
Names, Types, and Static Semantic Analysis

Andreas Heberle, Sabine Glesner and Welf L�owe

Institut f�ur Programmstrukturen und Datenorganisation, Universit�at Karlsruhe,

76128 Karlsruhe, Germany, E-mail:fheberlejglesnerjloeweg@ipd.info.uni-karlsruhe.de

Abstract. We describe a new approach for the speci�cation and gen-

eration of the semantic analysis for typed programming languages. We

specify context-sensitive syntactic properties of a language by a system

of semantic rules. For various imperative programming language con-

cepts, we discuss the required semantic rules. In particular, we show how

overloading of programmer-de�ned identi�ers can be handled.

We propose an algorithm to solve these constraint systems e�ciently,

i.e., in time O(n2) where n is the program size.

1 Introduction

Semantic analysis should check a program if it matches the conditions imposed

by the context-sensitive syntactical characteristics of a language. Additionally,

it computes the typing of the program which is required for further transforma-

tions, i.e. the static semantics. Writing a semantic analyzer from scratch is too

expensive and error prone.

Generators have been known for years but the required speci�cations depend

too much on the process of analysis. On the one hand, the language speci�cation

should not depend on the analysis. But on the other hand such an analysis-

independent speci�cation cannot serve as a generator's input. This implies that,

in addition to the language speci�cation given by its designer, a second (formal)

speci�cation of the same context-sensitive syntax is needed as generator input,

committing the compiler constructor to do the speci�cation job again. Addition-

ally, the correctness of the generated analysis must be established which remains

as a proof obligation for the compiler constructor. We propose another approach

that splits the speci�cation into two parts. Name and scope rules are de�ned

operationally by a very simple left-to-right depth-�rst traversal of the abstract

syntax tree (AST). In a name table, we keep and update all context-sensitive in-

formation arising from the declarations and use of identi�ers when traversing the

tree. This is the natural way as it is usually done in programming language spec-

i�cations. Depending on the content of the name table, we de�ne operationally

how the name table is updated. Furthermore, we specify, also depending on the

content of the name table, semantic constraints on AST nodes in a descriptive

way. The language designer does not need to specify how these constraints are

solved. Especially, the computation of their solution is postponed and therefore

completely independent from the AST traversal. Therefore, our speci�cation

method does not depend on the process of analysis.

For constructing semantic analyzers the following steps are performed:

(1) The language designer de�nes the context-sensitive syntax by the means

of semantic conditions on abstract syntax trees. Such a de�nition does not

contain any information on how to solve the speci�ed semantic conditions.

(2) The designer's speci�cation serves as input for the generator of the semantic

analysis. The generated analyzer extracts a system of semantic constraints.

(3) An e�cient algorithm (linear in the program size) solves the extracted con-

straint system and computes the typing.

Since there is only one speci�cation involved, correctness would result automat-

ically if the generation technique and the implementation of the generator itself

were correct. The �rst requirement is guaranteed to be ful�lled due to this pa-

per. We consider imperative, typed programming languages with overloading

of programmer-de�ned functions and identi�ers and coercions, and higher-order

functions. This work is an extension of [GHL97] where we introduced our method

for simple imperative languages. In these languages we did not allow for over-

loading of programmer-de�ned functions. The extension for arbitrary overload-

ing considered in this paper needs a more sophisticated algorithm in the sense

that not all equal identi�ers also denote the same object. Therefore the work

presented here is a clear continuation and extension of [GHL97].

2 Related Work

Research on the speci�cation of context-sensitive syntactical properties and the

generation of the associated semantical analysis was enforced with attribute

grammars. A good survey of the obtained results can be found in [WG84]. The

actual algorithms for the semantic analysis are simple but will fail on certain

input programs if the underlying attribute grammar is not well-de�ned. Test-

ing if a grammar is well-de�ned, however, requires exponential time [Jaz81]. A

su�cient condition for being well-de�ned can be checked in polynomial time.

This test de�nes the set of ordered attribute grammars as being a subset of

the well-de�ned grammars [Kas80]. However, there is no constructive method to

design such grammars. Hence, designing an ordered attribute grammar remains

a di�cult problem. For another class of attribute grammars it is required that

all attributes can be evaluated during a constant number of depth-�rst, left-to-

right traversals of the abstract syntax tree. These are the left-ordered attribute

grammars (LAG), [LRS74], [Boc76]. Due to their �xed traversal order, the spec-

i�cation of context-sensitive syntax becomes very operational, i.e. dependent on

the analysis, and is not as easily possible as a language designer might want it

to be. However, because there are no alternative speci�cation and generation

methodologies, most practical tools are based on attribute grammars.

In [Uhl86], a framework for the speci�cation of context-sensitive syntax is

given which is based on the predicate calculus and on the entity-relationship

model from database theory. The speci�cations in this model are very complex

and are not intuitive. Moreover, the generation of semantic analysis from such

a speci�cation is not always possible, as stated by the author. Therefore this

approach is not widely used.

2

A language for the speci�cation of context-sensitive syntax which is based

solely on the predicate calculus is de�ned in [Ode93]. Due to the complexity

of �rst-order formulas, the speci�cations in this model may not be easy. The

semantic analysis can be generated but is much too ine�cient for the use in

practical compilers. Another framework also based on the predicate calculus is

given in [PH91], incorporating basically the same disadvantages.

In [PS94], a speci�cation method for context-sensitive syntax in object-orien-

ted languages based on constraints is given. In this framework the speci�cation

of context-sensitive syntax is easy to express. The semantic analysis can be gen-

erated. Their emphasis lies on the treatment of programming languages that do

not require that variables are declared. So in general, type inference is performed,

using an algorithm of time complexity O(n3) where n is the program size.

In functional languages, type inference and checking is performed by solving

systems of type equations [Jon87]. During this computation it is necessary to

unify terms denoting types. The uni�cation method chosen is typically Robin-

son's [Rob65] which needs exponential time in the worst case. Since we do not

require type variables, this approach is more general than necessary in our con-

text.

In this paper, we restrict ourselves to type checking while allowing a richer

constraint language. This gives us the possibility to describe more realistic pro-

gramming languages while obtaining an O(n2) algorithm solving the constraints

where n is the program size. During the process of semantic analysis, we assign

a type to each node of the abstract syntax tree, thereby giving a meaning to the

nodes. This approach can be viewed as carrying out an abstract interpretation

[CC79]. In our approach, a type is either a basic type or built from already exist-

ing types by the application of certain type constructors. We assign the standard

type, i.e., the type of which they have been declared, to objects being explicitly

declared as for example variables, formal parameters, or constants. Then we de-

�ne and infer the types of other nodes in the abstract syntax tree inductively,

starting at its leaves. This gives us an operational formulation of types and in

turn an abstract interpretation based on operational semantics.

We proceed in the following way: section 3 sketches the speci�cation lan-

guage. Thereby, we show how our approach works for common concepts of ex-

isting programming languages. Section 4 describes the algorithm for solving the

speci�ed semantic conditions. Additionally, we establish the correctness of this

algorithm and discuss details of an e�cient implementation. Finally, section 5

concludes the work and describes its general context.

3 The Speci�cation

There are two principal ways for describing the context-sensitive syntax in pro-

gramming languages: either an operational or a descriptive approach may be

chosen. Depending on this choice, the context information of nodes in the AST

is treated di�erently. In an operational speci�cation, context information is ex-

pressed and collected directly. Descriptive methods are more subtle and describe,

3

for each node in the AST, what has to be true for certain predecessors and suc-

cessors of the node so that the entire program is conform to the context-sensitive

syntax.

Attribute grammars are a good example for an operational speci�cation of

context-sensitive syntax, at least in the sense that local dependencies of at-

tributes and thereby the associated computation have to be speci�ed. Context-

sensitive information for example is speci�ed by environment attributes. For

each node, an associated environment attribute is de�ned by specifying how it

is computed from the environments of surrounding nodes.

Descriptive methods are based on the predicate calculus. The context is mod-

eled by a �rst-order description, as everything else as well. All context-sensitive

properties of an AST can be described with a �rst-order formula '. To check

the context-sensitive properties of a program, it is necessary to prove that the

program is a model of this formula '. Since the program is �nite, this question

is decidable: The formula ' is transformed into a propositional formula by elim-

inating all quanti�ers. Each forall-quanti�ed formula 8x:' is (w.r.t. the program

as model) equivalent to the conjunction '[x := u1] ^ � � � ^ '[x := un] where

u1; : : : ; un are all program nodes. Exists-quanti�ers are eliminated analogically.

After this transformation, we have a propositional formula whose validity can

be tested. Since this test is as hard as deciding whether a formula is satis�-

able (' valid $:' not satis�able), this problem is NP-complete [Coo71]. It

is an open question if the problem of checking whether a program is conform

to a speci�cation of context-sensitive properties is also NP-complete. However,

a partial solution to the above described ine�ciency problem can be given by

eliminating all negations in the formula to be checked. Each negated predicate

:P is replaced by P . This preserves the correctness of the decision procedure

(formulas recognized as valid are indeed valid) but its completeness does not

exist any more. Valid formulas may not be recognized. Furthermore, for some

inputs, the computation might not stop [Rob79, Ode93]. For any practical use,

such a behavior does not su�ce at all.

Our approach combines the advantages of both operational and descriptive

methods. In a name table, we keep and update all context-sensitive information

arising from the declarations and use of identi�ers when traversing the AST

in left-to-right depth-�rst order. Depending on the content of the name table,

we de�ne constraints for each node in the AST. These constraints are positive

propositional formulas (i.e., contain no negations) and describe context-sensitive

correctness denotationally. Their validity can be checked in e�cient time. We de-

veloped a special data structure, a constraint graph, which is especially designed

for constraint systems arising from context-sensitive program analysis.

In a certain sense, we use an LAG(1) grammar to specify and compute context

information and to collect the set of constraints. Whenever a computation would

be too complicated for an LAG(1) description, we de�ne constraints which are

only collected during the tree traversal while their solution is postponed. In

particular, we take care that only positive constraints (without any negation)

are de�ned.

4

In this section, we describe how speci�cations are given by semantic rules

associated with each node of the abstract syntax tree (AST). Furthermore, we

discuss simple imperative features and proceed by successively introducing more

complex properties of the languages that we consider. For each typical language

construct we show how alternative semantics can be speci�ed.

3.1 Principal Formalism

In general, the syntax of a programming language consists of context-free as well

as context-sensitive syntactic properties. Therefore, the syntax analysis of a com-

piler is divided into two parts. The �rst checks the context-independent syntac-

tical properties and is commonly called syntactical analysis. Its result is the ab-

stract syntax tree. The second part of the analysis checks the context-dependent

properties and is typically called semantic analysis. Here we assume that a pro-

gram is represented by the AST. This means that the analysis of context-free

properties has already been performed. We describe context-sensitive syntactic

properties inductively on the structure of programs. For each production of the

language's context-free grammar we de�ne semantic rules. These rules specify

syntactical correctness of programs w.r.t. the context-sensitive syntax of the

programming language.

When a program is checked, we look at it in left-to-right depth-�rst order.

Inductively on this traversal order, we de�ne what context-sensitive correctness

means. For each node in the AST, we de�ne a context. This context completely

summarizes the context-sensitive properties belonging to the program part be-

fore (w.r.t. the left-to-right depth-�rst order) the actual node.

Each inner node of the AST corresponds to the left-hand side of a rule of the

context-free grammar. The context-sensitive properties of such a node are de-

scribed via semantic rules associated with the context-free productions. Semantic

rules consist of conditions, actions, and constraints:

(1) The condition indicates if the particular semantic rule applies to the node in

a certain context.

(2) If the semantic rule applies, the action de�nes the new context.

(3) If the semantic rule applies, the constraints describe the context-sensitive

properties of the node.

Figure 1 shows the speci�cation scheme for a semantic rule which is used in this

paper. True-conditions and skip-actions are omitted.

Condition Actions Constraints

Predicate on the Modi�cation of the Selected

name table name table Constraint

Fig. 1. Speci�cation scheme: semantic rules

5

The name table provides access to declaration nodes and to use nodes of

"names"1. The function Decls associates a set of declaration nodes with the cor-

responding "name". The function Use relates "names" with their di�erent uses

in the program. This means that it associates "names" with those nodes in the

AST that represent one particular use of the "name". We assume Use("name")

to return a set of nodes. In section 4, we discuss e�cient implementations for

the representation of sets of types.

3.2 Types

In principal, we can deal with all primitive types that are known from com-

mon programming languages as arithmetic, boolean, character, and string types.

In this paper, w.l.o.g., we consider the basic types int, real, and bool, see (1).
From these types we can construct complex types by applying type construc-

tors. type ! type de�nes function types, see (2). We consider only functions

with one argument. It is obvious that this does not pose any restriction on the

generality of the type system as argued by Sch�on�nkel [Sch24] and later used

by Curry [CF58]. Records can be built by joining tuples of names and types,

see (3)-(6).

type ::= INT j REAL j BOOL (1)

j type ! type (2)

j f components g (3)

components ::= ; (4)

j comp ; components (5)

comp ::= name : type (6)

To process record declarations, we require the name table to handle identi�ers

which are concatenated by the \."-operator, much in the same way as record

names are built. We assume that the name table stores the actual record name

in some variable. This variable consists of a list of identi�ers, concatenated by the

\."-operator. In addition, a pointer shows the dot which corresponds to the actual

record context. When a record de�nition is entered, the action enter record is

performed. It moves the pointer one "name" to the right. On the exit of a

record de�nition, the action leave record is executed. It moves the pointer one

"name" to the left. Type constructs appear only in the context of declarations.

When a declaration of some variable occurs, we have to assume that it could

be a record de�nition. Therefore we update the actual record name by \."-

concatenating the name of the declared variable to it. This is performed by the

function update("name"). This function removes all names at the right from the

pointer of the actual record context. Then it appends the "name" to its right

but does not move the pointer. Only if a record type declaration is entered, the

pointer is moved, performed with the functions enter record and leave record .

1 We use "name" to identify the key to the string representation of a name de�ned by

the lexical analysis. We distinguish this from name which an identi�es AST node.

6

For structured types, di�erent notions of type equivalence are common in pro-

gramming languages. The basic distinction is between declarational and struc-

tural equivalence. In �gure 2 we show how these di�erent notions of type equiv-

alence can be described via semantic rules. For the syntactical rules (4) and (5),

we give two alternative semantic rules describing di�erent type equivalences. In

the case that the order on the record elements matters, we represent them by a

list. If the order does not matter, we choose a set description. This is described

by (4), (5) and (4'), (5'), resp.2 Furthermore, the names of the elements can

make a di�erence between record elements. But since we need to have access

to the names of the record elements whenever they are used in a program, we

need to describe their names in the constraints; no matter if they are used to

distinguish between di�erent record types or not. In principle, each of the four

combinations (order matters, does not matter) and (names make a di�erence,

make no di�erence) is possible. Nevertheless, the combination (order does not

matter, names make no di�erence) does not seem to make sense. Therefore we

did not mention this case in the above enumeration of possible type equivalences.

No Condition Actions Constraints

(1) [[type]] = (int jreal jbool)

(2) [[type0]] = [[[[type1]]! [[type2]]]]

(3) enter record [[type]] = [[components]]

(4) leave record [[components]] = �

(4') leave record [[components]] = []

(5) [[components0]] = [[comp]] [[[components1]]

(5') [[components0]] = [[[comp]]j[[components1]]]

(6) Use(comp name) := [[comp]] = ("name"; [[type]]) ^
Use(comp name) [name [[name]] = [[type]]

Fig. 2. Semantic rules for type de�nitions

3.3 Imperative Features

We consider declarations, assignment and loop statements, and simple expres-

sions where we especially discuss overloading. Our notation for these language

2 We assume [] to denote the empty list and [j] to denote concatenation of lists.

7

constructs is assumed to be as follows:

decl ::= name : type (7)

assign ::= des := expr (8)

des ::= des : name (9)

j name (10)

loop ::= while expr do stats od (11)

expr ::= des (12)

j bool literal (13)

j int literal (14)

j real literal (15)

j expr + expr (16)

There are two di�erent principal ways for the use of objects in programming

languages:

(i) Either it is required that an object is de�ned before it is used,

(ii) or use and declaration can occur in arbitrary order.

However, this distinction does not matter for the handling of declarations (7).

Furthermore, we distinguish between

{ languages that allow for overloading and those that do not, and

{ languages that allow for re-declarations (multiple declarations for a variable

with exactly the same type) and those that do not.

In principal, arbitrary combinations of these concepts are possible in program-

ming languages. We demonstrate the power of our method by showing how these

di�erent concepts can be speci�ed, cf. �gures 3, 4, 5.

Condition Actions Constraints

Decls("name") = � Decls("name") := Decls("name") [f[[type]]g [[name]] = [[type]]

update("name")

Decls("name") 6= � [[name]] = error

update("name")

Fig. 3. Semantic rules for declarations (7), overloading and re-declaration not

allowed

In the assignment statement (8), for a �rst try, we require that the type of

the expression expr on the right-hand side is of the same type as the designator

des on the left-hand side. This would result in the semantic rules as speci�ed in

�gure 6 where ; is replaced by =. Note that here is a clear distinction between

(i) and (ii). For our example in section A we assume (ii).

8

Condition Actions Constraints

[[type]] 62 Decls("name") Decls("name") := [[name]] = [[type]]

Decls("name") [f[[type]]g

update("name")

[[type]] 2 Decls("name") update("name") [[name]] = error

Fig. 4. Semantic rules for declarations (7), re-declarations not allowed

Condition Actions Constraints

type 2 Decls("name") update("name") [[name]] = [[type]]

type 62 Decls("name") update("name") [[name]] = [[type]]

Decls("name") := Decls("name") [f[[type]]g

Fig. 5. Semantic rules for declarations (7), overloading and re-declaration al-

lowed

Of course, to require the equality of left- and right-hand side types is much

too restrictive. In general, only coercibility is needed. Coercibility relations, de-

noted by ;, are language dependent and can be combined into a semi-lattice

by introducing the error type error as top element, see �gure 7. There may

be di�erent coercibility relations for di�erent language constructs in a single

programming language. They are de�ned by the language designer. For our ex-

ample language, we get the semi-lattice from �gure 7. The semantic rules for the

assignment statement are summarized in �gure 6.

The semantic rules for the designator are speci�ed in �gure 8. As in the

case of declarations we distinguish if a variable has to be declared before its

use (i) or not. In all possible cases we remember this particular use of a name

by de�ning an entry for the set Use("name") containing all nodes of the AST

where a variable has been used. The semantic rule for the loop statement (11)

is simple. We only have to require that the type of the conditioning expression

is boolean. In particular, there are no actions and conditions, see �gure 9.

For expressions (12){(15), the constraints are obvious, cf. �gure 10. Expres-

sion (16) is interesting since it may combine overloading with coercion. To

demonstrate the power of our method, we assume \+" to be de�ned either as the

boolean or-operator or as the common integer and real addition operator, resp.

The operator is identi�ed according to the types of its operands. The semantic

rules are de�ned in �gure 10. The �rst of the constraints' literals de�nes that

Condition Actions Constraints

[[expr]]; [[des]]

Fig. 6. Semantic rules for assignments (8)

9

real bool

int

error

Fig. 7. Coercibility-Semi-Lattice of the example

No. Condition Actions Constraints

(9)(i) Decls("name") 6= � comp name := comp name:"name" [[des0]] = [[name]]

Use(comp name) :=

Use(comp name) [fnameg

(9)(i) Decls("name") = � comp name := comp name:"name" [[name]] = error ^
Use(comp name) := [[des0]] = [[name]]

Use(comp name) [fnameg

(9)(ii) comp name := comp name:"name" [[des0]] = [[name]]

Use(comp name) :=

Use(comp name) [fnameg

(10)(i) Decls("name") 6= � comp name := "name" [[des]] = [[name]]

Use(comp name) :=

Use(comp name) [fnameg

(10)(i) Decls("name") = � comp name := "name" [[name]] = error ^
Use(comp name) := [[des]] = [[name]]

Use(comp name) [fnameg

(10)(ii) comp name := "name" [[des]] = [[name]]

Use(comp name) :=

Use(comp name) [fnameg

Fig. 8. Semantic rules for designators (9) and (10)

the entire expr has as type the maximum of the operands' types in the semi-

lattice ;. Note that it is the error type if the operands are not coercible, e.g.,

if they are bool and real in our language3. The second constraint literal de�nes

the function type for \+" dependent on the type of the entire expression. The

last two constraint literals �nally describe the coercibility of the operands to the

types required by the operation.

3.4 Names and Scopes

Up to now, we did not talk about programming languages incorporating name

spaces. In particular, when talking about name spaces as contexts we did not

3 Here we assume that structured types are coercible only if they are equal.

10

Condition Actions Constraints

[[expr]] = bool

Fig. 9. Constraints for loops (11)

No. Condition Actions Constraints

(12) [[expr]] = [[des]]

(13) [[expr]] = bool

(14) [[expr]] = int

(15) [[expr]] = real

(16) [[expr0]] = max;([[expr1]]; [[expr2]])^
[[+]] = [[[[expr0]]! [[expr0]]! [[expr0]]]]^
[[expr1]]; [[expr0]] ^ [[expr2]]; [[expr0]]

Fig. 10. Conditions, actions, and constraints for expressions (12){(16)

change between di�erent name spaces. To be able to do so, we extend the lan-

guage constructs discussed so far and allow for the declaration of methods which

can be called by using their name. As a natural consequence, we get blocks de�n-

ing name spaces.

decl ::= function name (name : type) : type ; block (17)

name ::= result (18)

expr ::= des (des) (19)

block ::= begin stats end (20)

stats ::= ; (21)

j (stat j decl) ; stats (22)

The introduction of blocks requires an extended functionality of the name table.

We need to be able to create new scopes as a new block is entered and to discard

them on the exit of the corresponding blocks. These actions are assumed to be

performed by the functions enter scope and leave scope.

As already explained in subsection 3.3, there are two principal ways for the

use of objects in programming languages: (i) either they need to be declared

before they are used, or (ii) their use and declaration can appear in arbitrary

order. This distinction requires in turn that the name table behaves di�erently in

both cases. If we do not require that an object is declared before used (case (ii)),

we do not know until the block end is reached if the name denotes a local object

of the block or some other (global) object declared outside of the current block.

I.e., before reaching the end of the block, we do not know if we eventually �nd a

declaration for the object in the current block or if a global declaration belongs

to this object. Therefore we collect all constraints for a name. If we do not �nd

a declaration for a name in the current block, we process the constraints to the

11

outside scope where we deal with them in the same way. Thereby the constraints

for a yet undeclared name can be processed this way until the outermost scope is

reached. In case (i), where we require that an object is declared before used, such

a complex distinction is not necessary. As soon as a name occurs, its declaration

is clear. If it does not exist, an error occurs. To simplify further discussions,

we assume that these di�erent functionalities are performed automatically as a

default action by the name table. We assume result being a prede�ned name

Condition Actions Constraints

Decls("name1") := [[name1]] = [[[[type1]] ! [[type2]]]]

Decls("name1") [[[[[type1]]! [[type2]]]] [[name2]] = [[type1]]

enter scope [[result]] = [[type2]]

Decls("name2") := [[type1]]

Decls(result) := [[type2]]

Fig. 11. Semantic rules for function declarations (17)

denoting the result of a function. For simplicity we assume that there is also

such a result-parameter in the outermost block, denoting the result of the

entire program. The constraints of this rule state that the name of the function

and its parameter do not have to be the same. Furthermore, name1 is speci�ed

as a function mapping arguments of type1 to type2. Finally, name2 and result

are declared of type1 and type2, resp.

Condition Actions Constraints

Use(result) := Use(result) [result [[des]] = [[result]]

Fig. 12. Semantic rules for result parameters (18)

Figure 13 de�nes the semantic rules for function calls. We describe des1 as

a function mapping objects of the type of des2 to objects of the type of expr.

Here, no conditions and actions are de�ned since the AST nodes involved in this

rule do not have entries in the name table.

Condition Actions Constraints

[[des1]] = [[[[des2]]! [[expr]]]]

Fig. 13. Constraints for function calls (19)

12

At the end of a block, we have to update the current scope. This is performed

by the execution of leave scope , see �gure 14. This rule applies always at the

end of blocks. Therefore no condition is stated. Also no constraints result from

this semantic rule.

Condition Actions Constraints

leave scope

Fig. 14. Actions for block ends (21)

4 The Analysis

Semantic conditions are associated with nodes in the abstract syntax tree, cf.

section 3. It remains to show how the constraint set is organized, simpli�ed, and

checked for consistency in an e�cient way.

4.1 The Analysis Algorithm

Constraints are predicates on the types [[n]] of nodes n 2 VAST of the AST and

the types of the programming language. E.g., the predicate [[n]] = t denotes that

n is of type t. We consider the following constraints:

t1 = t2 (23)

t1 ; t2 (24)

where t1 and t2 are types and \=" is an equivalence and ; is a coercibility

relation. The language designer must de�ne both for all possible types of the

language. In addition to the discussed type constructors (2) and (3), we also

consider the following constructor:

max
;

(t1; : : : ; tk) (25)

_(t1; : : : ; tk) (26)

which denotes the maximum of types t1; : : : ; tn in the coercibility-semi-lattice

and the set of types ft1; : : : ; tng, respectively. max
;

is derived from;. A predicate

[[n]] = t is a de�nition of n i� t is a language type. A predicate [[n]] = ft1; : : : ; tng
determines the set of possible de�nitions of n.

Predicates are kept in a graph structure C = (V;E) which we call the con-

straint graph4. The vertices V in this graph are language types and types of

4 Let AST= (VAST ; EAST); C = (V;E). To avoid confusion, we call the elements of

the VAST \nodes" and the elements of V \vertices".

13

nodes. Edges E represent the constraints where \="-edges are undirected and

\;"-edges are directed. Initially C = (�;�). For each node n with a constraint,

a vertex [[n]] is added to V , edges to other vertices are inserted according to the

constraints. Figure 15 shows C for a de�ning predicate [[n]] = t and possible def-

initions [[n]] = ft1; : : : ; tng. Initially, the set of possible de�nitions for each name

a)
[n] t

b)
[n]

t

t

........
v n

1

Fig. 15. C for the de�ning predicate [[n]] = t (a) and the possible de�nitions

[[n]] = ft1; : : : ; tng (b).

is determined by the name table. These sets are propagated along the equality

and coercibility edges in C, resp., and simpli�ed if possible. Thereby, vertices

and/or edges may be removed from C. This follows the four principle rewriting

rules. Rule (I) simply propagates de�nitions, cf. �gure 16. It means that if a

node must have the same type as another node (two vertices in C are connected

by an equality edge) then the de�nitions or the possible de�nitions for one node

must be a de�nition or a possible de�nition of the other node.

a)

t

any

any t

any

any t

any

any’

t

any

any t

any

any t

any

any’
b)

t

t

........
v n

1

t

t

........
v n

1any

any

any

any

any

any’

any

any

any

any

any

any’

Fig. 16. Rule (I): propagation of de�nitions (a) and possible de�nitions (b).

Equivalence of language types may be checked. If C contains an \="-edge

between vertices representing language types or sets of language types, it may

be removed. Rule (II) describes the rewriting. If both types are equivalent

(a), they are melted. If they are not (b), the subgraph is replaced by a vertex

14

which represents the error type, cf. �gure 17. If they are sets of types they are

replaced by the intersection of the both sets (c)5. If this intersection is empty

the subgraph is replaced by the error vertex (d).

a)

t.

.

.

.

.

.
t’ .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
t = t’

b)

t.

.

.

.

.

.
t’ .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
error

c)

t

t

v v

......

........
t’

t’1

m

v

...

........
n

1

........
k

1T

T
d)

t

........
t’

t’1

m

........
n

1t

v v

......

...

error

Fig. 17. Rule (II): solving equality constraints.

A special case of Rule (II) occurs if one of the types sets is the set of possible

de�nitions. This set is treated di�erently because it will never be removed. In

this case, cf. �gure 18, the intersection is computed as before. If the resulting

type is unique then an edge to the appropriate de�nition is inserted. In �gure 18:

ft0xg = ft0
1
; : : : ; t0mg \ ft1; : : : ; tng.

After application of Rule (II) a special case of Rule (I) may occur. Assume

that one of the compared types is a function type where the argument type

and/or the result type is not yet de�ned. This situation arises from the constraint

for calls, cf. 13. Anyway, we compute the intersection and reduce the set of

possible de�nitions to the possible function types by applying Rule (II). If

the resulting set is empty, an error has been detected. If the set contains only

one de�nition, new constraints for the argument and/or result types of a use

are inserted according to the argument and/or result types of the de�nition, cf.

�gure 19.

Basically, Rule (III) performs the same for the ; constraints as Rule (II)

for the equivalence. However, if Rule (III) is applied, the vertices are not melted

5 A single de�ning type may be seen as a set containing only one element.

15

e)

t

t

........

t’1

t’m

........
n

1

........

t’x

........

t’1

........
t’

t’x

m

....v

v v

......

......

Fig. 18. Rule (II): (e) selecting the proper de�nition.

c)

ttt anyanyany anyanyany’ttt’

ttt

ttt’

anyanyany

anyanyany’

Fig. 19. Rule (I): (c) propagation of de�nitions to function parameter and

result type.

but replaced by a pair of types for which coercion is de�ned, cf. �gure 20. An

error type is inserted if both types or type sets are not coercible, i.e. cases (b)

and (d) are identical for equivalence and coercibility constraints.

Rule (IV) replaces the max type constructor by the result of the max -

operator if all operands have basic types, cf. �gure 21.

16

a)

t t’

t t’

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

c)

t

t

........
n

1

v

...

........

1

k

........
l

1

v v

......

........
t’

t’1

m

v

...

T’

T’ T

T

Fig. 20. Rule (III): solving coercibility constraints.

max

max
(t1,...,tn)

.

.

t1 t2 tn
. . .

t1 t2 tn
. . .

Fig. 21. Rule (IV): elimination of maximum nodes.

4.2 Correctness of the Analysis

Now we establish the correctness of the rewriting rules. Therefore, we assume

that the language speci�cation is correct and consistent. The notion of \correct-

ness of a program w.r.t. the speci�cation of the context-sensitive syntax of a

language" includes the following features.

{ All names are declared.

{ All operands are identi�ed.

{ The declarations of names do not contradict their application.

Depending on the language, it may additionally include some of the following

requirements.

{ All names of the same scope are unique (no overloading).

17

{ A name is not declared more than once in the same scope (no overwriting

of declarations).

{ All names are declared before use.

Theorem1. Correctness: A program is correct w.r.t. the speci�cation of the

context-sensitive syntax of a language, i� there is no further application of

Rule(I) { Rule(IV) possible and

(i) all constraints, except for the de�ning predicates, are removed,

(ii) all nodes n have at most one de�ning predicate [[n]] = t; t 6= error, and

(iii) all names have exactly one de�ning predicate [[name]] = t ; t 6= error .

Proof. First, we prove that if a program is correct w.r.t. the context-sensitive

syntax then (i) { (iii) must hold after the termination of the graph rewriting. Ob-

viously (iii) must hold for correct programs since we considered typed languages.

(i) and (ii) are shown by contradiction. If (i) was false, there were constraints

that cannot be resolved. This may either occur if they still depend on the types

of some nodes without de�ning predicate or if they are equal to the error type.

The former must not occur if (iii) holds because then all nodes get de�ning pred-

icates by applying Rule(I) { Rule(IV) successively. If the latter occurred, the

program would be obviously not correct. If (ii) did not hold, some nodes of the

AST would have distinct de�ning types which contradicts the assumption that

the program is correct.

Second, we prove that a program is correct w.r.t. the context-sensitive syntax

if the rewriting has been applied completely and (i) { (iii) hold. The organization

of our de�nition table guarantees that a name is de�ned and

{ is not multiply de�ned, or

{ is not multiply de�ned with the same type, or

{ used before its de�nition

if this is not allowed for the considered programming language. Additionally,

condition (i) guarantees that operands are identi�ed and (ii) guarantees that

they are unique. Condition (iii) guarantees that the uses of each name do not

contradict each other and are not in contradiction to the de�nition.

4.3 The Implementation of the Analysis

It remains to show how the sets of types and the operations equivalence, maxi-

mum and coercion of type sets are implemented.

Sets of types are represented by �nite ordered lists6. This is possible because

all types of all scopes are de�ned after the AST traversal. The set of all types in a

given program is �nite and a lexicographic sorting of the types is always possible.

Consider a string representation of the types where each type ti is represented

by a string of length jtij. Lexicographic sorting of all types ti takes time

O(
X

ti2T

jtij); (27)

6 A bit vector implementation is preferable.

18

where T is the set of all types [AHU87]. Obviously

X

ti2T

jtij = O(n); (28)

where n is the program length.

The intersection of sets represented by ordered lists of size n can be performed

in O(n). Therefore, the intersection of the type sets takes time O(n).
Coercion and maximum operation are only de�ned on basic types. The num-

ber of basic types b is a constant. Hence, there are at most 2b sets of basic types

in any program. Coercibility of two sets of basic types may therefore be stored in

a table of size 4b, which is a constant, and computed in time O(1). The maximum

of two types is pre-computed in the same way. It follows that the maximum of

k types can be computed in time O(k).
The vertices of the constraint graph are pairs of node pointers and type sets.

For every node we insert constraints in terms of other nodes of the same syntactic

rule which we can �nd in time O(1). Additionally, we insert constraints according
to possible de�nitions of names. Because of the hash table organization of our

name table, we �nd all these possible de�nitions for a name in expected time of

O(1) and in worst-case time O(n).
The rewriting rules could be applied in an arbitrary order. But, we deter-

mine the order for reasons of e�ciency. We start with propagating de�nitions

and possible de�nitions by Rule(I) until Rule(II), Rule(III), or Rule(IV)

is applicable. Then these rules are applied which results in new situations for

the application of Rule(I). The solution terminates if no rule is applicable. Due

to this approach, we always �nd a new application of a rule in time O(1) if it
exists.

From the above observations we conclude

Theorem2. Complexity: The de�ned algorithm for semantic analysis performs

in time

O(n2);

where n is the size of the program.

Proof. Traversing the AST takes time O(n). Insertion of the constraints for

each AST node takes time O(n). Constructing the sets of types takes time O(n)
for each of the O(n) AST nodes. Hence, constructing the constraint graph is

performed in time O(n2).
Each application of Rule(I) removes an equality constraint between vertices

representing types of AST nodes and thus cannot applied twice to the same sub-

graph of C. Application of Rule(I) (c) adds a new edge but three edges are

removed instead. Cyclic application cannot occur. Hence, Rule(I) is applica-

ble only jEj times where E is the set of edges in the constraint graph. Each

application takes time O(1).
Each application of Rule(II) removes an equality constraint between ver-

tices representing language types. Again, cyclic application cannot occur. Hence

19

Rule(II) is applicable only jEj times. Each application takes time O(n). By the
same argumentation, Rule(III) and Rule(IV) cannot be applied more than

jEj times. Each application of Rule(III) takes time O(1) for basic types and

time O(n) for structured types. Each application of Rule(IV) takes time O(k)
where k is the arity of the maximum operation. k is obviously a constant since

we can only de�ne constraints with constant arity.

A possible application of a rule is detected in time O(1) if it exists. Otherwise,
the algorithm terminates. The constraint solving algorithm therefore performs

in time O(n � jEj). The maximum number of edges in the constraint graph is

O(jVAST j � c � k) where c is the number of constraints per node and k is their

arity. c and k are constants, jVAST j is O(n). Therefore, the constraint solving

is done in O(n2). Since constructing and solving the constraint graph is done

sequentially and only once the theorem follows.

Remark. The program size n may be measured e.g. in the number of characters

of a program. If, as a further restriction, the length of all names is bounded by

a constant, then theorem 2 continues to hold for n = jVAST j.

5 Conclusion

We have introduced a new approach for the speci�cation of context-sensitive

syntax and the generation of the semantic analysis in typed imperative pro-

gramming languages. Our speci�cation serves not only as a de�nition for the

context-sensitive syntax of programming languages but also as an input of a

generator for the semantic analysis. This is a simpli�cation in comparison to the

state of the art since we have only one speci�cation for both the description of

the language and the generator input. Double speci�cation e�orts and resulting

proof obligations become super
uous.

We demonstrated this method by de�ning the context-sensitive syntax for

typical imperative language constructs. In particular, we showed how speci�-

cations for these constructs may vary depending on the features of the speci�c

language. If, for example, the language allows the use of objects before their dec-

laration is given, we can describe this easily. We are especially able to express

overloading of arbitrary (programmer-de�ned) operators. This demonstrates the

exibility and power of our speci�cation method. Moreover, our speci�cations

are easy to formulate and understand, thereby appearing naturally.

In our approach we have combined the advantages of operational and de-

scriptive methods. The description and analysis of the context-sensitive syntax

is based on abstract syntax trees. During the analysis of a program, its abstract

syntax tree is traversed. We de�ne an abstract data type \name table" contain-

ing the names and de�nitions of the program objects. Speci�cations are given

by semantic rules formulated according to the syntactic rules of the underlying

context-free grammar. These semantic rules consist of three parts: conditions,

actions, and constraints. Conditions indicate when a semantic rule is applicable,

the actions describe how the internal state of the name table has to be changed,

20

and the constraints de�ne which semantic conditions must be ful�lled. In partic-

ular, the updating of the name table and the selected constraints depend only on

the actual state of the name table. The constraints collected during the traver-

sal are managed in a data structure called \constraint graph" which allows for

solving them e�ciently, namely in time O(n2) where n is the size of the program.

Current work deals with the stepwise extension of our approach to languages

that allow for:

(1) di�erent kinds of parameter passing,

(2) subtyping and polymorphism under closed-world assumption, and

(3) genericity under the assumption of separate compilation.

(1) seems to be straight-forward by introducing two di�erent function types.

Depending on the kind of parameter passing one of the two function types is

chosen. This choice is already determined by the context-free syntax. Remember

that we look only at functions with one argument so that two di�erent function

types are su�cient. (2) is a direct extension of the work presented here since

subtyping may be understood as dealing with yet another lattice. Because we are

already able to handle several coercibility-semi-lattices this should be possible.

The traditional compiler construction process is divided into two parts: the

construction of a source language dependent frontend and the construction of

a target machine dependent backend. The interface is an intermediate program

representation. The work presented here is a milestone towards our more general

goal to provide a framework for the generation of compiler frontends based on

a formal speci�cation of source and intermediate language semantics. In this

paper we showed how the programming language speci�cation can be given such

that the corresponding analysis can be generated automatically and e�ciently.

A complete framework which deals with lexical, syntactic, and semantic analysis

and intermediate code generation is described in [HL97].

References

[AHU87] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. Data Structures and Algorithms.

Addison-Wesley, 1987.

[Boc76] G. V. Bochmann. Semantic Evaluation from Left to Right. Communications

of the ACM, 19(2):55{62, 1976.

[CC79] P. Cousot and R. Cousot. Systematic design of program analysis frameworks.

In Proceedings of the Sixth Annual ACM Symposium on Principles of Pro-

gramming Langugaes, pages 269{282, January 1979.

[CF58] H.B. Curry and R. Feys. Combinatory Logic, volume 1. North-Holland, 1958.

[Coo71] S. A. Cook. The complexity of theorem-proving procedures. In Proc. 3rd

Ann. ACM Symp. on Theory of Computing, pages 151{158. Association for

Computing Machinery, New York, 1971.

[GHL97] Sabine Glesner, Andreas Heberle, and Welf L�owe. Generating Semantic Anal-

ysis Using Constraint Programming. Submitted to the Third International

Conference on Principles and Practice of Constraint Programming (CP97),

1997.

21

[HL97] A. Heberle and W. L�owe. Generierung von kompletten Compiler-Frontends.

In Arbeitstagung \Programmiersprachen", GI-Jahrestagung'97. Submitted,

1997.

[Jaz81] M. Jazayeri. A Simpler Construction Showing the Intrinsically Exponential

Complexity of the Circularity Problem for Attribute Grammars. Journal of

the ACM, 28(4):715{720, 1981.

[Jon87] Simon L. Peyton Jones. The Implementation of Functional Programming

Languages. Prentice-Hall International Series in Computer Science, 1987.

[Kas80] U. Kastens. Ordered Attribute Grammars. Acta Informatica, 13(3):229{256,

1980.

[LRS74] P. M. Lewis, D. J. Rosenkrantz, and R. E. Stearns. Attributed Translations.

Journal of Computer and System Sciences, 9(3):279{307, 1974.

[Ode93] Martin Odersky. De�ning context-dependent syntax without using contexts.

ACM Transactions on Programming Languages and Systems, 15(3):535{562,

July 1993.

[PH91] Arnd Poetzsch-He�ter. Formale Spezi�kation der kontextabh�angigen Syn-

tax von Programmiersprachen. PhD thesis, Technische Universit�at M�unchen,

1991.

[PS94] Jens Palsberg and Michael I. Schwartzbach. Object-Oriented Type Systems.

Wiley Professional Computing, 1994.

[Rob65] J.A. Robinson. A machine-oriented logic based on the resolution principle.

Journal of the ACM, 12(1):23{41, 1965.

[Rob79] J. Robinson. Logic: Form and Function - The Mechanization of Deductive

Reasoning. North-Holland, New York, 1979.

[Sch24] M. Sch�on�nkel. �Uber die Bausteine der mathematischen Logik. Math. Ann.,

92:305{316, 1924.

[Uhl86] J�urgen Uhl. Spezi�kation von Programmiersprachen und �Ubersetzern. PhD

thesis, Universit�at Karlsruhe, 1986.

[WG84] William M. Waite and Gerhard Goos. Compiler Construction. Springer Ver-

lag, Berlin, New York Inc., 1984.

A An Example

We demonstrate the algorithm on a small example program which is assumed to

be correct. Thus, the programming language allows that use and declaration of

variables may occur in arbitrary order. Furthermore, the language requires that

the right-hand side of an assignment is coercible to the left-hand side. Integer

values are coercible to real values.

The following �gures show several snapshots of the constraint graph during

the analysis of the program. To get a clear presentation, the pictures contain

several type nodes for the same basic types. In fact, we have only one type node

for each basic type. Additionally, we represent the function + by one function,

instead of representing currying explicitly.

In the beginning, we insert the constraint for the declaration of a, visit the

conditional statement and add the corresponding constraint, see �g. 23(a). Then

we extend the graph by constraint for assignments, 23(b). In the following we

visit the children nodes of the expression, process the declarations for a and the

22

a : REAL

if a then

a := succ(a) + 3.1

endif

: : :

a : BOOL

a : INT

: : :

succ(x : INT) : INT

result := x + 1 ;

end

;

if

;a

;

;

a

:

BOOL

a INT

;

a REAL

;:

:

succ INT ;

x INT

a

:=

expr

call

asucc

+ 3.1

:=

result expr

x + 1

...

:

:

Fig. 22. An example program p and its AST representation

de�nition of succ, and add the according constraints. This leads to the global

constraint graph in �g. 24. Figure 25 describes the constraints for the function

succ.

a v areal

bool
a v areal

bool

a

+-expr

(a) Processing the declaration and (b) Processing the assignment

the conditional

Fig. 23. Snapshots during the creation of the global constraint graph

After �nishing the traversal of the AST, we start simplifying the constraint

graph. Figure 26 shows the simpli�cation of the subgraph which corresponds to

the function succ. First we propagate the type de�nition of x (rule 17e), eliminate

the max -vertex (rule 21) and remove the coercions x; +� expr ; 1 ; +� expr

(rule 20a). Then, we determine the type of the +-operator by intersecting the

two corresponding type sets (rule 18). Figure 26 shows the �nal subgraph for

23

v

succ

v a

bool

+-expr

+

max

3.1

v

+ +

int real

call

a

succ

int

a

a

reala

bool

int

real

a

Fig. 24. The constraint graph of the global scope

succ.

During the simpli�cation of the global program part, �gure 27 describes the

situation after propagating the declaration information of names.

Figure 28 shows the constraint graph after removing the max -vertex (rule

21), after eliminating the coercions call ; +� expr and 3 :1 ; +� expr (rule

20a), and after determining the type of + (rule 18).

Finally, we determine the type of a by solving the coercion constraint (rule

20b). The result of applying rule 20b is that a and +� expr are of type real .

Now, we can apply rule 16a and then rule 18. This leads to the consistent graph

in �gure 29.

24

vsucc

int

v

int

+

real

+

intresult

result

max

x

+-expr

1

intv x

+

int

Global succ:

Fig. 25. (e): Local and global constraints for succ

v

int

+

real

+

intresult

result

x

+-expr

1

+

int

int x

int

succ

int

Global succ:

Fig. 26. Simpli�cation of succ

25

succ

int

v a

real

a

+

max

+-expr

3.1

v

a

a

call

succ

a

v

int

reala

bool

int

int

real

bool

Fig. 27. Simpli�cation of global

26

succ

int

v a

real

a

+-expr

3.1

v

a

a

call

succ

a

real

v

int

real

bool

real

+ +

int

++

reala

bool

int

int

Fig. 28. Further simpli�cation of global

27

succ

int

v a

real

a

+-expr

3.1call

succ

a

real

real

+ +

int

+

int

reala

bool

int

a

a

Fig. 29. Final constraint graph of the global scope

28

