.16: Metatada tab

Edit Menu

The “Edit” menu offers typical undo/redo, cut and copy-and-paste functionalities which
are not yet fully provided. A similar functionality to copy-and-paste is provided by the
reorganization of the concept hierarchy (cf. Section A).

244

View Menu

The “View” menu shown in Figure A.17 allows for the following actions:

:_L'é’l]ntulugr Engineering Workbench OntoEdit ¥2.6 {inferencing edition
File Edit | ¥iew Tools Windows Help

| &l options.. =
v Show namespaces de
Disic. ioms | Inferencing
Concepts & Relation Fr Instances
IZoncept hisrarchy Felakions

Person Q||§|+|-|E|
= (3 htkp: [this. s, anjexample® DEFAULT_ROCT _COMNCERT

.- @ http: fithis is, anfexample#Person
i (B hEEp: fithis s, anfexample# Document

Figure A.17: View menu

e Options: This represents the so-called “Options Manager” of the OntoMat
framework (cf. Section 6.3). All preferences for plugins can be set and changed
here, e.g. one might add languages that should be supported (cf. Figure A.18).

e Languages: OntoEdit supports external representations and documentations
in multiple languages. By default English, German and French are supported.
Switching to a language means to change the currently shown external represen-
tation of concepts and relations in the “Concept & Relations” tab (cf. Section A).

e Show namespaces: OntoEdit supports XML namespaces (Bray et al., 1999)
for the naming of concepts, relations and instances. This options switches on/off
the visualization of namespaces in the GUI (e.g. one can see in this figure the
namespaces of the concepts in the concept hierarchy).

Tools Menu

In the “Tools” menu all additional plugins can be managed. Initially the list of available
(additional) plugins is empty, one can only select to open the plugin management like
shown in Figure A.19.

245

A OntoEdit Outside

OntoEdit Options x|

Languages

anguages

add

...... - IEIE remove |
R

Figure A.18: Options for plugins

Engineering YWorkbend
ew | Tools Windows +

Figure A.19: Tools menu (i)

The plugin management allows for dynamically plugging in and out the plugins dur-
ing runtime of OntoEdit (¢f. Figure A.20). To make plugins available for plugging
in, their class files need to be present in the classpath of OntoEdit. The com-
plete package reference is needed to register a plugin with the “Add” button, e.g.
edu.unika.aifb.sesame.SesameClientPlugin for the “SesameClientPlugin” plugin.
By selecting plugins from the left part of the window and pressing the “>” button, one
may register plugins. Deregistration works similar via the “<” button in combination
with the right window.

After successfully registering plugins they are immediately available in OntoEdit as
shown in Figure A.21. Plugins by default provide entries in the tools menu, but they
might also provide buttons, e.g. the “OntologyGenerator” plugin provides“Generate
ontology” as menu entry and as button, additional tabs or additional entries in the
import and export menu (see above), to name but the typical possibilities.

Windows Menu

In the “Windows” menu one has the typical “Windows-like” features for managing
multiple open ontology windows.

246

Manage Tools =

Available Tools: Installed Tools:

edu.unika.aifb. plugins. ontagen. OntalogyGeneratarPlugin > | DataTvoe Plugins | Imoort/Exoort Flugins | Other Plugins
edu.unika.aifb. plugins. sesame. SesameClientPlugin FramePangl Flugins

edu, unika.aifb. plugins ontafiller, OntoFillerPanelPlugin
com, ontoprise, oee, domainLexicon, DomainLexiconPlugin

com.onkoprise. oee. gui. GeneralAxiomPanelPlugin

com, onkoprise, oee, gui, ConceptRelationSplitPanslPlugin
com. ontoprise, oee, ruleeditor . RuleEditorPlugin Info... | com. antoprise. oee. gui. InstanceEditorPanelFlgin
com, ontoprise. oee. querytool. QueryToolFlugin com. onkoprise. oee. gui. RelationdxiomPanelPlugin
Add... |))))
com, onkoprise, oee, gui, ConceptAxiomPanelPlugin

ES— com, onkoprise, oee, gui, OntologyPropertyPanelPlugin
_I' ~ | |com.ontoprise.oee. gui. StatisticsPanelPlugin

com, onkoprise, oee.inferencing. InferencingPanelPlugin
com. onkoprise, ruledebugger RuleDebuggerPanelPlugin
com. onkoprise. graphlayout. GraphLayoutPanelPlugin

84 | Cancel |

Figure A.20: Plugin management during runtime

¥2.6 (inferencing edition)
File Edit Wiew | Tools indows Help

Manage... rnneck ko Sesamel Genet ate n:-ntn:-ln:-g';.fl

Damainlexicaon
OntoMap b

SesameClientPlugin

CntologyGeneratar Generake ontology

Figure A.21: Tools menu (ii)
Help Menu

The “Help” menu includes information about the version of OntoEdit, contact infor-
mation and a user’s guide which is similar to this section.

247

A OntoEdit Outside

248

B OntoEdit Inside

This appendix provides a detailed view on the implementa-
tion of OntoEdit by instantiating the OntoMat framework.
It therefore extends the rather conceptually oriented descrip-
tion in Section 6.3. The appendix starts with a brief de-
scription of the history of OntoMat, then continues with a
description of all interfaces common to all OntoMat plug-
ins followed by a brief illustration of OntoEdit’s core plugins
and finally ends with the planned development steps of the
OntoMat framework.

Overview

History & Facts

OntoMat was mainly developed by Siegfried Handschuh (Institute AIFB, University
of Karlsruhe, Germany) and is publicly available as Open Source. OntoMat is devel-
oped purely in Java. The source code of the OntoMat plugin framework is available
for download at Source Forge at http://sourceforge.net/projects/ontomat. Other
tools based on this framework include the OntoMat—Annotizer (also mainly developed
by Siegfried Handschuh), a tool that is designed for supporting semi-automatic anno-
tation of heterogeneous data sources (Handschuh et al., 2001; 2002).

Interfaces

In order to build a plugin for the OntoMat framework, either directly the
OntoPlugin interface must be implemented or one of its descendants like
OntoPluginServiceConsumer or OntoPluginServiceProvider.

In order to simplify the implementation of a plugin there are specialized classes that
already implemented these interfaces. F.g. so-called tab-widget plugins are user inter-
face tabs that appear in the main OntoEdit window beside the system tabs such as
the classes tab. A tab-widget plugin is simple to write, but it is less powerful.

249

B OntoEdit Inside

OntoPlugin

The following methods of the OntoPlugin interface must be implemented by a plugin.

250

init: This method is called after instantiation of the plugin. The plugin should
perform any initializations here. The plugin should try to load its preferences
via the framework.

canExit: If any of the plugin returns false, the exit process of the framework is
interrupted.

exit: plugin should perform cleanup operations here. First the plugin’s
canExit () method is called from the framework. If it returns true, its exit ()
method is called. After that, the plugin is removed from the internal cache and
its buttons and menu are removed from the GUI.

getPluginInfo: The plugin can return here a short information message over
itself, e.g. the copyright, the author and the intended purpose.

getPluginMenuName: Should return a name for the plugin that can be displayed
in a menu bar. Can return null when there should be no menu item for this
plugin.

getPluginName: Should return a user-friendly name for the plugin.

getToolbarActions: plugins that require toolbar buttons should return the ac-
tions here. The buttons will appear in an own separator section.

getErrorMsg: Should return an error message describing the status of the plugin.
May return null if the status is ok.

getMenuActions: plugins that require menu actions should return them here.
The menu items will appear under the Tools | -getPluginMenuName- item.

getOptionsPane: This method should return a subclass of JComponent that
implements an option page for the plugin. The option pages will be displayed
by the framework when users select the View | Options... menu item. The
component should not extend the dimensions (350, 350) approximately. Using
JScrollPane or better a JTabbedPane gives more space on the options pane.
When the option component is about to be displayed, its setVisible (true)
method is called. Again, if the component is to be hidden its setVisible(false)
method is called. Any reading or writing of options should take place in that
method.

OntoPluginServiceProvider

OntoPluginServiceProvider is the Java interface for an plugin that offer services in
form of service classes. A plugin which implements this interface is hence called a
service-provider. A plugin that implements the OntoPluginServiceConsumer inter-
face is hence called a service-consumer.

A service-provider supplies on request an instance of the desired service class. The
service class can be the plugin itself or a class on that the plugin refers. The service-
provider may always return the same instance, or it may construct a new instance for
each request. A service class specifies a interface protocol between the service-provider
and the service-consumer.

The plugin framework has the function to act a as rendezvous between a service-
consumer and a service-provider. The service-consumer may ask the framework to
provide an instance of a “service”, based upon a reference to a Java Class object that
represent that service.

If such a service has been registered with the framework, then the service-provider
associated with the service is asked to provide an instance of that service.

e getCurrentServices: This method is not used by the framework yet. In future
this method will get the current service selectors for the specified service. A
service selector is a service specific parameter, typical examples of which could
include: a parameter to a constructor for the service implementation class, a
value for a particular service’s property, or a key into a map of existing imple-
mentations.

e getService: Invoked by the framework, this method requests an instance of a
service.

e getServiceClass: Invoked by the framework, this method returns the service
class.

e releaseService: Invoked by the framework, this method releases a reference to
the specified service.

OntoPluginServiceConsumer

A plugin that implements the OntoPluginServiceConsumer interface registers its in-
tent to be notified of new services.

e serviceAvailable: Invoked by the framework, the service-consumer is notified
about a new service.

251

B OntoEdit Inside

e serviceRevoked: Invoked by the framework, the service-consumer is informed

about the deletion of the service.

Core Plugins of OntoEdit

We now illustrate the core plugins of OntoEdit. They shape OntoEdit as an Ontology
Engineering Environment on top of the OntoMat plugin framework.

e The GeneralPlugin is an implementation of the OntoPlugin interface. It is al-

ways loaded during run-time and cannot be removed with the management con-
sole. This plugin represent the host framework. In the option menu it represents
the settings for OntoEdit.

The OntologyServer is a service-provider. It releases the access to a service class
with the interface IOntologyServer. This service class contains the data model
of the ontology. It supplies for the service-consumer methods for the access to
the concepts, relations and instances of the ontology. Complex data types are
avoided as parameters of the methods in order to achieve a good information
hiding of the service design and therefore to support modularization.

The OntologyEditor is a service-consumer. It uses the service, which is defined
by the IOntologyServer interface. The OntologyEditor supports the construc-
tion and modification of ontologies, it visualizes elements of the ontology, e.g.
the concepts, relations and instances.

Future Developments of OntoMat

The OntoMat plugin framework will be constantly improved. For the future following
functions are planned:

252

e Plugin folder: User friendly installation of plugins. Automatic identification and

loading of packed (jar)plugins from a certain folder.

e Internet based update: The framework will support an update mechanism. This

will permit it to examine whether on the home page of a plugin a new version is
present and to offer this new version to load automatically.

e Recursive plugin architecture: a plugin consist of plugins. For that it needs to

be able to act as a plugin container like the framework.

C DAML-+OIL features supported by
OntoEdit

This appendix provides a detailed description of OntoEdit’s

support for importing and exporting DAML+OIL ontology

language (cf. (Horrocks et al., 2001)). The description was

posted to the “www-rdf-logic@w3.org” mailing list (¢f. (Erd-
Overview pann et al., 2001)).

Executive overview

According to the discussion about the capabilities of the different ontology editors,
we would like to describe which language constructs of the DAML+OIL language are
supported by OntoEdit 2.0 and which will be supported in future versions. Confer
http://www.ontoprise.de/com/start_downlo.htm for additional information.

OntoEdit fully supports the following DAML+OIL constructs:

e daml:Ontology

e daml:versionInfo, rdfs:comment, rdfs:label

e daml:Class, rdfs:Class, rdfs:subClassOf

e rdfs:Property

e daml:Restriction

e daml:cardinality, daml:minCardinality, daml:maxCardinality
e daml:onProperty, daml:toClass

e daml:inverseOf, daml:TransitiveProperty

e daml:disjointWith

253

C DAML+OIL features supported by OntoEdit

We are working on the following features to include in OntoEdit:

e daml:imports
e rdfs:subProperty0f

e daml:DataTypeProperty, daml:0bjectProperty

Note: DAML+OIL allows (and encourages) the use of “anonymous classes” that are
defined by their properties’. In general, OntoEdit does not support these implicitly
defined classes and expects named classes instead of class-expressions. Thus OntoEdit
is somehow restricted to a more OO-like usage of DAML+OIL. Nevertheless, certain
information contained in anonymous classes are handled by OntoEdit (cf. property-
restrictions).

Detailed description

The structure of the following list mirrors roughly the structure of the DAML+OIL
reference description (http://www.daml.org/2001/03/reference.html).

Header
<http://www.daml.org/2001/03/reference.html#Header>

The DAML+OIL header daml:Ontology for ontology definitions and
daml:versionInfo for metadata information about the ontology are fully supported.

Information from daml:imports is currently lost. This topic is on our mid-term to-
do list, and already realized in OntoEdit’s basic datamodel. Thus only the GUI and
import and export filters must be updated.

Objects and datatype values
<http://www.daml.org/2001/03/reference.html#0bject>

OntoEdit supports instances of classes/concepts as well as atomic values. These atomic
values are assumed to be “instances” of XML-Schema datatypes or of types that are
derived from XML-Schema. Currently, XML-Schema definitions are not processed
while importing DAML+OIL ontologies.

Class elements
<http://www.daml.org/2001/03/reference.html#Class>
and class expressions

!The DAML+OIL concepts “class” and “property” are similar to the concepts “concept” and “relation”
in (Bozsak et al., 2002)

254

The basic DAML+OIL constructs for defining classes and class hierarchies
(daml:Class, rdfs:Class, rdfs:subClass0f) are supported.

The daml:disjointWith property of classes will be supported in the next implemen-
tation of OntoEdit.

The daml:disjointUnion0f property and all properties assigning equivalence be-
tween classes, properties or instances are not supported (e.g. daml:equivalentTo or
daml:sameClassAs).

Enumerations
<htp://www.daml.org/2001/03/reference.html#Enumerated>

The definition of a class that is defined by a closed list of its members (i.e. the
daml:oneO0f element) is not supported.

Property restrictions
<http://www.daml.org/2001/03/reference.html#Restriction>

Properties restrictions are handled by OntoEdit although they usually represent anony-
mous classes. If such an anonymous class is subclassed by a named class the value of
the daml:onProperty property is assumed to represent a local property of the sub-
classing class and all properties of this property belong to the local property. The
range of the property is assumed to be the single named class in daml:toClass.

The daml:Restriction is to define unqualified cardinality constraints are supported
by OntoEdit. Their qualified parallels daml:cardinalityQ , daml:minCardinalityQ ,
and daml :maxCardinalityQ are not supported.

Boolean combination of class expressions
<http://www.daml.org/2001/03/reference.html#Boolean>

It is not planned to support the set operators (daml:intersectionOf , daml:union0f
, daml :complementOf) for classes.

Property elements
<http://www.daml.org/2001/03/reference.html#Property>

OntoEdit also supports both global properties and local properties that are restricted
to single classes

A property may have at most one rdfs:domain (a named class), ¢f. daml:toClass above
and at most one named class as its rdfs:range.

A distinction between daml : ObjectProperty and daml :DatatypeProperty is currently
not made.

255

C DAML+OIL features supported by OntoEdit

Modelling relation hierarchies with rdfs:subPropertyOf will be representable in fu-
ture versions but will not be supported by the GUI, i.e. one might import/export
rdfs:subPropertyOf statements but will not be able to model it explicitly.

Again, the equivalence properties of properties are not supported. The properties
daml:inverseOf and daml:TransitiveProperty are supported, while uniqueness and
unambiguousness are not.

Instances
<http://www.daml.org/2001/03/reference.html#Instances>

All legal RDF instances are handled as DAML+OIL instances by OntoEdit, irrespective
of their actual serialized (XML/RDF) format. Again, the equivalence properties of
instances are not supported.

Datatype Values
<http://www.daml.org/2001/03/reference.html#Values>

Atomic values are handled in the way as the DAML-+OIL reference proposes. This is
achieved by interpreting all XML-Schema datatypes as special built-in concepts.

rdf :parseType=*‘‘daml:collection’’
<http://www.daml.org/2001/03/reference.html#collection>

The DAML+OIL collections and its RDF primitives are not supported by OntoEdit.

256

D Example Ontology

This appendix contains the ontology that is used as a running
example in Parts IT and III. It is represented in OXML (cf.

(Ontoprise, 2002c)), the home storage format of OntoEdit.
Overview

<?xml version="1.0" encoding="UTF-8"7>
<!--Ontology written by Oxml2Writer, (c) Ontoprise GmbH-->

<oxml:ontology
xmlns:a="http://this.is.an/example"
xmlns:oxml="http://schema.ontoprise.com/oxml/core/2.0"
xmlns:oxsd="http://schema.ontoprise.com/datatypes"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://wuw.w3.org/2001/XMLSchema-instance"
xsi:schemalocation=

"http://schema.ontoprise.com/oxml/core/2.0 oxml2.0.xsd"

id="http://this.is.an/example#"
rootConcept="a:DEFAULT_ROOT_CONCEPT"
rootRelation="a:DEFAULT_ROOT_RELATION">

<oxml:concept id="a:DEFAULT_ROOT_CONCEPT"/>

<oxml:concept id="a:Software">
<oxml:externalRepresentation language='"en'>
http://this.is.an/example#Software
</oxml:externalRepresentation>
<oxml :externalRepresentation language='"de'">
http://this.is.an/example#Software
</oxml:externalRepresentation>
<oxml:subConcept0f concept="a:DEFAULT_ROOT_CONCEPT"/>
</oxml:concept>

257

D Example Ontology

<oxml:concept id="a:0EE">
<oxml:externalRepresentation language="en'>
http://this.is.an/example#0EE
</oxml:externalRepresentation>
<oxml :externalRepresentation language='"de'">
http://this.is.an/example#0EE
</oxml:externalRepresentation>
<oxml:subConcept0f concept="a:Tool"/>
</oxml:concept>

<oxml:concept id="a:0OntoMat-Plugin'>
<oxml :externalRepresentation language="en'">
http://this.is.an/example#0OntoMat-Plugin
</oxml:externalRepresentation>
<oxml:externalRepresentation language='de'">
http://this.is.an/example#0ntoMat-Plugin
</oxml:externalRepresentation>
<oxml :subConcept0f concept="a:Tool"/>
</oxml:concept>

<oxml:concept id="a:Methodology">
<oxml:externalRepresentation language="en">
http://this.is.an/example#Methodology
</oxml:externalRepresentation>
<oxml :externalRepresentation language='"de'">
http://this.is.an/example#Vorgehensweise
</oxml:externalRepresentation>
<oxml:subConcept0f concept="a:DEFAULT_ROOT_CONCEPT"/>
</oxml:concept>

<oxml:concept id="a:Architecture">
<oxml:externalRepresentation language="en'>
http://this.is.an/example#Architecture
</oxml:externalRepresentation>
<oxml:externalRepresentation language='de'">
http://this.is.an/example#Architektur
</oxml:externalRepresentation>
<oxml :subConcept0f concept="a:DEFAULT_ROOT_CONCEPT"/>
</oxml:concept>

258

<oxml:concept id="a:Application">
<oxml :externalRepresentation language='"en'">
http://this.is.an/example#Application
</oxml:externalRepresentation>
<oxml:externalRepresentation language='de">
http://this.is.an/example#Anwendung
</oxml:externalRepresentation>
<oxml:subConcept0f concept="a:Software"/>
</oxml:concept>

<oxml:concept id="a:Tool">
<oxml:externalRepresentation language="en'>
http://this.is.an/example#Tool
</oxml:externalRepresentation>
<oxml :externalRepresentation language='"de'">
http://this.is.an/example#Werkzeug
</oxml:externalRepresentation>
<oxml:subConcept0f concept="a:Software"/>
</oxml:concept>

<oxml:concept id="a:Person'">
<oxml:externalRepresentation language='"en'>
http://this.is.an/example#Person
</oxml:externalRepresentation>
<oxml:externalRepresentation language='de'>
http://this.is.an/example#Person
</oxml:externalRepresentation>
<oxml :subConcept0f concept="a:DEFAULT_ROOT_CONCEPT"/>
</oxml:concept>

<oxml:concept id="a:Role">
<oxml :externalRepresentation language='"en'">
http://this.is.an/example#Role
</oxml:externalRepresentation>
<oxml :externalRepresentation language='"de'">
http://this.is.an/example#Rolle
</oxml:externalRepresentation>
<oxml:subConcept0f concept="a:DEFAULT_ROOT_CONCEPT"/>
</oxml:concept>

<oxml:concept id="a:Document'>

259

D Example Ontology

<oxml:externalRepresentation language="en'>
http://this.is.an/example#Document

</oxml:externalRepresentation>

<oxml :externalRepresentation language='"de'">
http://this.is.an/example#Dokument

</oxml:externalRepresentation>

<oxml:subConcept0f concept="a:DEFAULT_ROOT_CONCEPT"/>

</oxml:concept>

<oxml:concept id="a:PhD_Thesis">
<oxml:externalRepresentation language="en">
http://this.is.an/example#PhD Thesis
</oxml:externalRepresentation>
<oxml:externalRepresentation language='de">
http://this.is.an/example#Doktorarbeit
</oxml:externalRepresentation>
<oxml:subConcept0f concept="a:Document"/>
</oxml:concept>

<oxml:concept id="a:Annotation_Editor">
<oxml :externalRepresentation language='"en'">
http://this.is.an/example#Annotation Editor
</oxml:externalRepresentation>
<oxml :externalRepresentation language='"de'">
http://this.is.an/example#Annotationseditor
</oxml:externalRepresentation>
<oxml:subConcept0f concept="a:Tool"/>
</oxml:concept>

<oxml:concept id="a:0Ontology">
<oxml:externalRepresentation language="en">
http://this.is.an/example#0ntology
</oxml:externalRepresentation>
<oxml:externalRepresentation language='de">
http://this.is.an/example#0ntologie
</oxml:externalRepresentation>
<oxml :subConcept0f concept="a:DEFAULT_ROOT_CONCEPT"/>
</oxml:concept>

<oxml:concept id="a:Case_Study">
<oxml :externalRepresentation language='"en'">

260

http://this.is.an/example#Case Study
</oxml:externalRepresentation>
<oxml:externalRepresentation language='de">
http://this.is.an/example#Fallstudie
</oxml:externalRepresentation>
<oxml :subConcept0f concept="a:DEFAULT_ROOT_CONCEPT"/>
</oxml:concept>

<oxml:concept id="a:Project'">
<oxml :externalRepresentation language='"en'">
http://this.is.an/example#Project
</oxml:externalRepresentation>
<oxml :externalRepresentation language='"de'">
http://this.is.an/example#Projekt
</oxml:externalRepresentation>
<oxml:subConcept0f concept="a:DEFAULT_ROOT_CONCEPT"/>
</oxml:concept>

<oxml:concept id="a:Topic">
<oxml:externalRepresentation language="en">
http://this.is.an/example#Topic
</oxml:externalRepresentation>
<oxml:externalRepresentation language='de">
http://this.is.an/example#Thema
</oxml:externalRepresentation>
<oxml :subConcept0f concept="a:DEFAULT_ROOT_CONCEPT"/>
</oxml:concept>

<oxml:relation id="a:DEFAULT_ROOT_RELATION"/>

<oxml:relation id="a:supports">
<oxml :externalRepresentation language='"en'">
http://this.is.an/example#support
</oxml:externalRepresentation>
<oxml:subRelation0Of relation="a:DEFAULT_ROOT_RELATION"/>
<oxml:inverseRelation0f relation="a:supported_by"/>
</oxml:relation>

<oxml:relation id="a:supports"
domain="a:Software"
range="a:Methodology"

261

D Example Ontology

/>

<oxml:relation id="a:supported_by">
<oxml :externalRepresentation language='"en'">
http://this.is.an/example#supported by
</oxml:externalRepresentation>
<oxml:subRelation0f relation="a:DEFAULT_ROOT_RELATION"/>
<oxml:inverseRelation0f relation="a:supports"/>
</oxml:relation>

<oxml:relation id="a:supported_by"
domain="a:Methodology"
range="a:Software"

/>

<oxml:relation id="a:implements">
<oxml :externalRepresentation language='"en'">
http://this.is.an/example#implements
</oxml:externalRepresentation>
<oxml:subRelationOf relation="a:DEFAULT_ROOT_RELATION"/>
<oxml:inverseRelationOf relation="a:implemented_by"/>
</oxml:relation>

<oxml:relation id="a:implements"
domain="a:Software"
range="a:Architecture"

/>

<oxml:relation id="a:implemented_by">
<oxml :externalRepresentation language='"en'">
http://this.is.an/example#implemented by
</oxml:externalRepresentation>
<oxml:subRelationOf relation="a:DEFAULT_ROOT_RELATION"/>
<oxml:inverseRelation0f relation="a:implements"/>
</oxml:relation>

<oxml:relation id="a:implemented_by"
domain="a:Architecture"
range="a:Software"

/>

262

<oxml:relation id="a:has_part">
<oxml :externalRepresentation language='"en'">
http://this.is.an/examplet#thas part
</oxml:externalRepresentation>
<oxml:subRelation0f relation="a:DEFAULT_ROOT_RELATION"/>
<oxml:inverseRelation0f relation="a:part_of"/>
</oxml:relation>

<oxml:relation id="a:has_part"
domain="a:Software"
range="a:Software"

/>

<oxml:relation id="a:has_part"
domain="a:Project"
range="a:Case_Study"

/>

<oxml:relation id="a:part_of">
<oxml:externalRepresentation language="en">
http://this.is.an/example#part of
</oxml:externalRepresentation>
<oxml:subRelation0f relation="a:DEFAULT_ROOT_RELATION"/>
<oxml:inverseRelation0f relation="a:has_part"/>
</oxml:relation>

<oxml:relation id="a:part_of"
domain="a:Software"
range="a:Software"

/>

<oxml:relation id="a:part_of"
domain="a:Case_Study"
range="a:Project"

/>

<oxml:relation id="a:version">
<oxml:externalRepresentation language="en'>
http://this.is.an/example#version
</oxml:externalRepresentation>
<oxml:subRelationOf relation="a:DEFAULT_ROOT_RELATION"/>

263

D Example Ontology

</oxml:relation>

<oxml:relation id="a:version"
domain="a:Software"
range="xsd:STRING"

/>

<oxml:relation id="a:has_role'>
<oxml:externalRepresentation language="en">
http://this.is.an/example#has role
</oxml:externalRepresentation>
<oxml:subRelationOf relation="a:DEFAULT_ROOT_RELATION"/>
<oxml:inverseRelationOf relation="a:carried_by"/>
</oxml:relation>

<oxml:relation id="a:has_role"
domain="a:Person"
range="a:Role"

/>

<oxml:relation id="a:developed_by">
<oxml:externalRepresentation language="en">
http://this.is.an/example#developed by
</oxml:externalRepresentation>
<oxml:subRelationOf relation="a:DEFAULT_ROOT_RELATION"/>
<oxml:inverseRelation0f relation="a:develops"/>
</oxml:relation>

<oxml:relation id="a:developed_by"
domain="a:Software"
range="a:Person"

/>

<oxml:relation id="a:develops">
<oxml :externalRepresentation language='"en'">
http://this.is.an/example#develops
</oxml:externalRepresentation>
<oxml:subRelationOf relation="a:DEFAULT_ROOT_RELATION"/>
<oxml:inverseRelationOf relation="a:developed_by"/>
</oxml:relation>

264

<oxml:relation id="a:develops"
domain="a:Person"
range="a:Software"

/>

<oxml:relation id="a:authored_by">
<oxml:externalRepresentation language="en">
http://this.is.an/example#authored by
</oxml:externalRepresentation>
<oxml:subRelation0f relation="a:DEFAULT_ROOT_RELATION"/>
<oxml:inverseRelationOf relation="a:authors"/>
</oxml:relation>

<oxml:relation id="a:authored_by"
domain="a:Document"
range="a:Person"

/>

<oxml:relation id="a:authors">
<oxml:externalRepresentation language="en">
http://this.is.an/example#authors
</oxml:externalRepresentation>
<oxml:subRelationOf relation="a:DEFAULT_ROOT_RELATION"/>
<oxml:inverseRelationOf relation="a:authored_by"/>
</oxml:relation>

<oxml:relation id="a:authors"
domain="a:Person"
range="a:Document"

/>

<oxml:relation id="a:has_title">
<oxml:externalRepresentation language="en'>
http://this.is.an/example#has title
</oxml:externalRepresentation>
<oxml:subRelationOf relation="a:DEFAULT_ROOT_RELATION"/>
</oxml:relation>

<oxml:relation id="a:has_title"
domain="a:Document"
range="xsd:STRING"

265

D Example Ontology

/>

<oxml:relation id="a:invented_by">
<oxml :externalRepresentation language='"en'">
http://this.is.an/example#invented by
</oxml:externalRepresentation>
<oxml:subRelationOf relation="a:DEFAULT_ROOT_RELATION"/>
<oxml:inverseRelationOf relation="a:invent"/>
</oxml:relation>

<oxml:relation id="a:invented_by"
domain="a:Architecture"
range="a:Person" />

<oxml:relation id="a:invent'>
<oxml:externalRepresentation language="en'>
http://this.is.an/example#invent
</oxml:externalRepresentation>
<oxml:subRelation0Of relation="a:DEFAULT_ROOT_RELATION"/>
<oxml:inverseRelation0f relation="a:invented_by"/>
</oxml:relation>

<oxml:relation id="a:invent"
domain="a:Person"
range="a:Architecture"

/>

<oxml:relation id="a:carried_by">
<oxml:externalRepresentation language="en">
http://this.is.an/example#carried by
</oxml:externalRepresentation>
<oxml:subRelation0f relation="a:DEFAULT_ROOT_RELATION"/>
<oxml:inverseRelationOf relation="a:has_role"/>
</oxml:relation>

<oxml:relation id="a:carried_by"
domain="a:Role"
range="a:Person"

/>

<oxml:relation id="a:used_to_build">

266

<oxml:externalRepresentation language="en'>
http://this.is.an/example#fused to build
</oxml:externalRepresentation>
<oxml:subRelation0f relation="a:DEFAULT_ROOT_RELATION"/>
</oxml:relation>

<oxml:relation id="a:used_to_build"
domain="a:Tool"
range="a:Application"

/>

<oxml:relation id="a:used_to_engineer">
<oxml :externalRepresentation language='"en'">
http://this.is.an/example#used to engineer
</oxml:externalRepresentation>
<oxml:subRelationOf relation="a:DEFAULT_ROOT_RELATION"/>
<oxml:inverseRelationOf relation="a:engineered_with"/>
</oxml:relation>

<oxml:relation id="a:used_to_engineer"
domain="a:0EE"
range="a:0Ontology"

/>

<oxml:relation id="a:engineered_with">
<oxml :externalRepresentation language='"en'">
http://this.is.an/example#engineered with
</oxml:externalRepresentation>
<oxml:subRelationOf relation="a:DEFAULT_ROOT_RELATION"/>
<oxml:inverseRelationOf relation="a:used_to_engineer"/>
</oxml:relation>

<oxml:relation id="a:engineered_with"
domain="a:0Ontology"
range="a:0EE"

/>

<oxml:relation id="a:has_participant">
<oxml :externalRepresentation language='"en'">
http://this.is.an/example#has participant
</oxml:externalRepresentation>

267

D Example Ontology

<oxml:subRelation0f relation="a:DEFAULT_ROOT_RELATION"/>
<oxml:inverseRelationOf relation="a:participates_in"/>
</oxml:relation>

<oxml:relation id="a:has_participant"
domain="a:Project"
range="a:Person"

/>

<oxml:relation id="a:participates_in">
<oxml:externalRepresentation language="en">
http://this.is.an/example#participates in
</oxml:externalRepresentation>
<oxml:subRelationOf relation="a:DEFAULT_ROOT_RELATION"/>
<oxml:inverseRelation0f relation="a:has_participant"/>
</oxml:relation>

<oxml:relation id="a:participates_in"
domain="a:Person"
range="a:Project"

/>

<oxml:relation id="a:carries_out'">
<oxml :externalRepresentation language='"en'">
http://this.is.an/example#fcarries out
</oxml:externalRepresentation>
<oxml:subRelationOf relation="a:DEFAULT_ROOT_RELATION"/>
<oxml:inverseRelationOf relation="a:carried_out_by"/>
</oxml:relation>

<oxml:relation id="a:carries_out"
domain="a:Person"
range="a:Case_Study"

/>

<oxml:relation id="a:carried_out_by">
<oxml :externalRepresentation language='"en'">
http://this.is.an/example#fcarried out by
</oxml:externalRepresentation>
<oxml:subRelationOf relation="a:DEFAULT_ROOT_RELATION"/>
<oxml:inverseRelationOf relation="a:carries_out"/>

268

</oxml:relation>

<oxml:relation id="a:carried_out_by"
domain="a:Case_Study"
range="a:Person"

/>

<oxml:relation id="a:developed_in">
<oxml:externalRepresentation language="en'>
http://this.is.an/example#developed in
</oxml:externalRepresentation>
<oxml:subRelation0Of relation="a:DEFAULT_ROOT_RELATION"/>
</oxml:relation>

<oxml:relation id="a:developed_in"
domain="a:Software"
range="a:Project"

/>

<oxml:relation id="a:is_about">
<oxml :externalRepresentation language='"en'">
http://this.is.an/example#is about
</oxml:externalRepresentation>
<oxml:subRelation0Of relation="a:DEFAULT_ROOT_RELATION"/>
</oxml:relation>

<oxml:relation id="a:is_about"
domain="a:Document"
range="a:Topic"

/>

<oxml:relation id="a:is_about"
domain="a:Project"
range="a:Topic"

/>

<oxml:relation id="a:is_about"
domain="a:Case_Study"
range="a:Topic"

/>

269

D Example Ontology

<oxml:relation id="a:is_about"
domain="a:0Ontology"
range="a:Topic"

/>

<oxml:relation id="a:subtopic_of">
<oxml:externalRepresentation language="en'>
http://this.is.an/example#subtopic of
</oxml:externalRepresentation>

<oxml:subRelation0f relation="a:DEFAULT_ROOT_RELATION"/>
<oxml:algebraicProperty property="transitive"/>

</oxml:relation>

<oxml:relation id="a:subtopic_of"
domain="a:Topic"
range="a:Topic"

/>

<oxml:instance id="a:OntoEdit">
<oxml:externalRepresentation language="en">
http://this.is.an/example#0ntoEdit
</oxml:externalRepresentation>
<oxml:instanceOf concept="a:0EE"/>
<oxml :hasRelation relation="a:implements"
instance="a:0ntoMat"/>
<oxml :hasRelation relation="a:developed_by"
instance="a:Dirk_Wenke"/>
</oxml:instance>

<oxml:instance id="a:Mind20nto">
<oxml:externalRepresentation language="en">
http://this.is.an/example#Mind20nto
</oxml:externalRepresentation>

<oxml:instanceOf concept="a:0OntoMat-Plugin"/>

<oxml :hasRelation relation="a:developed_by"
instance="a:York_Sure"/>

<oxml :hasRelation relation="a:developed_by"
instance="a:Markus_Zondler"/>

<oxml :hasRelation relation="a:part_of"
instance="a:0ntoEdit"/>

<oxml :hasRelation relation="a:supports"

270

instance="a:0n-To-Knowledge_Methodology" />
<oxml :hasRelation relation="a:developed_in"
instance="a:0n-To-Knowledge"/>
<oxml :hasRelation relation="a:implements"
instance="a:0ntoMat"/>
</oxml:instance>

<oxml:instance id="a:0OntoAnalyzer'">
<oxml:externalRepresentation language="en">
http://this.is.an/example#0ntoAnalyzer
</oxml:externalRepresentation>
<oxml:instanceOf concept="a:0OntoMat-Plugin"/>
<oxml :hasRelation relation="a:developed_by"
instance="a:Dirk_Wenke"/>
<oxml :hasRelation relation="a:part_of"
instance="a:0ntoEdit"/>
<oxml :hasRelation relation="a:supports"
instance="a:0n-To-Knowledge_Methodology"/>
<oxml :hasRelation relation="a:implements"
instance="a:0ntoMat"/>
</oxml:instance>

<oxml:instance id="a:OntoClean_Plugin">

<oxml :externalRepresentation language='"en'">
http://this.is.an/example#0ntoClean Plugin

</oxml:externalRepresentation>

<oxml:instanceOf concept="a:0OntoMat-Plugin"/>

<oxml :hasRelation relation="a:developed_in"
instance="a:0n-To-Knowledge"/>

<oxml :hasRelation relation="a:developed_by"
instance="a:York_Sure"/>

<oxml :hasRelation relation="a:developed_by"
instance="a:Stefan_Lenhart"/>

<oxml:hasRelation relation="a:part_of"
instance="a:0ntoEdit"/>

<oxml:hasRelation relation="a:supports"
instance="a:0n-To-Knowledge_Methodology"/>

<oxml:hasRelation relation="a:supports"
instance="a:0ntoClean_Methodology"/>

<oxml:hasRelation relation="a:implements"
instance="a:0ntoMat"/>

271

D Example Ontology

</oxml:instance>

<oxml:instance id="a:0OntoFiller">

<oxml :externalRepresentation language='"en'">
http://this.is.an/example#0OntoFiller

</oxml:externalRepresentation>

<oxml:instanceOf concept="a:0OntoMat-Plugin"/>

<oxml :hasRelation relation="a:developed_in"
instance="a:0n-To-Knowledge"/>

<oxml :hasRelation relation="a:developed_by"
instance="a:York_Sure"/>

<oxml:hasRelation relation="a:developed_by"
instance="a:Heiko_Rudat"/>

<oxml:hasRelation relation="a:part_of"
instance="a:0ntoEdit"/>

<oxml:hasRelation relation="a:implements"
instance="a:0ntoMat"/>

<oxml:hasRelation relation="a:part_of"
instance="a:0ntoEdit"/>

<oxml:hasRelation relation="a:supports"
instance="a:0n-To-Knowledge_Methodology"/>

</oxml:instance>

<oxml:instance id="a:0OntoGenerator">
<oxml:externalRepresentation language="en">
http://this.is.an/example#0ntoGenerator
</oxml:externalRepresentation>
<oxml:instanceOf concept="a:0ntoMat-Plugin"/>
<oxml:hasRelation relation="a:developed_by"
instance="a:York_Sure"/>
<oxml:hasRelation relation="a:developed_by"
instance="a:Stefan_Lenhart"/>
<oxml:hasRelation relation="a:developed_in"
instance="a:0n-To-Knowledge"/>
<oxml :hasRelation relation="a:part_of"
instance="a:0ntoEdit"/>
<oxml :hasRelation relation="a:implements"
instance="a:0ntoMat"/>
</oxml:instance>

<oxml:instance id="a:0OntoKick">

272

<oxml:externalRepresentation language="en">
http://this.is.an/example#0ntoKick

</oxml:externalRepresentation>

<oxml:instanceOf concept="a:0ntoMat-Plugin"/>

<oxml:hasRelation relation="a:developed_by"
instance="a:York_Sure"/>

<oxml:hasRelation relation="a:developed_by"
instance="a:Claus_Boyens"/>

<oxml:hasRelation relation="a:developed_in"
instance="a:0n-To-Knowledge"/>

<oxml:hasRelation relation="a:implements"
instance="a:0ntoMat"/>

<oxml :hasRelation relation="a:part_of"
instance="a:0ntoEdit"/>

<oxml :hasRelation relation="a:supports"
instance="a:0n-To-Knowledge_Methodology" />

</oxml:instance>

<oxml:instance id="a:Sesame_Plugin'>

<oxml:externalRepresentation language="en">
http://this.is.an/example#Sesame Plugin

</oxml:externalRepresentation>

<oxml:instanceOf concept="a:0OntoMat-Plugin"/>

<oxml :hasRelation relation="a:developed_by"
instance="a:York_Sure"/>

<oxml :hasRelation relation="a:developed_by"
instance="a:Stefan_Lenhart"/>

<oxml :hasRelation relation="a:developed_in"
instance="a:0n-To-Knowledge"/>

<oxml :hasRelation relation="a:implements"
instance="a:0ntoMat"/>

<oxml :hasRelation relation="a:part_of"
instance="a:0ntoEdit"/>

<oxml:hasRelation relation="a:supports"
instance="a:0n-To-Knowledge_Methodology"/>

</oxml:instance>

<oxml:instance id="a:Protege'">

<oxml :externalRepresentation language='"en'">
http://this.is.an/example#Protege

</oxml:externalRepresentation>

273

D Example Ontology

<oxml:instanceOf concept="a:0EE"/>
</oxml:instance>

<oxml:instance id="a:WebODE">
<oxml:externalRepresentation language="en">
http://this.is.an/example#WebODE
</oxml:externalRepresentation>
<oxml:instanceOf concept="a:0EE"/>
</oxml:instance>

<oxml:instance id="a:SkiM">
<oxml:externalRepresentation language="en">
http://this.is.an/example#SkiM
</oxml:externalRepresentation>
<oxml:instanceOf concept="a:Application"/>
<oxml:hasRelation relation="a:implements"
instance="a:0TK_Architecture"/>
<oxml:hasRelation relation="a:developed_in"
instance="a:0n-To-Knowledge"/>
</oxml:instance>

<oxml:instance id="a:0OntoWeb_Portal'>
<oxml:externalRepresentation language="en">
http://this.is.an/example#0ntoWeb Portal
</oxml:externalRepresentation>
<oxml:instanceOf concept="a:Application"/>
<oxml:hasRelation relation="a:implements"
instance="a:SEAL"/>
<oxml:hasRelation relation="a:developed_in"
instance="a:0ntoWeb"/>
</oxml:instance>

<oxml:instance id="a:Dirk_Wenke'">

<oxml:externalRepresentation language="en">
http://this.is.an/example#Dirk Wenke

</oxml:externalRepresentation>

<oxml:instanceOf concept="a:Person'"/>

<oxml:hasRelation relation="a:develops"
instance="a:0ntoEdit"/>

<oxml:hasRelation relation="a:has_role"
instance="a:Developer"/>

274

</oxml:instance>

<oxml:instance id="a:Siegfried_Handschuh">
<oxml :externalRepresentation language='"en'">

http://this.is.an/example#Siegfried Handschuh

</oxml:externalRepresentation>
<oxml:instanceOf concept="a:Person"/>
</oxml:instance>

<oxml:instance id="a:York_Sure'">
<oxml:externalRepresentation language='"en'>
http://this.is.an/example#York Sure
</oxml:externalRepresentation>
<oxml:instanceOf concept="a:Person"/>

<oxml :hasRelation relation="a:participates_in"

instance="a:0n-To-Knowledge"/>

<oxml :hasRelation relation="a:participates_in"

instance="a:0ntoWeb"/>
</oxml:instance>

<oxml:instance id="a:Author'">
<oxml:externalRepresentation language="en'>
http://this.is.an/example#Author
</oxml:externalRepresentation>
<oxml:instanceOf concept="a:Role"/>
</oxml:instance>

<oxml:instance id="a:Developer">
<oxml:externalRepresentation language="en">
http://this.is.an/example#Developer
</oxml:externalRepresentation>
<oxml:instanceOf concept="a:Role"/>
</oxml:instance>

<oxml:instance id="a:This_Phd_Thesis">
<oxml:externalRepresentation language="en">
http://this.is.an/example#This Phd Thesis
</oxml:externalRepresentation>
<oxml:instanceOf concept="a:PhD_Thesis"/>
<oxml:hasRelation relation="a:authored_by"
instance="a:York_Sure"/>

275

D Example Ontology

<oxml:hasAttribute relation="a:has_title" range="xsd:STRING">
<oxml:value>
Methodology, Tools & Case Studies
for Ontology-based
Knowledge Management
</oxml:value>
</oxml:hasAttribute>
</oxml:instance>

<oxml:instance id="a:OntoMat">
<oxml:externalRepresentation language='"en'>
http://this.is.an/example#0OntoMat
</oxml:externalRepresentation>
<oxml:instanceOf concept="a:Architecture"/>
<oxml :hasRelation relation="a:invented_by"
instance="a:Siegfried_Handschuh"/>
<oxml :hasRelation relation="a:implemented_by"
instance="a:0ntoEdit"/>
</oxml:instance>

<oxml:instance id="a:SEAL">
<oxml:externalRepresentation language="en'>
http://this.is.an/example#SEAL
</oxml:externalRepresentation>
<oxml:instanceOf concept="a:Architecture"/>
</oxml:instance>

<oxml:instance id="a:0TK_Architecture'>
<oxml:externalRepresentation language="en">
http://this.is.an/example#0TK Architecture
</oxml:externalRepresentation>
<oxml:instanceOf concept="a:Architecture"/>
</oxml:instance>

<oxml:instance id="a:0n-To-Knowledge_Methodology">
<oxml:externalRepresentation language="en">
http://this.is.an/example#0n-To-Knowledge Methodology
</oxml:externalRepresentation>
<oxml:instance0Of concept="a:Methodology"/>
</oxml:instance>

276

<oxml:instance id="a:0OntoClean_Methodology">
<oxml :externalRepresentation language='"en'">
http://this.is.an/example#0ntoClean Methodology
</oxml:externalRepresentation>
<oxml:instance0f concept="a:Methodology"/>
</oxml:instance>

<oxml:instance id="a:Claus_Boyens'">
<oxml:externalRepresentation language="en">
http://this.is.an/example#Claus Boyens
</oxml:externalRepresentation>
<oxml:instanceOf concept="a:Person"/>
</oxml:instance>

<oxml:instance id="a:Heiko_Rudat">
<oxml:externalRepresentation language="en">
http://this.is.an/example#Heiko Rudat
</oxml:externalRepresentation>
<oxml:instanceOf concept="a:Person"/>
</oxml:instance>

<oxml:instance id="a:Stefan_Lenhart'">
<oxml:externalRepresentation language="en'>
http://this.is.an/example#Stefan Lenhart
</oxml:externalRepresentation>
<oxml:instanceOf concept="a:Person'"/>
</oxml:instance>

<oxml:instance id="a:Markus_Zondler">
<oxml :externalRepresentation language='"en'">
http://this.is.an/example#Markus Zondler
</oxml:externalRepresentation>
<oxml:instanceOf concept="a:Person"/>
</oxml:instance>

<oxml:instance id="a:OntoMat-Annotizer">
<oxml :externalRepresentation language='"en'">
http://this.is.an/example#0ntoMat-Annotizer
</oxml:externalRepresentation>
<oxml:instanceOf concept="a:Annotation_Editor"/>
<oxml :hasRelation relation="a:developed_by"

277

D Example Ontology

instance="a:Siegfried_Handschuh"/>
<oxml :hasRelation relation="a:implements"
instance="a:0ntoMat"/>
</oxml:instance>

<oxml:instance id="a:0n-To-Knowledge">
<oxml:externalRepresentation language="en">
http://this.is.an/example#0n-To-Knowledge
</oxml:externalRepresentation>
<oxml:instanceOf concept="a:Project"/>
<oxml:hasRelation relation="a:has_part"
instance="a:BT_Case_Study"/>
<oxml:hasRelation relation="a:has_part"
instance="a:EnerSearch_Case_Study"/>
<oxml :hasRelation relation="a:has_part"
instance="a:Swiss_Life_Case_Study"/>
<oxml :hasRelation relation="a:is_about"
instance="a:Semantic_Web"/>
<oxml :hasRelation relation="a:is_about"
instance="a:Knowledge_Management"/>
</oxml:instance>

<oxml:instance id="a:0OntoWeb">
<oxml :externalRepresentation language='"en'">
http://this.is.an/example#0ntoWeb
</oxml:externalRepresentation>
<oxml:instanceOf concept="a:Project"/>
<oxml:hasRelation relation="a:is_about" instance="a:Semantic_Web"/>
</oxml:instance>

<oxml:instance id="a:Ontology_Engineering">
<oxml :externalRepresentation language='"en'">
http://this.is.an/example#0ntology Engineering
</oxml:externalRepresentation>
<oxml:instanceOf concept="a:Topic"/>
<oxml:hasRelation relation="a:subtopic_of"
instance="a:Knowledge_Engineering"/>
<oxml:hasRelation relation="a:subtopic_of"
instance="a:Semantic_Web"/>
</oxml:instance>

278

<oxml:instance id="a:Knowledge_Engineering">
<oxml :externalRepresentation language='"en'">
http://this.is.an/example#Knowledge Engineering
</oxml:externalRepresentation>
<oxml:instanceOf concept="a:Topic"/>
<oxml :hasRelation relation="a:subtopic_of"
instance="a:Knowledge_Management"/>
</oxml:instance>

<oxml:instance id="a:Knowledge_Management'>
<oxml:externalRepresentation language="en'>
http://this.is.an/example#Knowledge Management
</oxml:externalRepresentation>
<oxml:instanceOf concept="a:Topic"/>
</oxml:instance>

<oxml:instance id="a:Semantic_Web'">
<oxml:externalRepresentation language="en">
http://this.is.an/example#Semantic Web
</oxml:externalRepresentation>
<oxml:instanceOf concept="a:Topic"/>
</oxml:instance>

<oxml:instance id="a:Skills_Management'>
<oxml:externalRepresentation language="en">
http://this.is.an/example#Skills Management
</oxml:externalRepresentation>
<oxml:instanceOf concept="a:Topic"/>
<oxml:hasRelation relation="a:subtopic_of"
instance="a:Knowledge_Management"/>
</oxml:instance>

<oxml:instance id="a:Virtual_0Organization'">
<oxml:externalRepresentation language="en">
http://this.is.an/example#Virtual Organization
</oxml:externalRepresentation>
<oxml:instanceOf concept="a:Topic"/>
<oxml:hasRelation relation="a:subtopic_of"
instance="a:Knowledge_Management"/>
</oxml:instance>

279

D Example Ontology

<oxml:instance id="a:Knowledge_Sharing">
<oxml :externalRepresentation language='"en'">
http://this.is.an/example#Knowledge Sharing
</oxml:externalRepresentation>
<oxml:instanceOf concept="a:Topic"/>
<oxml :hasRelation relation="a:subtopic_of"
instance="a:Knowledge_Management"/>
</oxml:instance>

<oxml:instance id="a:Community_of_Practice">
<oxml:externalRepresentation language='"en'>
http://this.is.an/example#Community of Practice
</oxml:externalRepresentation>
<oxml:instanceOf concept="a:Topic"/>
<oxml :hasRelation relation="a:subtopic_of"
instance="a:Knowledge_Management"/>
</oxml:instance>

<oxml:instance id="a:Knowledge_Portal">
<oxml:externalRepresentation language="en">
http://this.is.an/example#Knowledge Portal
</oxml:externalRepresentation>
<oxml:instance0f concept="a:Topic"/>
<oxml :hasRelation relation="a:subtopic_of"
instance="a:Knowledge_Management"/>
</oxml:instance>

<oxml:instance id="a:Swiss_Life_Case_Study">
<oxml:externalRepresentation language="en">
http://this.is.an/example#Swiss Life Case Study
</oxml:externalRepresentation>
<oxml:instanceOf concept="a:Case_Study"/>
<oxml:hasRelation relation="a:is_about"
instance="a:Skills_Management"/>
</oxml:instance>

<oxml:instance id="a:BT_Case_Study">
<oxml:externalRepresentation language="en">
http://this.is.an/example#BT Case Study
</oxml:externalRepresentation>
<oxml:instanceOf concept="a:Case_Study"/>

280

<oxml:hasRelation relation="a:is_about"
instance="a:Knowledge_Sharing"/>
<oxml:hasRelation relation="a:is_about"
instance="a:Community_of_Practice"/>
</oxml:instance>

<oxml:instance id="a:EnerSearch_Case_Study">
<oxml :externalRepresentation language='"en'">

http://this.is.an/example#EnerSearch Case Study

</oxml:externalRepresentation>
<oxml:instanceOf concept="a:Case_Study"/>
<oxml:hasRelation relation="a:is_about"
instance="a:Virtual_Organization"/>
</oxml:instance>

<oxml:instance id="a:Swiss_Life_ontology">
<oxml :externalRepresentation language="en'">
http://this.is.an/example#Swiss Life ontology
</oxml:externalRepresentation>
<oxml:instance0Of concept="a:0Ontology"/>
<oxml:hasRelation relation="a:engineered_with"
instance="a:0ntoEdit"/>
<oxml:hasRelation relation="a:is_about"
instance="a:Skills_Management"/>
</oxml:instance>

<oxml:instance id="a:EnerSeach_ontology">
<oxml :externalRepresentation language='"en'">
http://this.is.an/example#EnerSeach ontology
</oxml:externalRepresentation>
<oxml:instance0f concept="a:0Ontology"/>
<oxml:hasRelation relation="a:engineered_with"
instance="a:0ntoEdit"/>
<oxml:hasRelation relation="a:is_about"
instance="a:Virtual_Organization"/>
</oxml:instance>

<oxml:instance id="a:BT_ontology">
<oxml :externalRepresentation language='"en'>
http://this.is.an/example#BT ontology
</oxml:externalRepresentation>

281

D Example Ontology

<oxml:instance0f concept="a:0Ontology"/>
<oxml:hasRelation relation="a:engineered_with"
instance="a:0ntoEdit"/>
<oxml :hasRelation relation="a:is_about"
instance="a:Community_of_Practice"/>
</oxml:instance>

<oxml:instance id="a:OntoWeb_ontology">
<oxml:externalRepresentation language="en">
http://this.is.an/example#0ntoWeb ontology
</oxml:externalRepresentation>
<oxml:instance0f concept="a:0Ontology"/>
<oxml:hasRelation relation="a:engineered_with"
instance="a:0ntoEdit"/>
<oxml :hasRelation relation="a:is_about"
instance="a:Semantic_Web"/>
</oxml:instance>

<oxml:axiom id="a:flogic_axioml" enabled="true">
<oxml:text language="flogic">
FORALL P (P[#"\"has role\""->>"
http://this.is.an/example" ;#Author])
&1t;- (EXISTS D(P["http://this.is.an/example
" ;#authors->>D])).
</oxml:text>
</oxml :axiom>

<oxml:axiom id="a:flogic_axiom2" enabled="true">
<oxml:text language="flogic">
FORALL P (P[#"\"has role\""->>"
http://this.is.an/example" ;#Developer])
&1t;- (EXISTS S(P["http://this.is.an/example
" ;#develops->>S])).
</oxml:text>
</oxml :axiom>

<oxml :module id="DomainLexiconModulel1040341981773"
title="domain lexicon module" version="1.0"
processor="com.ontoprise.oee.domainlLexicon.DomainLexiconPlugin"
xmlns:a="http://this.is.an/example"
xmlns:domlex="http://schema.ontoprise.com/oxml/extensions/

282

domainLexicon">
</oxml :module>

<oxml :module id="OntoMapModule1040341981783"
title="ontoMap~module" version="1.0"
processor="com.ontoprise.oee.ontomap.0OntoMapPlugin"
xmlns:a="http://this.is.an/example"
xmlns:ontomap="http://schema.ontoprise.com/oxml/extensions/
ontomap">

</oxml :module>

<oxml :module id="Mind20nto"
processor="edu.unika.aifb.plugins.ontoskin.OntoskinPlugin"
xmlns:a="http://this.is.an/example"
xmlns:mind2onto="http://schema.ontoprise.com/oxml/extension/
mind2onto/0.1 mind2onto_schema.xsd">

<mind2onto:skin concept="a:0ntoMat-Plugin'">
<mind2onto:code id="9"/>
</mind2onto:skin>

<mind2onto:skin concept="a:0EE">
<mind2onto:type>Arial</mind2onto:type>
<mind2onto:size>10</mind2onto:size>
<mind2onto:code id="7"/>
</mind2onto:skin>

<mind2onto:skin concept="a:Methodology">
<mind2onto:type>Arial Black</mind2onto:type>
<mind2onto:size>14</mind2onto:size>
<mind2onto:highlightColor blue="51" green="51" red="255"/>
<mind2onto:code id="5"/>

</mind2onto:skin>

<mind2onto:skin concept="a:Tool">
<mind2onto:code id="5"/>
</mind2onto:skin>

</oxml :module>

</oxml:ontology>

283

D Example Ontology

284

Bibliography

Abecker, A., Bernardi, A., Hinkelmann, K., Kuehn, O., & Sintek, M. (1998). Toward
a technology for organizational memories. IEEE Intelligent Systems, 13(3):40-48.

Abecker, A., Decker, S., Hinkelmann, K., & Reimer, U. (Eds.) (1997). Proceedings
of the International Workshop on Knowledge-Based Systems for Knowledge Man-
agement in Enterprises. 21. Deutsche Jahrestagung “Kiinstliche Intelligenz” (KI-
97), Freiburg, September, 1997, available at http://www.dfki.uni-kl.de/km /ws-ki-
97.html.

Abiteboul, S. & Vercoustre, A.-M. (Eds.) (1999). Proceedings of the Third European
Conference on Digital Libraries (ECDL-99): Research and Advanced Technology
for Digital Libraries, volume 1696 of Lecture Notes in Computer Science (LNCS),
Paris, France. Springer.

Aldministrator (2003a). Sesame SourceForge. http://sourceforge.net/projects/sesame.
Aldministrator (2003b). Sesame website. http://sesame.aidministrator.nl/.

Albrecht, F. (1993). Strategisches Wissensmanagement der Unternehmensressource
Wissen. Verlag Peter Lang, Frankfurt am Main.

Amann, B. & Fundulaki, I. (1999). Integrating ontologies and thesauri to build RDF
schemas. In (Abiteboul & Vercoustre, 1999).

Anderson, C. R., Levy, A. Y., & Weld, D. S. (1999). Declarative web site manage-
ment with tiramisu. In ACM SIGMOD Workshop on the Web and Databases
(WebDB99), pages 19-24.

Angele, J., Schnurr, H.-P., Staab, S., & Studer, R. (2000). The times they are a-
changin’ — the Corporate History AnalyzeR. In (Reimer & Mahling, 2000), pages
1:1-1:11. CEUR-WS Publication, available at http://CEUR-WS.org/Vol-34/.

Angele, J. (1993). Operationalisierung des Modells der Expertise mit KARL. Number 53
in DISKI. infix, St. Augustin. PhD Thesis.

285

BIBLIOGRAPHY

Arpirez, J. C., Corcho, O., Fernandez-Lopez, M., & Gomez-Pérez, A. (2001). WebODE:
a scalable workbench for ontological engineering. In Proceedings of the First Inter-
national Conference on Knowledge Capture (K-CAP) Oct. 21-23, 2001, Victoria,
B.C., Canada.

Aussenac-Gilles, N., Biébow, B., & Szulman, S. (2002). Modelling the travelling domain
from a NLP description with TERMINAE. In (Sure & Angele, 2002), pages 112
128. CEUR-WS Publication, available at http://CEUR-WS.org/Vol-62/.

Becerra-Fernandez, I. (2000). The role of artificial intelligence technologies in the
implementation of people-finder knowledge management systems. In Staab, S. &
O’Leary, D. (Eds.), Bringing Knowledge to Business Processes. Workshop in the
AAAI Spring Symposium Series. Stanford, March 20-22, 2000, Menlo Park, CA.
AAAL

Bechhofer, S., Horrocks, I., Goble, C., & Stevens, R. (2001). OilEd: A reason-able on-
tology editor for the semantic web. In KI-2001: Advances in Artificial Intelligence,
LNAI 2174, pages 396—408. Springer.

Bechhofer, S. (2002). Travelling domain experiment: Preliminary results for OilEd.
In (Sure & Angele, 2002), pages 80-82. CEUR-WS Publication, available at
http://CEUR-WS.org/Vol-62/.

Benjamins, V. R., Fensel, D., Decker, S., & Goémez-Pérez, A. (1999). (KA)2: Building
ontologies for the internet. International Journal of Human-Computer Studies

(IJHCS), 51(1):687-712.

Benjamins, V. R. & Fensel, D. (1998). Community is knowledge! (KA)2. In Proceed-
ings of the 11th Workshop on Knowledge Acquisition, Modeling, and Management
(KAW ’98), Banff, Canada.

Berendt, B., Hotho, A., & Stumme, G. (Eds.) (2002a). Proceedings of the Sec-
ond Workshop on Semantic Web Mining. Held in conjunction with (Elomaa
et al., 2002a) and (Elomaa et al., 2002b); Online available at http://km.aifb.uni-
karlsruhe.de/semwebmine2002/.

Berendt, B., Hotho, A., & Stumme, G. (2002b). Towards semantic web mining. In
(Horrocks & Hendler, 2002), pages 264—278.

Bernaras, A., Laresgoiti, I., & Corera, J. (1996). Building and reusing ontologies for

electrical network applications. In Proceedings of the European Conference on

Artificial Intelligence (ECAI’96).

286

BIBLIOGRAPHY

Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The semantic web. Scientific Amer-
ican, 2001(5). available at http://www.sciam.com/2001/0501issue/0501berners-
lee.html.

Berners-Lee, T. (1993). Naming and addressing: URIs, URLs, ... W3C Overview.
available at http://www.w3.org/Addressing/.

Berners-Lee, T. (1998). Cool URIs don’t change. W3C Style. available at
http://www.w3.org/Provider/Style/URILhtml.

Bernstein, P. A., Hadzilacos, V., & Goodman, N. (1987). Concurrency Control and
Recovery in Database Systems. Addison-Wesley, Reading, MA.

Biron, P. V. & Malhotra, A. (2001). XML Schema Part 2: Datatypes. W3C Recom-
mendation 02 May 2001. available at http://www.w3.org/TR/xmlschema-2/.

Boehm, B. (1984). Verifying and validating software requirements and design specifi-
cations. IEEE Software, 1(1):75-88.

Borst, W. N. & Akkermans, J. M. (1997). Engineering ontologies. International Journal
of Human-Computer Studies, 46(2/3):365-406.

Bozsak, E., Ehrig, M., Handschuh, S., Hotho, A., Maedche, A., Motik, B., Oberle,
D., Schmitz, C., Staab, S., Stojanovic, L., Stojanovic, N., Studer, R., Stumme,
G., Sure, Y., Tane, J., Volz, R., & Zacharias, V. (2002). KAON - towards a
large scale semantic web. In Bauknecht, K., Tjoa, A. M., & Quirchmayr, G.
(Eds.), Proceedings of the Third International Conference on E-Commerce and
Web Technologies (EC-Web 2002), volume 2455 of LNCS, pages 304-313, Aix-en-
Provence, France. Springer.

Bray, T., Hollander, D., & Layman, A. (1999). Namespaces in XML. W3C Recommen-
dation 14 January 1999. available at http://www.w3.org/TR/REC-xml-names/.

Bray, T., Paoli, J., Sperberg-McQueen, C. M., & Maler, E. (2000). Extensible Markup
Language (XML) 1.0 (Second Edition). W3C Recommendation 06 October 2000.
available at http://www.w3.org/TR/REC-xml.

Brickley, D. & Guha, R. V. (2002). RDF Vocabulary Description Language
1.0: RDF Schema. W3C Working Draft 12 November 2002. available at
http://www.w3.org/ TR /PR-rdf-schema/.

Broekstra, J., Fluit, C., & van Harmelen, F. (2000). The state of the art on represen-
tations and query languages for semistructured data. On-To-Knowledge deliver-
able 8, Aldministrator Nederland b.v.

287

BIBLIOGRAPHY

Broekstra, J., Kampman, A., & van Harmelen, F. (2002). Sesame: A generic architec-
ture for storing and querying RDF and RDF Schema. In (Horrocks & Hendler,
2002), pages 54-68.

Broekstra, J. & Kampman, A. (2000). Query language definition. On-To-Knowledge
deliverable 9, Aldministrator Nederland b.v.

Broekstra, J. & Kampman, A. (2001). Sesame: A generic architecture for storing and
querying RDF and RDF Schema. On-To-Knowledge deliverable 10, Aldministra-
tor Nederland b.v.

Broekstra, J., Klein, M., Decker, S., Fensel, D., van Harmelen, F., & Horrocks, I.
(2001). Enabling knowledge representation on the web by extending RDF Schema.
In Proceedings of the 10th International World Wide Web Conference (WWW10),
Hong Kong.

Brown, M., Fernandéz-Lopez, M., Gomez-Pérez, A., & Léger, A. (2002). Business
scenarios. OntoWeb deliverable 1.2, Semantic Edge GmbH.

Buzan, T. (1974). Use your head. BBC Books.

Ceri, S., Fraternali, P., & Bongio, A. (2000). Web Modeling Language (WebML): a
modeling language for designing Web sites. In Proceedings of the 9th World Wide
Web Conference (WWWY).

Ceri, S., Fraternali, P., & Paraboschi, S. (1999). Data-driven one-to-one web site
generation for data-intensive applications. In Proceedings of 25th International
Conference on Very Large Data Bases (VLDB’99), pages 615-626.

Chaudhri, V. K., Farquhar, A., Fikes, R., Karp, P. D., & Rice, J. (1998). OKBC:
A programmatic foundation for knowledge base interoperability. In AAAI/TAAI
pages 600-607.

Corcho, O., Fernandez-Lopez, M., & Gomez-Pérez, A. (2002). Evaluation experiment
for the editor of the WebODE ontology workbench. In (Sure & Angele, 2002),
pages 129-134. CEUR-WS Publication, available at http://CEUR-WS.org/Vol-
62/.

Corcho, O. & Gomez-Pérez, A. (2000). A roadmap to ontology specification languages.
In (Dieng & Corby, 2002), pages 80-96.

Crampes, M. & Ranwez, S. (2000). Ontology-supported and ontology-driven conceptual
navigation on the world wide web. In Proceedings of the 11th ACM Conference on
Hypertext and Hypermedia, pages 191-199. ACM Press.

288

BIBLIOGRAPHY

Dahlgren, K. (1995). A linguistic ontology. International Journal of Human—Computer
Studies, 43(5/6):809-818.

Davenport, T. H., Jarvenpaa, S. L., & Beers, M. C. (1996). Improving knowledge work
processes. Sloan Management Review, 37(4):53-65.

Davenport, T. H. & Prusak, L. (1998). Working Knowledge — How organisations man-
age what they know. Havard Business School Press, Boston, Massachusetts.

Davenport, T. H. (1996). Some principles of knowledge management. Technical report,
Graduate School of Business, University of Texas at Austin, Strategy and Business.

Davies, J., Duke, A., & Stonkus, A. (2002a). OntoShare: Ontologies for knowledge
sharing. In RDF & Semantic Web Applications Workshop at the 11th International
WWW Conference, Hawaii, USA.

Davies, J., Duke, A., & Sure, Y. (2003). OntoShare — Evaluation of an ontology based
knowledge sharing system. Submitted 2003.

Davies, J., Fensel, D., & van Harmelen, F. (Eds.) (2002b). On-To-Knowledge: Seman-
tic Web enabled Knowledge Management. J. Wiley and Sons.

Davies, N. J. (2000). Supporting Virtual Communities of Practice, pages 199-212. In
(Roy, 2000).

DC (2003). Dublin Core Metadata Initiative. http://dublincore.org/.

Decker, S., Daniel, M., Erdmann, M., & Studer, R. (1997). An enterprise reference
scheme for integrating model based knowledge engineering and enterprise model-
ing. In (Plaza & Benjamins, 1997).

Decker, S., Erdmann, M., Fensel, D., & Studer, R. (1999). Ontobroker: Ontology
Based Access to Distributed and Semi-Structured Information, pages 351-369. In
(Meersman et al., 1999).

Decker, S. (2002). Semantic Web Methods for Knowledge Management. PhD thesis,
Institute AIFB, University of Karlsruhe.

Demey, J., Jarrar, M., & Meersman, R. (2002). A conceptual markup language that
supports interoperability between business rules modeling systems. In (Meersman
et al., 2002), pages 19-35.

Denny, M. (2002). Ontology editor survey results (table). available at
http://xml.com/2002/11/06/Ontology Editor Survey.html.

289

BIBLIOGRAPHY

De Raedt, L. & Flach, P. (Eds.) (2001). Proceedings of the 12th European Conference
on Machine Learning (ECML 2001), volume 2167 of Lecture Notes in Artificial
Intelligence (LNAI). Springer-Verlag.

De Raedt, L. & Siebes, A. (Eds.) (2001). Proceedings of the 5th European Conference
on Principles of Data Mining and Knowledge Discovery (PKDD 2001), volume
2168 of Lecture Notes in Artificial Intelligence (LNAI). Springer-Verlag.

Dieng-Kuntz, R. & Matta, N. (Eds.) (2002). Knowledge Management and Organiza-
tional Memories. Kluwer Academic Publishers, Boston, Dordrecht, London.

Dieng, R., Corby, O., Giboin, A., & Ribiere, M. (1999). Methods and tools for corporate
knowledge management. Int. Journal of Human-Computer Studies, 51(3):567-598.

Dieng, R. & Corby, O. (Eds.) (2002). Proceedings of the 12th International Confer-
ence on Knowledge Engineering and Knowledge Management: Methods, Models,
and Tools (EKAW 2000), volume 1937 of Lecture Notes in Artificial Intelligence
(LNAI), Juan-les-Pins, France. Springer.

Dittmann, L., Peters, M. L., & Zelewski, S. (2003). Mitarbeitermotivation und Kom-
petenzmanagementsysteme. In (Sure & Schnurr, 2003). To appear 2003.

Domingue, J. (1998). Tadzebao and WebOnto: Discussing, browsing, and editing
ontologies on the web. In Proceedings of the 11th Knowledge Acquisition for
Knowledge-Based Systems Workshop, April 18th-23rd. Banff, Canada.

Drucker, P. A. (1993). A Post Capitalist Society. HarperCollins, New York.

Duineveld, A. J., Stoter, R., Weiden, M. R., Kenepa, B., & Benjamins, V. R. (2000).
Wondertools? a comparative study of ontological engineering tools. International
Journal of Human-Computer Studies, 6(52):1111-1133.

Duke, A. & Davies, J. (2001). Knowledge sharing facility. On-To-Knowledge deliver-
able 12, BT.

Duke, A. & Davies, J. (2002a). Evaluation document. On-To-Knowledge deliverable 26,
BT.

Duke, A. & Davies, J. (2002b). Prototype. On-To-Knowledge deliverable 25, BT.

Duke, A. & van der Meer, J. (2002). User profile construction. On-To-Knowledge
deliverable 14, BT and Aldministrator Nederland b.v.

Eason, K. (1988). Information Technology and Organisational Change. Taylor & Fran-
cis, London.

290

BIBLIOGRAPHY

Edvinson, L. & Malone, M. (1997). Intellectual capital. Realizing your company’s true
value by finding its hidden brainpower. Harper, New York.

Elbert, S. (2001). Einfithrung eines Management-Support-Systems zum effektiven Skill-
Management bei Bertelsmann mediaSystems. In (Schnurr et al., 2001), pages
129-143.

Ellis, C. A., Gibbs, S. J., & Rein, G. L. (1991). Groupware, some issues and experiences.
Communications of the ACM, 34(1).

Elomaa, T., Mannila, H., & Toivonen, H. (Eds.) (2002a). Proceedings of the 13th
European Conference on Machine Learning (ECML 2002), volume 2430 of Lecture
Notes in Artificial Intelligence (LNAI). Springer-Verlag.

Elomaa, T., Mannila, H., & Toivonen, H. (Eds.) (2002b). Proceedings of the 6th Euro-
pean Conference on Principles of Data Mining and Knowledge Discovery (PKDD
2002), volume 2431 of Lecture Notes in Artificial Intelligence (LNAI). Springer-
Verlag.

Engels, R. & Bremdal, B. A. (2000). Information extraction: State-of-the-art report.
On-To-Knowledge deliverable 5, CognlT a.s.

Engels, R. & Bremdal, B. A. (2001a). CORPORUM: A workbench for the semantic
web. In Proceedings of the Semantic Web Mining Workshop. PKDD/ECML - 01,
Freiburg, Germany.

Engels, R. & Bremdal, B. A. (2001b). Ontology extraction tool. On-To-Knowledge
deliverable 6, CognlIT a.s.

Engels, R. & Bremdal, B. A. (2002). Ontowrapper. On-To-Knowledge deliverable 7,
CognlT a.s.

Erdmann, M., Maedche, A., Schnurr, H.-P., & Staab, S. (2000). From manual to semi-
automatic semantic annotation: About ontology-based text annotation tools. In
Proceedings of the COLING-2000 Workshop on Semantic Annotation and Intelli-
gent Content, Centre Universitaire, Luxembourg.

Erdmann, M. & Studer, R. (2001). How to structure and access XML documents with
ontologies. Data and Knowledge Engineering, 36(3):317-335.

Erdmann, M., Sure, Y., & Wenke, D. (2001). OntoEdit: Which DAML+OIL
features are/will be supported? Posted on 2001-12-12 to the “www-rdf-
logic@w3.org” mailing list. available at http://lists.w3.org/Archives/Public/www-
rdf-logic/2001Dec/0018.html.

291

BIBLIOGRAPHY

Erdmann, M. (2001). Ontologien zur konzeptuellen Modellierung der Semantik von
XML. Books on Demand. PhD Thesis.

Farquhar, A., Fickas, R., & Rice, J. (1996). The Ontolingua Server: A tool for col-
laborative ontology construction. In Proceedings of the 10th Banff Knowledge
Acquisition for KnowledgeBased System Workshop (KAW’95), Banff, Canada.

Fensel, D., Angele, J., Decker, S., Erdmann, M., Schnurr, H.-P., Studer, R., & Witt,
A. (2000a). Lessons learned from applying AI to the web. International Journal
of Cooperative Information Systems, 9(4):361-382.

Fensel, D., Hendler, J., Lieberman, H., & Wahlster, W. (Eds.) (2003). Spinning the
Semantic Web. MIT Press.

Fensel, D., Horrocks, 1., van Harmelen, F., Broekstra, J., Crubezy, M., Decker, S.,
Ding, Y., Erdmann, M., Goble, C., Klein, M., Omelayenko, B., Staab, S., Stuck-
enschmidt, H., & Studer, R. (2000b). Ontology Language Version 1. On-To-
Knowledge deliverable 1, Vrije Universiteit Amsterdam.

Fensel, D., Horrocks, I., van Harmelen, F., Decker, S., Erdmann, M., & Klein, M.
(2000c). OIL in a nutshell. In (Dieng & Corby, 2002), pages 1-16.

Fensel, D., van Harmelen, F., Ding, Y., Klein, M., Akkermans, H., Broekstra, J.,
Kampman, A., van der Meer, J., Studer, R., Sure, Y., Davies, J., Duke, A.,
Engels, R., losif, V., Kiryakov, A., Lau, T., Reimer, U., & Horrocks, I. (2002).
Final project report. On-To-Knowledge deliverable, Vrije Universiteit Amsterdam.

Fensel, D., van Harmelen, F., Horrocks, I., McGuinness, D. L., & Patel-Schneider, P. F.
(2001). OIL: An ontology infrastructure for the semantic web. IEEE Intelligent
Systems, 16(2):38—44.

Fensel, D., van Harmelen, F., & Horrocks, I. (1999). OIL: A standard proposal for the
Semantic Web. On-To-Knowledge deliverable 0, Vrije Universiteit Amsterdam.

Fensel, D. (1995). The Knowledge Acquisition and Representation Language KARL.
Kluwer Academic Publisher, Boston.

Fensel, D. (2000). Problem Solving Methods: Understanding, Description, Develop-
ment, and Reuse, volume 1791 of Lecture Notes in Computer Science (LNCS).
Springer.

Fensel, D. (2001). Ontologies: Silver bullet for knowledge management and electronic
commerce. Springer-Verlag, Berlin.

Fensel, D. (2002). Welcome to OIL. On-To-Knowledge deliverable 2, Vrije Universiteit
Amsterdam.

292

BIBLIOGRAPHY

Fernandéz-Lopez, M., Gomez-Pérez, A., Euzenat, J., Gangemi, A., Kalfoglou, Y.,
Pisanelli, D. M., Schorlemmer, M., Steve, G., Stojanovic, L., Stumme, G., & Sure,
Y. (2002). A survey on methodologies for developing, maintaining, integrating,
evaluating and reengineering ontologies. OntoWeb deliverable 1.4, Universidad
Politecnia de Madrid.

Fernandez-Lopez, M., Gomez-Pérez, A., Sierra, J. P., & Sierra, A. P. (1999). Building
a chemical ontology using Methontology and the Ontology Design Environment.
Intelligent Systems, 14(1).

Fernandez-Lopez, M. (1999). Overview of methodologies for building ontologies. In
Proceedings of the IJCAI-99 Workshop on Ontologies and Problem-Solving Meth-
ods: Lessons Learned and Future Trends. CEUR Publications.

Fernandez, M. F., Florescu, D., Levy, A. Y., & Suciu, D. (2000). Declarative specifi-
cation of web sites with Strudel. VLDB Journal, 9(1):38-55.

Fillies, C. & Sure, Y. (2002). On visualizing the Semantic Web in MS Office. In 6th
International Conference on Information Visualisation (IV02), London, England.

Fillies, C. (2002). Evaluation experiment for ontology editors: SemTalk. In (Sure &
Angele, 2002), pages 108-111. CEUR-WS Publication, available at http://CEUR-
WS.org/Vol-62/.

Fluit, C., ter Horst, H., & van der Meer, J. (2002). Visualization facility. On-To-
Knowledge deliverable 13, Aldministrator Nederland b.v.

Fraternali, P. & Paolini, P. (1998). A conceptual model and a tool environment for
developing more scalable, dynamic, and customizable web applications. In EDBT
1998, pages 421-435.

Frege, G. (1892). Uber Sinn und Bedeutung. Zeitschrift fiir Philosophie und
philosophische Kritik, NF 100:25-50. This article can also be found together with
four others from G. Frege in (Frege, 1994).

Frege, G. (1994). Funktion, Begriff, Bedeutung. Finf logische Studien. Kleine
Vandenhoeck-Reihe. Vandenhoeck & Ruprecht, Gottingen.

Frohn, J., Himmerdder, R., Kandzia, P., & Schlepphorst, C. (1996). How to write
F-Logic programs in FLORID. A tutorial for the database language F-Logic.
Technical report, Institut fi Informatik der Universitdt Freiburg. Version 1.0.

Gangemi, A., Guarino, N., Masolo, C., Oltramari, A., & Schneider, L. (2002a). Sweet-
ening ontologies with DOLCE. In (Gomez-Pérez & Benjamins, 2002), pages 166—
181.

293

BIBLIOGRAPHY

Gangemi, A., Guarino, N., Oltramari, A., & Borgo, S. (2002b). Cleaning-up WordNet’s
top-level. In Proceedings of the 1st International WordNet Conference, Mysore,
India.

Gangemi, A. (2002). Travelling domain experiment: Results for Loom. In (Sure &
Angele, 2002), pages 93-98. CEUR-WS Publication, available at http://CEUR-
WS.org/Vol-62/.

Gil, Y., Gennari, J., & Porter, B. (Eds.) (2003). Second International Conference on
Knowledge Capture (K-CAP 2003). October 2003, Florida, USA; to appear 2003.

Gil, Y., Musen, M., & Shavlik, J. (Eds.) (2001). Proceedings of the First International
Conference on Knowledge Capture (K-CAP 2001), New York, NY, USA. ACM
Press.

Gluschko, R. J., Tenenebaum, J. M., & Meltzer, B. (1999). An XML framework for
agent-based E-commerce. Communications of the ACM, 42(3):106-114.

Goble, C., Bechhofer, S., Carr, L., de Roure, D., & Hall, W. (2001). Conceptual
open hypermedia = the semantic web? In Proceedings of the Second International
Workshop on the Semantic Web - SemWeb’2001, Hongkong, China, May 1, 2001.
CEUR Workshop Proceedings.

Gomez-Pérez, A., Angele, J., Fernandéz-Lopez, M., Christophides, V., Stutt, A., Sure,
Y., et al. (2002a). A survey on ontology tools. OntoWeb deliverable 1.3, Univer-
sidad Politecnia de Madrid.

Gomez-Pérez, A. & Benjamins, V. R. (Eds.) (2002). Proceedings of the 13th Interna-
tional Conference on Knowledge Engineering and Knowledge Management: On-
tologies and the Semantic Web (EKAW 2002), volume 2473 of Lecture Notes in
Artificial Intelligence (LNAI), Siguenza, Spain. Springer.

Gomez-Pérez, A.) Fernandéz-Lopez, M., Corcho, O., Ahn, T. T., Aussenac-Gilles, N.,
Bernardos, S., Christophides, V., Corby, O., Crowther, P., Ding, Y., Engels, R.,
Esteban, M., Gandon, F., Kalfoglou, Y., Karvounarakis, G., Lama, M., Lopez,
A., Lozano, A., Magkanaraki, A., Manzano, D., Motta, E., Noy, N., Plexousakis,
D., Ramos, J. A., & Sure, Y. (2002b). Technical roadmap. OntoWeb deliverable
1.1.2, Universidad Politecnia de Madrid.

Gomez-Pérez, A. (1996). A framework to verify knowledge sharing technology. Frpert
Systems with Application, 11(4):519-529.

Gomez-Pérez, A. (2003). Ontology Evaluation. In (Staab & Studer, 2003). To appear
2003.

294

BIBLIOGRAPHY

Gonzalez-Olalla, J. & Stumme, G. (2002). Semantic methods and tools for information
portals — the SemIPort project. In Proceedings of the 2nd Workshop on Semantic
Web Mining at ECML/PKDD-2002, Helsinki, Finland.

Gray, J. & Reuter, A. (1993). Transaction Processing: Concepts and Techniques. Mor-
gan Kaufmann Series in Data Management Systems. Morgan Kaufman Publishers,
Inc., San Francisco, CA.

Grosso, E., Eriksson, H., Fergerson, R. W., Tu, S. W., & Musen, M. M. (1999). Knowl-
edge modeling at the millennium: the design and evolution of PROTEGE-2000. In
Proceedings of the 12th International Workshop on Knowledge Acquisition, Mod-
eling and Mangement (KAW-99), Banff, Canada.

Gruber, T. R. (1993). A translation approach to portable ontology specifications.
Knowledge Acquisition, 5(2):199-220.

Gruber, T. R. (1995). Towards principles for the design of ontologies used for knowledge
sharing. International Journal of Human-Computer Studies, 43(5/6):907-928.

Grueninger, M. & Fox, M. (1994). The role of competency questions in enterprise
engineering. In IFIP WG 5.7, Workshop Benchmarking. Theory and Practice,
Trondheim /Norway.

Guarino, N., Masolo, C., & Vetere, G. (1999). OntoSeek: Content-based access to the
web. IEEFE Intelligent Systems, 14(3).

Guarino, N. & Welty, C. (2000a). A formal ontology of properties. In (Dieng & Corby,
2002), pages 97-112.

Guarino, N. & Welty, C. (2000b). A formal ontology of properties. Tech-
nical report, LADSEB/CNR Technical Report 01,/2000. available at
http://www.ladseb.pd.cnr.it /infor /ontology /Papers/OntologyPapers.html.

Guarino, N. & Welty, C. (2000c). Identity, unity, and individuality: Towards a for-
mal toolkit for ontological analysis. Proceedings of the FEuropean Conference on
Artificial Intelligence (ECAI-2000), Berlin, 2000.

Guarino, N. & Welty, C. (2002). Evaluating ontological decisions with OntoClean.
Communications of the ACM, 45(2):61-65.

Guarino, N. (1997). Understanding, building and using ontologies. International Jour-
nal of Human and Computer Studies, 46(2/3):293-310.

Guarino, N. (1998a). Formal ontology and information systems. In (Guarino, 1998b).

295

BIBLIOGRAPHY

Guarino, N. (Ed.) (1998b). Proceedings of the First International Conference on Formal
Ontologies in Information Systems (FOIS), volume 46 of Frontiers in Artificial
Intelligence and Applications, Trento, Italy. IOS-Press.

Halpin, T. (2001). Information Modelling and Relational Databases: From Conceptual
Analysis to Logical Design. Morgan-Kaufmann.

Handschuh, S., Staab, S., & Ciravegna, F. (2002). S-CREAM — Semi-automatic
CREAtion of Metadata. In (Gomez-Pérez & Benjamins, 2002), pages 358-372.

Handschuh, S., Staab, S., & Maedche, A. (2001). CREAM — creating relational meta-
data with a component-based, ontology-driven annotation framework. In Proceed-
ings of the First International Conference on Knowledge Capture (K-Cap 2001),
Victoria, B.C., Canada.

Handschuh, S. (2001). OntoPlugins — a flexible component framework. Technical
report, University of Karlsruhe.

Hefke, M. & Trunko, R. (2002). A methodological basis for bringing knowledge man-
agement to real-world environments. In (Gémez-Pérez & Benjamins, 2002), pages
565-570.

Heflin, J. & Hendler, J. (2000). Searching the web with SHOE. In Artificial Intelligence
for Web Search. Papers from the AAAI Workshop, pages 35-40, Menlo Park, CA.
AAAT Press. Technical Report WS-00-01.

Holsapple, C. W. (Ed.) (2003a). Handbook on Knowledge Management 1 — Knowl-
edge Matters. International Handbooks on Information Systems. Springer, Berlin,
Heidelberg, New York.

Holsapple, C. W. (Ed.) (2003b). Handbook on Knowledge Management 2 — Knowledge
Directions. International Handbooks on Information Systems. Springer, Berlin,
Heidelberg, New York.

Horrocks, I. & Hendler, J. A. (Eds.) (2002). Proceedings of the First International
Semantic Web Conference: The Semantic Web (ISWC 2002), volume 2342 of
Lecture Notes in Computer Science (LNCS), Sardinia, Italy. Springer.

Horrocks, 1., van Harmelen, F., Patel-Schneider, P., Berners-Lee, T., Brickley, D.,
Connolly, D., Dean, M., Decker, S., Fensel, D., Fikes, R., Hayes, P., Heflin, J.,
Hendler, J., Lassila, O., McGuinness, D., & Stein, L. A. (2001). DAML+OIL
(March 2001). Joint Committee, http://www.daml.org/2001/03/daml-+oil-index.

Horrocks, 1. (1998). Using an expressive description logic: FaCT or fiction? In
Proceedings of the International Conference on Knowledge Representation (KR
1998), pages 636-649. Morgan Kaufmann.

296

BIBLIOGRAPHY

Hou, C. J., Noy, N. F., & Musen, M. (2002). A Template-based Approach Toward
Acquisition of Logical Sentences, pages 77-89. In (Musen et al., 2002).

losif, V. & Mika, P. (2002). EnerSearch virtual organisation case study: Evaluation
document. On-To-Knowledge deliverable 29, EnerSearch AB, Malmo, Sweden.

Tosif, V., Ygge, F., & Akkermans, H. (2001). EnerSearch virtual organisation case
study: Requirements analysis document. On-To-Knowledge deliverable 27, En-
erSearch AB, Malmo, Sweden.

Tosif, V. & Ygge, F. (2002). EnerSearch virtual organisation case study: VE prototype.
On-To-Knowledge deliverable 28, EnerSearch AB, Malmo, Sweden.

ISO 704 (1987). Principles and methods of terminology. Technical report, International
Standard ISO.

Jacobson, 1., Booch, G., & Rumbaugh, J. (1999). The Unified Software Development
Process. Addison-Wesley, Reading, MA.

Jacobson, I. (1998). Object-oriented Software Engineering. Addison-Wesley, Reading,
MA.

Jacques, R. (1996). Manufacturing the employee — Management Knowledge from the
19th to 21st Centuries. SAGE Publications, London, Thousand Oaks, New Delhi.

Jarrar, M. & Meersman, R. (2002). Formal ontology engineering in the DOGMA
approach. In (Meersman et al., 2002), pages 1238-1254.

Jasper, R. & Uschold, M. (1999). A framework for understanding and
classifying ontology applications. In (KAW, 1999). available at
http://sern.ucalgary.ca/KSI/KAW /KAW99/papers.html.

Karagiannis, D. & Reimer, U. (Eds.) (2002). Proceedings of the Fourth International
Conference on Practical Aspects of Knowledge Management (PAKM2002), volume
2569 of Lecture Notes in Artificial Intelligence (LNAI), Vienna, Austria. Springer.

Karp, P. D., Chaudhri, V. K., & Thomere, J. (1999). XOL: An XML-based ontology
exchange language, version 0.3, july 1999.

Karvounarakis, G., Christophides, V., Plexousakis, D., & Alexaki, S. (2001). Querying
rdf descriptions for community web portals. In Proceedings of The French National
Conference on Databases 2001 (BDA’01), pages 133-144, Agadir, Maroc.

Kashyap, V. (1999). Design and creation of ontologies for environ-
mental information retrieval. In (KAW, 1999). available at
http://sern.ucalgary.ca/KSI/KAW /KAW99 /papers/Kashyapl /kashyap.pdf.

297

BIBLIOGRAPHY

KAW (1999). Proceedings of the 12th Workshop on Knowledge Acquisi-
tion, Modeling and Management (KAW-99), Banff, Canada. available at
http://sern.ucalgary.ca/KSI/KAW /KAW99/papers.html.

Kay, A. S. (2003). The Curious Success of Knowledge Management, pages 679—-687. In
(Holsapple, 2003b).

Kesseler, M. (1996). A schema based approach to HTML authoring. World Wide Web
Journal, 96(1).

Kifer, M., Lausen, G., & Wu, J. (1995). Logical foundations of object-oriented and
frame-based languages. Journal of the ACM, 42:741-843.

Kifer, M. & Lozinskii, E. (1986). A framework for an efficient implementation of
deductive databases. In Proceedings of the 6th Advanced Database Symposium,
pages 109-116, Tokyo.

Kiryakov, A., Ognyanov, D., & Popov, B. (2002a). Ontology middleware implementa-
tion. On-To-Knowledge deliverable 39, OntoText Lab.

Kiryakov, A., Simov, K. I., & Ognyanov, D. (2002b). Ontology middleware: Analysis
and design. On-To-Knowledge deliverable 38, OntoText Lab.

Klein, M., Fensel, D., Kiryakov, A., & Ognyanov, D. (2002a). Ontoview: Comparing
and versioning ontologies. In Collected Posters of ISWC 2002, cf. (Horrocks &
Hendler, 2002).

Klein, M., Fensel, D., Kiryakov, A., & Ognynanov, D. (2002b). Ontology versioning
and change detection on the web. In (Gomez-Pérez & Benjamins, 2002), pages
197-212.

Krohn, U. & Davies, J. (2001). Case study on call centers: Requirements analysis
document. On-To-Knowledge deliverable 24, BT.

Krohn, U. (2001). RQLvis and RDFferret. On-To-Knowledge deliverable 11, BT.

Kuehn, O. & Abecker, A. (1997). Corporate memories for knowledge memories in
industrial practice: Prospects and challenges. Journal of Universal Computer
Science, 3(8).

Labrou, Y. & Finin, T. W. (1999). Yahoo! as an ontology: Using Yahoo! categories
to describe documents. In Proceedings of the 1999 ACM CIKM International

Conference on Information and Knowledge Management, pages 180-187, Kansas
City, Missouri. ACM Press.

298

BIBLIOGRAPHY

Landes, D. (1995). Die Entwurfsphase in MIKE — Methode und Beschreibungssprache.
Number 84 in DISKI. infix, St. Augustin. PhD Thesis.

Lassila, O. & Swick, R. (1999). Resource Description Framework (RDF). Model and
Syntax Specification. W3C Recommendation 22 February 1999. available at
http://www.w3.org/ TR/REC-rdf-syntax.

Lau, T. & Sure, Y. (2002). Introducing ontology-based skills management at a large
insurance company. In Proceedings of the Modellierung 2002, pages 123-134, Tutz-
ing, Germany.

Léger, A., Akkermans, H., Brown, M., Bouladoux, J.-M., Dieng, R., Ding, Y., Gomez-
Pérez, A., Handschuh, S., Hegarty, A., Persidis, A., Studer, R., Sure, Y., Tamma,
V., & Trousse, B. (2002a). Successful scenarios for ontology-based applications.
OntoWeb deliverable 2.1, France Télécom R&D.

Léger, A., Bouillon, Y., Bryan, M., Dieng, R., Ding, Y., Fernandéz-Lépez, M., Gomez-
Pérez, A., Ecoublet, P., Persidis, A., & Sure, Y. (2002b). Best practices and
guidelines. OntoWeb deliverable 2.2, France Télécom R&D.

Lei, Y., Motta, E., & Domingue, J. (2002). An ontology-driven approach to web site
generation and maintenance. In (Gomez-Pérez & Benjamins, 2002), pages 219-
234.

Lenat, D. B. & Guha, R. V. (1990). Building large knowledge-based systems. Represen-
tation and inference in the C'YC project. Addison-Wesley, Reading, Massachusetts.

Lenat, D. B. (1995). CYC: A large-scale investment in knowledge infrastructure. Com-
munications of ACM, 38(11):33-38.

Liao, M., Hinkelmann, K., Abecker, A., & Sintek, M. (1999). A competence knowledge
base system as part of the organizational memory. In (Puppe, 1999), pages 125-
137.

Maedche, A., Motik, B., Silva, N., & Volz, R. (2002a). MAFRA — a MApping FRAme-
work for distributed ontologies. In (Gomez-Pérez & Benjamins, 2002), pages 235
250.

Maedche, A.; Staab, S., Stoijanovic, N., Studer, R., & Sure, Y. (2003). SEmantic
portAL — The SEAL approach, chapter 11, pages 461-518. In (Fensel et al., 2003).

Maedche, A.; Staab, S., Studer, R., Sure, Y., & Volz, R. (2002b). SEAL - tying up
information integration and web site management by ontologies. IEEE Computer

Society Data Engineering Bulletin, Special Issue on Organizing and Discovering
the Semantic Web, 25(1):10-17.

299

BIBLIOGRAPHY

Maedche, A. & Staab, S. (2001). Ontology learning for the semantic web. IEEFE
Intelligent Systems, 16(2).

Maedche, A. (2002a). Ontology Learning for the Semantic Web. Kluwer.

Maedche, A. (2002b). Semantikbasiertes Wissensmanagement — Eine Anwendung in
Human Resources. Karlsruher Transfer, Sommersemester 2002(07/01).

Majer, B., Studer, R., Sure, Y., & Volz, R. (2002). Web portal: Complete ontology
and portal. OntoWeb deliverable 6.3, Institute AIFB, University of Karlsruhe &
StarLAB, Vrije Universiteit Brussels.

McCarthy, J. (1959). Programs with common sense. In Proceedings of the Teddington
Conference on the Mechanization of Thought Processes, pages 75-91, London. Her
Majesty’s Office.

McCarthy, J. (1989). Artificial intelligence, logic and formalizing common sense. In
Thomason, R. (Ed.), Philosophical Logic and Artificial Intelligence. Kluwer Aca-
demic, Dordrecht.

McGuinness, D. L., Fikes, R., Rice, J., & Wilder, S. (2000a). An environment for merg-
ing and testing large ontologies. In Proceedings of the International Conference
on Knowledge Representation (KR 2000), pages 483-493. Morgan Kaufmann.

McGuinness, D. L., Fikes, R., Rice, J., & Wilder, S. (2000b). An environment for
merging and testing large ontologies. In Proceedings of KR 2000, pages 483-493.
Morgan Kaufmann.

McKeen, J. D. & Staples, D. S. (2003). Knowledge Managers: Who They Are and
What They Do, pages 21-41. In (Holsapple, 2003a).

Mecca, G., Merialdo, P., Atzeni, P., & Crescenzi, V. (1999). The (Short) Araneus
Guide to Web-Site Development. In Second International Workshop on the Web
and Databases (WebDB’99) in congunction with SIGMOD’99.

Meersman, R., Tari, Z., et al. (Eds.) (2002). Proceedings of the Confederated Interna-
tional Conferences: On the Move to Meaningful Internet Systems (CooplS, DOA,
and ODBASE 2002), volume 2519 of Lecture Notes in Computer Science (LNCS),
University of California, Irvine, USA. Springer.

Meersman, R., Tari, Z., & Stevens, S. (Eds.) (1999). Database Semantics: Semantic
Issues in Multimedia Systems. Kluwer Academic Publisher.

Meersman, R. (1999). Semantic ontology tools in information systems design. In (Ras
& Skowron, 1999).

300

BIBLIOGRAPHY

Mena, E., Kashyap, V., Illarramendi, A., & Sheth, A. (1998). Domain specific ontolo-
gies for semantic information brokering on the global information infrastructure.

In (Guarino, 1998b).

Miller, G. (1995). WordNet: A lexical database for English. Communications of the
ACM, 38(11):39-41.

Minor, M. & Staab, S. (Eds.) (2002). Proceedings of the 1st Workshop on Ezperi-
ence Management — Sharing Ezperiences about the Sharing of Fxperience, volume
P-10 of Lecture Notes in Informatics (LNI), Berlin, Germany. Gesellschaft fiir
Informatik.

Moench, E. (2003). SemanticMiner: Ein integratives Ontologie-basiertes Knowledge
Retrieval System. In (Sure & Schnurr, 2003). To appear 2003.

Morgenstern, L. (1998). Inheritance comes of age: Applying nonmonotonic techniques
to problems in industry. Artificial Intelligence, 103:1-34.

Motik, B., Maedche, A., & Volz, R. (2002). A conceptual modeling approach for
semantics—driven enterprise applications. In (Meersman et al., 2002), pages 1082
1099.

Musen, M., Neumann, B., & Studer, R. (Eds.) (2002). Intelligent Information Pro-
cessing. Kluwer Academic Publishers, Boston, Dordrecht, London.

Neches, R., Fikes, R. E., Finin, T., Gruber, T. R., Senator, T., & Swartout, W. R.
(1991). Enabling technology for knowledge sharing. AI Magazine, 12(3):36-56.

Nejdl, W., Siberski, W., Simon, B., & Tane, J. (2002a). Towards a modification
exchange language for distributed RDF repositories. In (Horrocks & Hendler,
2002), pages 236-249.

Nejdl, W., Wolf, B., QuLearning, C., Decker, S., Naeve, A., Nilsson, M.,
& Palmér, M. (2002b). EDUTELLA: A P2P networking infrastruc-
ture based on RDF. 1In Proceedings of the Eleventh International World
Wide Web Conference (WWW2002), Honolulu, Hawaii, USA. available at
http://www2002.0org/ CDROM /refereed /597 /index.html.

Neubert, S. (1994). Modellkonstruktion in MIKE — Methoden und Werkzeuge. Num-
ber 60 in DISKI. infix, St. Augustin. PhD Thesis.

Newell, A. (1982). The knowledge level. Artificial Intelligence: An International
Journal, 18(1):87-127.

301

BIBLIOGRAPHY

Nichols, D. M. & Twidale, M. B. (1999). Computer supported cooperative work and
libraries. Vine (Special Issue on Virtual Communities and Information Services),
109:10-15.

Nonaka, I. & Takeuchi, H. (1995). The Knowledge-Creating Company. University
Press, Oxford.

Novotny, B., Lau, T., Reich, J., & Reimer, U. (2001). Organizational memory —
evaluation of case study prototypes. On-To-Knowledge deliverable 21, Swiss Life.

Novotny, B. & Lau, T. (2000). Case studies on organizational memory. On-To-
Knowledge deliverable 19, Swiss Life.

Novotny, B. & Lau, T. (2001). Organizational memory — description of case study
prototypes. On-To-Knowledge deliverable 20, Swiss Life.

Noy, N. F. & Musen, M. A. (2000). PROMPT: Algorithm and tool for automated
ontology merging and alignment. In Proceedings of the 17th National Conference
on Artificial Intelligence (AAAT 2000), pages 450-455.

Noy, N., Fergerson, R., & Musen, M. (2000). The knowledge model of Protégé-2000:
Combining interoperability and flexibility. In (Dieng & Corby, 2002), pages 17-32.

Noy, N. & Hafner, C. (1997). The state of the art in ontology design — a survey and
comparative review. AI Magazine, 36(3).

Noy, N. & McGuinness, D. L. (2001). Ontology development 101: A guide to creating
your first ontology. Technical Report KSL-01-05 and SMI-2001-0880, Stanford
Knowledge Systems Laboratory and Stanford Medical Informatics.

Noy, N. (2002). The OntoWeb evaluation experiment for ontology editors: Using
Protége-2000 to represent the travel domain. In (Sure & Angele, 2002), pages
103-107. CEUR-WS Publication, available at http://CEUR-WS.org/Vol-62/.

Odgen, C. K. & Richards, I. A. (1923). The Meaning of Meaning: A Study of the
Influence of Language upon Thought and of the Science of Symbolism. Routledge
& Kegan Paul Ltd., London, 10 edition.

O’Leary, D. (1998). Using AI in knowledge management: Knowledge bases and on-
tologies. IEEE Intelligent Systems, 13(3):34-39.

Ontoprise (2002a). How to write F-Logic programs — a tutorial for the language F—
Logic. Tutorial version 1.9 that covers Ontobroker version 3.5.

Ontoprise (2002b). OntoEdit Tutorial. available through Ontoprise GmbH.

302

BIBLIOGRAPHY

Ontoprise (2002c). OXML 2 reference manual. available at
http://www.ontoprise.de/download /oxml2.0.pdf.

OntoText (2003a). BOR website. http://www.ontotext.com/bor.

OntoText (2003b). Ontology Middleware Module (OMM) demo website.
http://omm.ontotext.com.

OntoText (2003c). Ontology Middleware Module (OMM) website.
http://www.ontotext.com/omm.

OntoWeb (2001). OntoWeb Annex 1 — “Description of work”. European Commision
(EU), Brussels.

On-To-Knowledge (1999). On-To-Knowledge Annex 1 — “Description of work”. Euro-
pean Commision (EU), Brussels.

Papakonstantinou, Y., Garcia-Molina, H., & Widom, J. (1995). Object exchange across
heterogeneous information sources. In Proceedings of the IEEFE International Con-
ference on Data Engineering, Taipei, Taiwan, March 1995, pages 251-260.

Pinto, H. S., Peralta, D. N., & Mamede, N. J. (2002). Using Protégé-2000 in reuse pro-
cesses. In (Sure & Angele, 2002), pages 15-25. CEUR-WS Publication, available
at http://CEUR-WS.org/Vol-62/.

Pirlein, T. (1995). Wiederverwendung von Commonsense Ontologien im Knowledge
Engineering: Methoden und Werkzeuge, volume 85 of DisKI. Infix, Sankt Au-
gustin.

Plaza, E. & Benjamins, V. R. (Eds.) (1997). Proceedings of the 10th European Workshop
on Knowledge Acquisistion, Modeling, and Management (EKAW’97), volume 1319
of Lecture Notes in Artificial Intelligence (LNAI). Springer.

Pocsai, Z. (2000). Ontologiebasiertes Wissensmanagement fir die Produktentwicklung,
volume 3/2000 of Forschungsberichte aus dem Institut fir Rechneranwendung in
Planung und Konstruktion der Universitat Karlsruhe. Shaker Verlag.

Polanyi, M. (1958). The Tacit Dimension. Doubleday & Co., Garden City, NY.
Polanyi, M. (1974). Personal Knowledge. University of Chicago Press, Chicago.

Preece, A. (2000). Ewvaluating Verification and Validation Methods in Knowledge En-
gineering, pages 91-104. In (Roy, 2000).

Probst, G., Romhardt, K., & Raub, S. (1998). Wissen managen. Frankfurter Allge-
meine Zeitung, Frankfurt am Main, Wiesbaden, Gabler, 2. aufl. edition.

303

BIBLIOGRAPHY

Probst, G., Romhardt, K., & Raub, S. (1999). Managing Knowledge. J. Wiley and
Sons.

Puppe, F. (Ed.) (1999). XPS-99: Knowledge Based Systems — Survey and Future
Directions, 5th Biannual German Conference on Knowledge Based Systems, vol-
ume 1570 of Lecture Notes in Artificial Intelligence (LNAI), Wiirzburg, Germany.
Springer.

Quinn, J. (1992). Intelligent Enterprise. A knowledge and service based paradigm for
industry. Free Press, New York.

Raggett, D., Le Hors, A., & Jacobs, I. (1998). HTML 4.0 Specification. W3C Recom-
mendation 24 April 1998. available at http://www.w3.org/TR/REC-html40.

Ras, Z. W. & Skowron, A. (Eds.) (1999). Foundations of Intelligent Systems — Proceed-
1ngs of the Eleventh International Symposium on Methodologies for Intelligent Sys-
tems (ISMIS’99), number 1609 in Lectute Notes in Artificial Intelligence (LNAT).
Springer-Verlag.

Reimer, U., Abecker, A., , Staab, S., & Stumme, G. (Eds.) (2003). Proceedings of the
2nd National Conference “Professionelles Wissensmanagement — Erfahrungen und
Visionen (WM2003)”, volume P-28 of GI-Edition Lecture Notes in Informatics
(LNI), Luzern, Switzerland. Gesellschaft fuer Informatik (GI).

Reimer, U. & Mahling, D. (Eds.) (2000). Proceedings of the Third International Confer-
ence on Practical Aspects of Knowledge Management (PAKM 2000), volume 34 of
CEUR Workshop Proceedings, Basel, Switzerland. CEUR-WS Publication, avail-
able at http://CEUR-WS.org/Vol-34/.

Rogers, J. (2002). OntoWeb travelling domain experiment: Results for OpenKnoME.
In (Sure & Angele, 2002), pages 99-102. CEUR-WS Publication, available at
http://CEUR-WS.org/Vol-62/.

Rossi, G., Garrido, A., & Schwabe, D. (2000). Navigating between objects. lessons
from an object-oriented framework perspective. ACM Computing Surveys, 32(30).

Roy, R. (Ed.) (2000). Industrial Knowledge Management: A Micro—level Approach.
Springer-Verlag, London, Berlin, Heidelberg.

Russ, T., Valente, A., MacGregor, R., & Swartout, W. (1999). Practical experiences
in trading off ontology usability and reusability. In (KAW, 1999). available at
http://sern.ucalgary.ca/KSI/KAW /KAW99 /papers.html.

Schneider, U. (1996a). Management in der wissensbasierten Unternehmung, pages 13—
48. In (Schneider, 1996b).

304

BIBLIOGRAPHY

Schneider, U. (Ed.) (1996b). Wissensmanagement. Frankfurter Allgemeneine Zeitung,
Frankfurt am Main.

Schnurr, H.-P., Staab, S., Studer, R., Stumme, G., & Sure, Y. (Eds.) (2001). Proceed-
imgs of the 1st National Conference “Professionelles Wissensmanagement — Er-
fahrungen und Visionen (WM2001)”, Berichte aus der Informatik, Aachen. Shaker
Verlag.

Schnurr, H.-P., Sure, Y., Studer, R., & Akkermans, H. (2000). On-To-Knowledge
Methodology — baseline version. On-To-Knowledge deliverable 15, Institute
ATFB, University of Karlsruhe.

Schnyder, A. B. (1989). Unternehmungskultur: ~ Die Entwicklung eines
Unternehmungskultur-Modells unter Beriicksichtigung ethnologischer Erkennt-
nisse und dessen Anwendung auf die Innovations—Thematik. In FEuropdische
Hochschulschriften, Reihe 5. Volks— und Betriebswirtschaft; 987, pages 227-243.
Peter Lang Verlag.

Schreiber, G., Akkermans, H., Anjewierden, A., de Hoog, R., Shadbolt, N., van de
Velde, W., & Wielinga, B. (1999). Knowledge Engineering and Management —
The CommonKADS Methodology. The MIT Press, Cambridge, Massachusetts;
London, England.

Seely-Brown, J. & Duguid, P. (1991). Organisational learning and communities of
practice. Organisational Science, 2(1).

Simov, K. & Jordanov, S. (2002). BOR: a pragmatic DAML+OIL reasoner. On-To-
Knowledge deliverable 40, OntoText Lab.

Smith, H. & Poulter, K. (1999). Share the ontology in XML-based trading architec-
tures. Communications of the ACM, 42(3):110-111.

Smith, M. K., McGuinness, D., Volz, R., & Welty, C. (2002). Web Ontology Language
(OWL) Guide Version 1.0. W3C Working Draft 04 November 2002, available at
http://www.w3.org/ TR /owl-guide/.

Smolle, P. & Sure, Y. (2002). FRED: Ontology-based agents for enabling e-coaching
support in a large company. In Second International Workshop on Ontologies
in Agent Systems (OAS 2002), held at the 1st International Conference on Au-
tonomous Agents & Multiagent Systems, Bologna, Italy.

Sowa, J. F. (2000). Knowledge Representation, Logical, Philosophical and Computa-
tional Foundations. Brooks Cole Publishing Co., Pacific Grove, CA.

305

BIBLIOGRAPHY

Spyns, P., Meersman, R., & Jarrar, M. (2002a). Data modelling versus ontology en-
gineering. SIGMOD Record — Web Edition, 31(4). Special Section on Seman-
tic Web and Data Management; R. Meersman and A. Sheth (eds.); Available at
http://www.acm.org/sigmod /record/.

Spyns, P., Oberle, D., Volz, R., Zheng, J., Jarrar, M., Sure, Y., Studer, R., & Meers-
man, R. (2002b). OntoWeb — a semantic web community portal. In (Karagiannis
& Reimer, 2002), pages 189-200.

Staab, S., Angele, J., Decker, S., Erdmann, M., Hotho, A., Maedche, A., Schnurr, H.-
P., Studer, R., & Sure, Y. (2000). Semantic community web portals. In Proceedings
of the 9th International World Wide Web Conference (WWW9), volume 33, pages
473-491, Amsterdam, The Netherlands. Elsevier.

Staab, S., Braun, C., Bruder, I., Duesterhoeft, A., Heuer, A., Klettke, M., Neumann,
G., Prager, B., Pretzel, J., Schnurr, H.-P., Studer, R., Uszkoreit, H., & Wrenger,
B. (1999). A system for facilitating and enhancing web search. In Proceedings
of International Working Conference on Artificial and Natural Neural Networks:
Engineering Applications of Bio-Inspired Artificial Neural Networks (IWANN’99),
volume 1607 of LNCS, pages 706-714, Berlin. Springer Verlag.

Staab, S. & O’Leary, D. (Eds.) (2000). Bringing Knowledge to Business Processes.
Papers from 2000 AAAI Spring Symposium, Technical Report SS-00-03, Menlo
Park, CA. AAAT Press.

Staab, S., Schnurr, H.-P., Studer, R., & Sure, Y. (2001). Knowledge processes and
ontologies. IEFEE Intelligent Systems, Special Issue on Knowledge Management,
16(1):26-34.

Staab, S. & Schnurr, H.-P. (2000). Smart task support through proactive access to
organizational memory. Journal of Knowledge-based Systems. September 2000.

Staab, S. & Schnurr, H.-P. (2002). Knowledge and Business Processes: Approaching
an Integration, pages 75-88. In (Dieng-Kuntz & Matta, 2002).

Staab, S., Studer, R., & Sure, Y. (2003). Knowledge Processes and Knowledge Meta
Processes in Ontology-based Knowledge Management, pages 47-68. In (Holsapple,
2003b).

Staab, S. & Studer, R. (Eds.) (2003). Handbook on Ontologies in Information Systems.
International Handbooks on Information Systems. Springer. To appear 2003.

Stader, J. & Macintosh, A. (1999). Capability modelling and knowledge management.
In Applications and Innovations in Ezpert Systems VII, Proceedings of ES 99 the

306

BIBLIOGRAPHY

19th International Conference of the BCS Specialist Group on Knowledge-Based
Systems and Applied Artificial Intelligence, pages 33-50, Cambridge. Springer-
Verlag.

Steimann, F. (2000). On the representation of roles in object-oriented and conceptual
modelling. Data & Knowledge Engineering, 35(1):83-106.

Stewart, T. A. (1997). Intellectual Capital — The New Wealth of Organizations. Dou-
bleday /Currency, a division of Bantam Doubleday Dell Publishing Group, Inc.

Stojanovic, L., Maedche, A., Motik, B., & Stojanovic, N. (2002a). User-driven ontology
evolution management. In (Gomez-Pérez & Benjamins, 2002), pages 285-300.

Stojanovic, L., Stojanovic, N., & Handschuh, S. (2002b). Evolution of the metadata in
the ontology-based knowledge management systems. In (Minor & Staab, 2002),
pages 65-77.

Stojanovic, L., Stojanovic, N., & Volz, R. (2002c). Migrating data-intensive web sites
into the semantic web. In Proceedings of the ACM Symposium on Applied Com-
puting (SAC-02), Madrid, Spain.

Stojanovic, N., Stojanovic, L., & Gonzales, J. (2002d). More efficient searching in
a knowledge portal — an approach based on the analysis of users’ queries. In
(Karagiannis & Reimer, 2002), pages 513-524.

Stuckenschmidt, H., Stubkjaer, E., & Schlieder, C. (Eds.) (2003). The Ontology and
Modeling of Real Estate Transactions in Furopean Juristictions. International
Land Management Series. Ashgate. To appear 2003.

Studer, R., Benjamins, V. R., & Fensel, D. (1998). Knowledge engineering principles
and methods. Data and Knowledge Engineering, 25(1-2):161-197.

Studer, R., Sure, Y., Volz, R., Jijuan, Z., & Meersman, R. (2001a). Creation of a
browsable prototype of the portal. OntoWeb deliverable 6.2, Institute AIFB,
University of Karlsruhe & StarLAB, Vrije Universiteit Brussels.

Studer, R., Sure, Y., Volz, R., Jijuan, Z., & Meersman, R. (2001b). Seed ontology.
OntoWeb deliverable 6.1, Institute AIFB, University of Karlsruhe & StarLLAB,
Vrije Universiteit Brussels.

Studer, R., Sure, Y., & Volz, R. (2002). Managing focused access to distributed knowl-
edge. Journal of Universal Computer Science (J.UCS), 8(6):662—672.

Stumme, G., Hotho, A., & Berendt, B. (Eds.) (2001). Proceedings of the First
Workshop on Semantic Web Mining. Held in conjunction with the (De

307

BIBLIOGRAPHY

Raedt & Flach, 2001) and (De Raedt & Siebes, 2001); Online available at
http://semwebmine2001.aifb.uni-karlsruhe.de/.

Stumme, G. & Maedche, A. (2001). FCA-MFerge: Bottom-up merging of ontologies. In
Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI
2001), pages 225-234, Seattle USA.

Sure, Y., Akkermans, H., Broekstra, J., Davies, J., Ding, Y., Duke, A., Engels, R.,
Fensel, D., Horrocks, 1., Tosif, V., Kampman, A., Kiryakov, A., Klein, M., Lau, T.,
Ognyanov, D., Reimer, U., Simov, K., Studer, R., van der Meer, J., & van Harme-
len, F. (2003a). On-To-Knowledge: Semantic Web-Enabled Knowledge Manage-
ment, chapter 13, pages 278-301. In (Zhong et al., 2003). To appear 2003.

Sure, Y., Angele, J., & Corcho, O. (2003b). Second International Workshop on Eval-
uation of Ontology based Tools (EON 2003). Submitted 2003.

Sure, Y. & Angele, J. (Eds.) (2002). Proceedings of the First International Workshop
on Evaluation of Ontology based Tools (EON 2002), volume 62 of CEUR Workshop
Proceedings, Siguenza, Spain. CEUR-WS Publication, available at http://CEUR-
WS.org/Vol-62/.

Sure, Y., Erdmann, M., Angele, J., Staab, S., Studer, R., & Wenke, D. (2002a).
OntoEdit: Collaborative ontology development for the semantic web. In (Horrocks
& Hendler, 2002), pages 221-235.

Sure, Y. & Iosif, V. (2002). First results of a semantic web technologies evaluation.
In Proceedings of the Common Industry Program held in conjunction with Con-
federated International Conferences: On the Move to Meaningful Internet Systems

(CooplIS, DOA, and ODBASE 2002), cf. (Meersman et al., 2002), pages 69-78.

Sure, Y., Maedche, A., & Staab, S. (2000). Leveraging corporate skill knowledge — from
ProPer to OntoProPer. In (Reimer & Mahling, 2000), pages 22:1-22:9. CEUR-WS
Publication, available at http://CEUR-WS.org/Vol-34/.

Sure, Y. & Schnurr, H.-P. (Eds.) (2003). Proceedings of the 1st National “Work-
shop Ontologie-basiertes Wissensmanagement (WOW2003)”. April 2003, Luzern,
Switzerland; held in conjunction with (Reimer et al., 2003); To appear 2003.

Sure, Y., Staab, S., & Angele, J. (2002b). OntoEdit: Guiding ontology development
by methodology and inferencing. In (Meersman et al., 2002), pages 1205-1222.

Sure, Y., Staab, S., & Studer, R. (2002c). Methodology for development and employ-
ment of ontology based knowledge management applications. SIGMOD Record —
Web Edition, 31(4). Special Section on Semantic Web and Data Management; R.
Meersman and A. Sheth (eds.); Available at http://www.acm.org/sigmod /record/.

308

BIBLIOGRAPHY

Sure, Y., Staab, S., & Studer, R. (2003c). On-To-Knowledge Methodology. In (Staab
& Studer, 2003). To appear 2003.

Sure, Y. & Studer, R. (2001a). OntoEdit. On-To-Knowledge deliverable 3, Institute
ATFB, University of Karlsruhe.

Sure, Y. & Studer, R. (2001b). On-To-Knowledge Methodology — evaluated and
employed version. On-To-Knowledge deliverable 16, Institute AIFB, University of
Karlsruhe.

Sure, Y. & Studer, R. (2002a). On-To-Knowledge Methodology, chapter 3, pages 33-46.
In (Davies et al., 2002b).

Sure, Y. & Studer, R. (2002b). On-To-Knowledge Methodology — expanded version.
On-To-Knowledge deliverable 17, Institute AIFB, University of Karlsruhe.

Sure, Y. & Studer, R. (2002c). On-To-Knowledge Methodology — final version. On-
To-Knowledge deliverable 18, Institute AIFB, University of Karlsruhe.

Sure, Y. (2002a). On-To-Knowledge technical fact sheet for the OTK tool suite demo.
On-To-Knowledge technical fact sheet, Institute AIFB, University of Karlsruhe.

Sure, Y. (2002b). On-To-Knowledge — ontology based knowledge management tools
and their application. Kiinstliche Intelligenz (German Journal of Artificial Intel-
ligence), 2002(1). Special Issue on Knowledge Management.

Sure, Y. (2002c). Travelling domain experiment: Engineering with OntoEdit. In (Sure
& Angele, 2002), pages 83-92. CEUR-WS Publication, available at http://CEUR-
WS.org/Vol-62/.

Sure, Y. (2003). A Tool-supported Methodology for Ontology-based Knowledge Manage-
ment. In (Stuckenschmidt et al., 2003). To appear 2003.

Swartout, B., Patil, R., Knight, K., & Russ, T. (1996). Toward distributed use of
large-scale ontologies. In Proceedings of the 10th Knowledge Acquisition Workshop
(KAW’96), Banff, Canada.

Swartout, B., Ramesh, P., Knight, K., & Russ, T. (1997). Toward distributed use of
largescale ontologies. In Symposium on Ontological Engineering of AAAI Stan-
ford, CA.

Tennison, J. & Shadbolt, N. (1998). APECKS: A tool to support living ontologies.
In Proceedings of the 11th Knowledge Acquisition Workshop (KAW’98), Banff,
Canada.

309

BIBLIOGRAPHY

Tiwana, A. (2000). The Knowledge Management Toolkit. Prentice Hall PTR., Upper
Saddle River, NJ, USA.

TOVE (1995). TOVE: Manual of the Toronto Virtual Enterprise. Technical re-
port, Department of Industrial Engineering, University of Toronto. available at
http://www.ie.utoronto.ca/EIL/tove /ontoTOC.html.

Uschold, M. & Grueninger, M. (1996). Ontologies: Principles, methods and applica-
tions. Knowledge Sharing and Review, 11(2).

Uschold, M., King, M., Moralee, S., & Zorgios, Y. (1998). The enterprise ontology.
Knowledge Engineering Review, 13(1):31-89.

Uschold, M. & King, M. (1995). Towards a methodology for building ontologies. In
Workshop on Basic Ontological Issues in Knowledge Sharing, held in conjunction
with IJCAI-95, Montreal, Canada.

van Gelder, A., Ross, K. A., & Schlipf, J. S. (1991). The well-founded semantics for
general logic programs. Journal of the ACM, 38(3):620-650.

van Gelder, A. (1993). The alternating fixpoint of logic programs with negation. Jour-
nal of Computer and System Sciences, 47(1):185-221.

van Heijst, G. (1995). The Role of Ontologies in Knowledge Engineering. PhD thesis,
Universiteit van Amsterdam.

Volz, R., Oberle, D., & Studer, R. (2002). Towards views in the semantic web. In
Proceedings of the 2nd International Workshop on Databases, Documents, and
Information Fusion (DBFUSION 02), Karlsruhe, Germany.

Volz, R., Oberle, D., & Studer, R. (2003). Views for light-weight web ontologies. In Pro-
ceedings of the 2003 ACM Symposium of Applied Computing (SAC), Melbourne,
Florida. To appear.

W3C (2001). World Wide Web Consortium (W3C) Semantic Web Activity Statement,
available at http://www.w3.org/2001/sw/Activity/.

Welty, C. A. & Guarino, N. (2001). Supporting ontological analysis of taxonomic
relationships. Data & Knowledge Engineering, 39(1):51-74.

Wiederhold, G. & Genesereth, M. (1997). The conceptual basis for mediation services.
IEEE Ezxpert / Intelligent Systems, 12(5):38-47.

Wiederhold, G. (1992). Mediators in the architecture of future information systems.
IEEE Computer, 25(3):38-49.

310

BIBLIOGRAPHY

Wiederhold, G. (1993). Intelligent integration of information. In SIGMOD-93, pages
434-437.

XML/EDI-Group (2003). XML/EDI, the E-Business framework. available at
http://www.xmledi-group.org/.

Y. Jin, S. Decker, G. W. (2001). Ontowebber: Model-driven ontology-based web
site management. In Proceedings of the 1st International Semantic Web Work-
ing Symposium (SWWS’01), Stanford University, Stanford, CA. available at
http://www.semanticweb.org/SWWS /program /full /.

Zhong, N., Liu, J., & Yao, Y. (Eds.) (2003). Web Intelligence. Springer-Verlag". To
appear 2003.

Please note: The cited URLs were provided by the author in all conscience. They
were last checked in January 2003. However, even though “cool URIs don’t change”
(cf. (Berners-Lee, 1998)), URIs in the dynamic surrounding of the WWW (typically
referred to as URLs (Berners-Lee, 1993)) and the content they represent are subject
to change. In future they might differ from the cited sources in this work.

311

BIBLIOGRAPHY

312

Index

agent, 4

ATIFB Semantic Portal, 185
annotation, 189

APECKS, 221

Application phase, 50, 156, 164
ARANEUS, 224

AutoWeb, 224

axiom, 22, 206

BOR, 141

case study, 141
BT, 143, 158
Communities of Knowledge Shar-
ing, 158
EnerSearch, 143, 168
Skills Management, 145
Swiss Life, 142, 144
Virtual Organization, 168
Chief Information Officer, 13
Chief Knowledge Officer, 13
Chimera, 221
CIO, 13
CKM, 13
CKO, 13
class, 22
Client-Server Framework, 93
CMF, 190
combination, 12
CommonKADS, 34, 219
competency question, 46, 149
computer-supported cooperative work,
75
concept, 22, 69

concept hierarchy, 69
concept instantiation, 70
direct subconcept, 69
conceptual structures, 68
content management, 188
CORPORUM, 135, 144
CREAM, 58
Cyc, 220

DAML, 66

DAML+OIL, 66, 70

DARPA-DAML, 223

Description Logic, 67, 80, 138, 209

DOGMA, 59, 183, 185, 188-190, 220,
222

DOGMA Server, 220, 222

DOGMAModeler, 220, 222

domain expert, 76

Domain Lexicon, 147

Domain Lexicon Plugin, 90

Edu Portal, 194

EnerSEARCHer, 143, 168, 173
Enterprise Ontology, 220

EON 2002, 182, 196

Evaluation phase, 46, 156, 162, 169
Evolution phase, 51, 156, 164
experiment, 196

externalization, 12, 15

F-Logic, 67, 70, 79

FaCT, 67

Feasibility Study, 34, 145, 158
First-Order Logic, 23

313

Index

formal guidelines, 39
Frame, 138, 209
Frame Ontology, 22

General Axioms Editor, 98
Graphical Rule Editor, 98

Horn Logic, 79, 141
human issues, 31

ITPS, 224

Inferencing Plugin, 113
information technology, 13
instance, 22
internalization, 12, 15
interoperability, 196
ISWC2002, 182

KA2, 224
KA2 Community Web Portal, 185
KACTUS, 220
KAON, 117, 222
KAON Portal, 189
KAON Syndicator, 189
Kickoff phase, 37, 83, 149, 160, 199
knowledge, 3, 11
explicit knowledge, 12
formal knowledge, 55
implicit knowledge, 12, 15
informal knowledge, 55
knowledge transfer, 12
tacit knowledge, 11
Knowledge Process
Knowledge Access, 53
knowledge item, 17, 54
knowledge level, 23
knowledge management, 4, 11, 12
application, 31
culture, 13
organization, 13
people, 15
technology, 15

314

Knowledge Manager, 13

Knowledge Meta Process, 16, 31, 32
Application phase, 50, 156, 164
Evaluation phase, 46, 156, 162, 169
Evolution phase, 51, 156, 164
Feasibility Study, 34, 145, 158
Kickoff phase, 37, 83, 149, 160, 199
Refinement phase, 42, 152, 160, 199

knowledge model, 79

Knowledge Process, 16, 53
Knowledge Creation, 53
Knowledge Import, 53
Knowledge Retrieval, 53
Knowledge Access, 59
Knowledge Capture, 53, 57
Knowledge Creation, 54
Knowledge Import, 56
Knowledge Retrieval, 59
Knowledge Use, 54, 61

knowledge sharing, 4

logic, 23
Loom, 210

Management Console, 72
meta data, 5, 18, 186
Methodology, 16, 31, 123
Methodology plugins, 74
METHONTOLOGY, 220
Mind20nto, 42, 87, 152, 201

Natural Language Processing, 209

ODBASE2002, 182

OEE, 66

OEE requirements, 67
collaboration, 67, 74
extensibility, 67, 71
inferencing, 67, 74
methodology, 67, 74
ontology languages, 67, 70

OIL, 66, 138

Index

OilEd, 210, 222

OImodeller, 222

On-To-Knowledge, 122
BOR, 141
BT case study, 143, 158
Communities of Knowledge Shar-

ing, 158
CORPORUM, 135, 144
EnerSearch case study, 143, 168
EnerSEARCHer, 143, 168, 173
OIL, 138
OntoEdit, 129, 143
OntoExtract, 135, 142, 144
Ontology Middleware Module, 130,
143, 144

OntoShare, 127, 143, 159
OntoView, 131
OntoWrapper, 135, 142, 144
OTK Case Studies, 122, 141
OTK Tool Suite, 124
QuizRDF, 125, 142, 143, 168, 173
Sesame, 115, 133, 143, 144
Skills Management, 145
Spectacle, 127, 142, 143, 168, 173
Swiss Life case study, 142, 144
Virtual Organization, 168

OntoAnalyzer, 38, 104

Ontobroker, 67, 77, 80, 106, 184, 208

OntoClean, 39

OntoClean Methodology, 49, 107, 153

OntoClean Plugin, 39, 107

OntoEdit, 68, 129, 143, 199
knowledge model, 79

OntoEdit plugins, 74
Client-Server Framework, 93
Domain Lexicon, 147
Domain Lexicon Plugin, 90
General Axioms Editor, 98
Graphical Rule Editor, 98
Inferencing Plugin, 113
Methodology plugins, 74

Mind20nto, 42, 87, 152, 201
OntoAnalyzer, 38, 104
OntoClean Plugin, 39, 107
OntoFiller, 91, 147
OntoGenerator, 101
OntoKick, 83, 150
OntoMap, 98
Query Tool, 113
Rule Debugger, 114
Sesame Plugin, 115
Visualizer, 112
OntoExtract, 135, 142, 144
OntoFiller, 91, 147
OntoGenerator, 101
OntoKick, 83, 150
Ontolingua, 222
Ontology, 21
ontology, 4, 21
application ontology, 26
common sense ontology, 27
domain ontology, 26
ontology with lexicon, 69
task ontology, 26
top level ontology, 26
ontology development, 65
ontology editor, 66
ontology engineer, 76
ontology engineering, 65

ontology engineering environment, 66
Ontology Middleware Module, 130, 143,

144

ontology requirements specification

document, 37, 83
OntoMap, 98
OntoMat, 71
OntoMat—Annotizer, 58, 190, 249
OntoMat—-SOEP, 117
Ontosaurus, 222
OntoShare, 127, 143, 159
OntoView, 131
OntoWeb, 181

315

Index

OntoWeb Semantic Portal, 59, 185
OntoWebber, 224

OntoWrapper, 135, 142, 144
OpenKnoME, 210

Option Manager, 72
organizational memory, 15, 16, 144
ORSD, 37, 83

OWL, 66, 141

P2P, 194
plugin, 71
connector plugin, 73
core plugin, 73
GUI plugin, 73
parser plugin, 73
plugin framework, 71
pragmatic guidelines, 38
Predicate Logic, 79
property, 22
Protégeé, 38, 189, 210, 222
publishing workflow, 191

Query Tool, 113
QuizRDF, 125, 142, 143, 168, 173

RDF(S), 70
Refinement phase, 42, 152, 160, 199
relation, 22, 69
relation hierarchy, 70
relation instantiation, 71
Roadmap Portal, 194
roles, 39
RQL, 134, 143
Rule Debugger, 114

S-CREAM, 190

SEAL, 184

SEmantic portAL, 184
Semantic Web, 5
Semantic Web Mining, 61
SemTalk, 210

service-consumer, 73

316

service-provider, 73

Sesame, 115, 133, 143, 144
Sesame Plugin, 115

socialization, 12

software engineering, 32
Spectacle, 127, 142, 143, 168, 173
Strudel, 224

syndication, 189

synthetic ontology, 102

TERMINAE, 210
Tiramisu, 224
TOVE, 221

URI, 68

validation, 49
verification, 49
Visualizer, 112

WebODE, 210, 223
WebOnto, 223

XML, 186

ZOPE, 190

