ANALYSIS OF SEMI-IMPLICIT TIME INTEGRATION SCHEMES FOR DIRECT NUMERICAL SIMULATION OF TURBULENT CONVECTION IN LIQUID METALS

Martin Wörner, Günther Grötzbach

Kernforschungszentrum Karlsruhe Institut für Reaktorentwicklung Postfach 3640, D-7500 Karlsruhe

Motivation

Sodium cooled fast breeder reactor aim: passive decay heat removal by natural convection only

Water-experiments in 1:20 and 1:5 reactor models

Extrapolation to reactor conditions by computer codes

Problematic:

Calibration of statistical turbulence models for natural convection in liquid metals (lack of experimental data)

preparation of statistical turbulence data from direct numerical simulation (DNS)

Computer Code TURBIT

DNS and LES of turbulent channel flow

Solution of the 3D time dependent Navier Stokes equation and the thermal energy equation

Space discretization: finite differences

Time integration: explicit Euler-Leapfrog scheme

Stability criterion:

$$\Delta t \leq \Delta t_{\text{max}} = \frac{1}{\left|u_{i}\right|_{\text{max}} + 4} \frac{Max(v, a)}{\Delta x_{i}^{2}}$$

liquid sodium:

Pr = v/a = 0.006

temperature field: only large spatial structures

velocity field: contains very small spatial waves

increase of the time step width: implicit treatment of the thermal diffusion terms

Semi-implicit time integration schemes for the thermal energy equation

Adams-Bashforth Crank-Nicolson (ABCN) scheme:

$$\frac{T^{n+1} - T^n}{\Delta t} \ = \ - \ \frac{1}{2} \, \left(3 \, N^n \, - \, N^{n-1} \right) \, + \, \frac{1}{2} \, \left(L^{n+1} \, + \, L^n \right)$$

Leapfrog Crank-Nicolson (LFCN) scheme:

$$\frac{T^{n+1}-T^{n-1}}{2\,\Delta\,t}\ =\ -\,N^n\,+\,\frac{1}{2}\,\left(L^{n+1}\,+\,L^{n-1}\,\right)$$

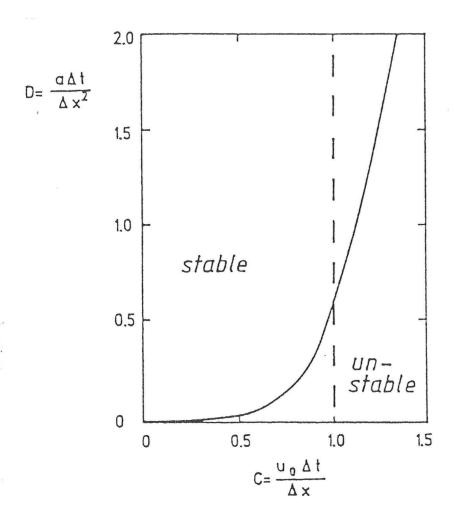
$$L = av^2T$$
, $N = uvT$

Error: $O(\Delta t^2)$

Von Neumann stability analysis

1D linear model equation:

$$\frac{\partial T}{\partial t} + u_0 \frac{\partial T}{\partial x} = a \frac{\partial^2 T}{\partial x^2}$$


$$a, u_o = const.$$

Courant number:

 $C = u_o \Delta t / \Delta x$

Diffusion number:

 $D = a\Delta t/\Delta x^2$

dashed line: LFCN-scheme

C ≦ 1

solid line:

ABCN-scheme

Numerical Experiments

$$\frac{\partial T}{\partial t} + u_0 \frac{\partial T}{\partial x} = a \frac{\partial^2 T}{\partial x^2}$$

$$u_0 = 0.1$$
, $a = 0.25$, $0 \le x \le L = n$

Initial condition:

$$T(x,0) = \sin(k \cdot x)$$

Boundary conditions:

$$T(0, t) = -\sin(ku_0 t) \cdot e^{-k^2 at}$$

$$T(L, t) = \sin [k(L - u_0 t)] \cdot e^{-k^2 at}$$

Exact solution:

$$T_{ex}(x, t) = \sin [k(x - u_0 t)] \cdot e^{-k^2 at}$$

wavenumber:

k = 2

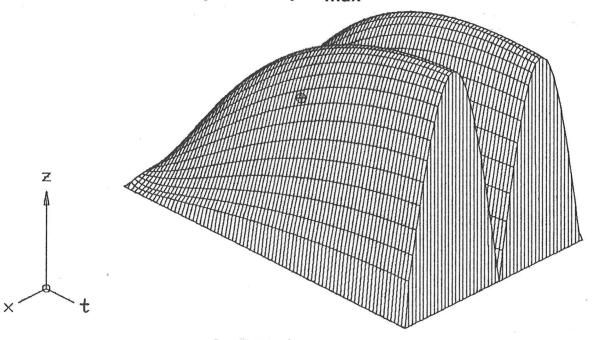
number of mesh cells:

M = 50

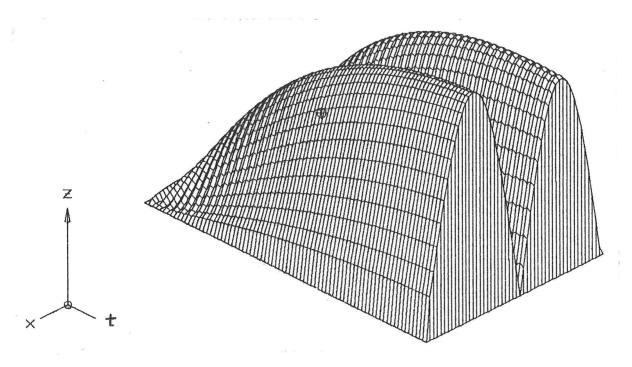
mesh cell width:

 $\Delta x = L/M-1 \approx 0.064$

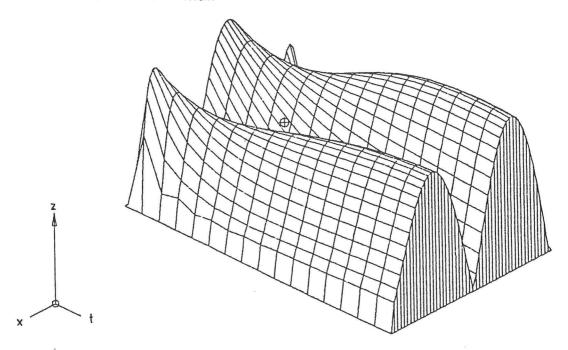
time step width:

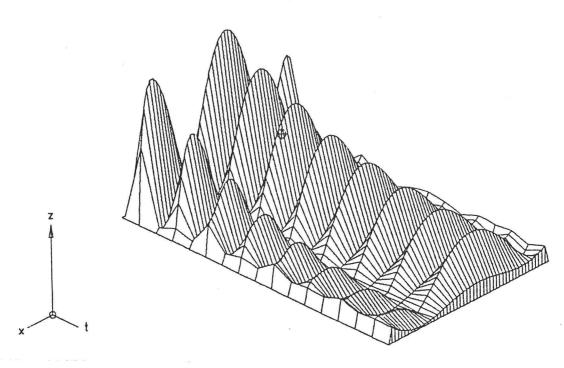

 Δ t corresponding to

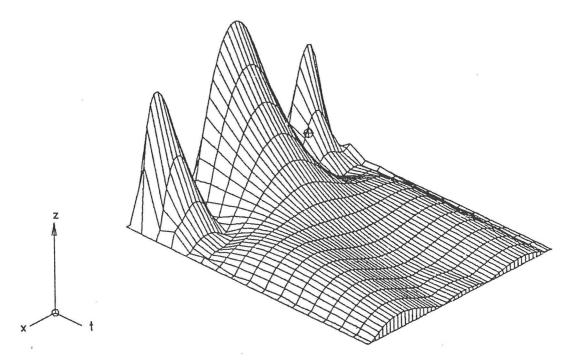
discretization ratios

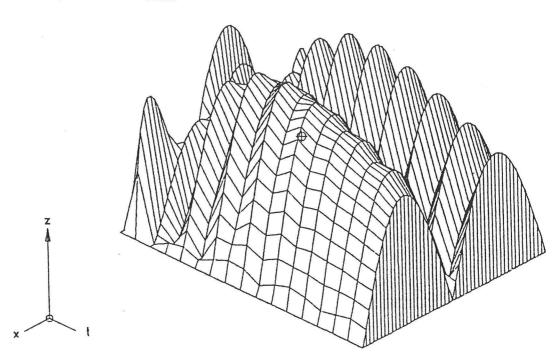

 $\lambda = \Delta t/\Delta x = 0.2, 1, 2$

Error: $z(x_i, t_j) = |T_{ex}(x, t) - T_{num}(x_i, t_j)|$


ABCN-scheme ($\lambda = 0.2$): $z_{max} = 5.6 \cdot 10^{-4}$


LFCN-scheme ($\lambda = 0.2$): $z_{max} = 5.5 \cdot 10^{-4}$


ABCN-scheme ($\lambda = 1$): $z_{max} = 4.1 \cdot 10^{-4}$


LFCN-scheme ($\lambda = 1$): $z_{max} = 3.9 \cdot 10^{-4}$

ABCN-scheme ($\lambda = 2$): $z_{max} = 1.5 \cdot 10^{-3}$

LFCN-scheme ($\lambda = 2$): $z_{max} = 1.7 \cdot 10^{-3}$

LFCN-scheme:

$$\left[\left(2 + \frac{1}{D} \right) T_{i} - \left(T_{i+1} - T_{i-1} \right) \right]^{n+1} = -\frac{C}{D} \left(T_{i+1} - T_{i-1} \right)^{n}$$

$$+ \left[\left(T_{i+1} - T_{i-1} \right) - \left(2 - \frac{1}{D} \right) T_i \right]^{n-1}$$

mesh Peclet number:

$$Pe_{\Delta x} = \frac{C}{D} = \frac{u_o \Delta x}{a}$$

 $Pe_{\Delta x} \ll 1$: decoupling of neighbouring time planes

first error oscillation:

 $t_0 \rightarrow t_1$: semi-implicit Euler-scheme O (Δt)

 $t_0, t_1 \longrightarrow t_2$: LFCN-scheme $O(\Delta t^2)$

 $t_1, t_2 \rightarrow t_3$: LFCN-scheme O (Δt^2)

Discussion

ABCN-scheme:

- + works well for diffusion dominated problems for the whole range of discretization ratios investigated $(0.2 \le \lambda \le 2)$
- difficulties may arise due to numerical stability for more convection dominated problems

LFCN-scheme:

- + superior numerical stability
- tendency towards $2\Delta t$ oscillations in case of low $Pe_{\Delta x}$ and $\lambda > 1$

TURBIT: $\lambda \le 0.5$

Implementation of both schemes

Realisation in TURBIT and practical experience

- semi-implicit time integration
 - ⇒ set of linear equations
- solution method:

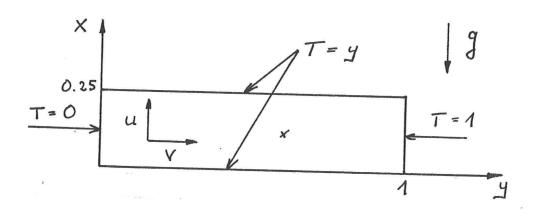
modified direct FFT-based Poisson solver

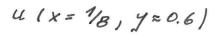
additional CPU-time per time-plane:

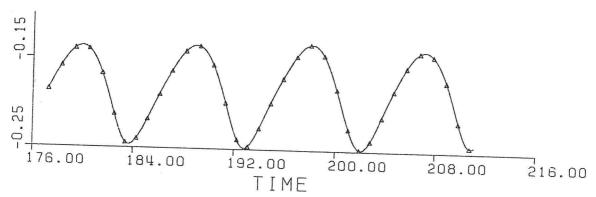
10 - 20% compared to the fully explicit scheme

increase of the time step width:

$$\frac{\Delta t_{impl}}{\Delta t_{expl}} \approx 20 - 50$$


• upper limit for Δt :


$$D = \frac{a \Delta t}{\Delta x} \leq D_{max} = 4$$


GAMM Benchmark Marseille 1988

"Numerical Simulation of Oscillatory Convection in Low-Pr Fluids"

2D, Pr = 0.015, Gr = 40000

	TURBIT (semi-implicit LFCN)	TURBIT (semi-implicit ABCN)	TURBIT (explizit [1])	Reference-Code [10]	Code (time integration scheme)
	50-4-102	30-4-64	30-4-64	81·321	grid
,	4.2·10-3	9.8·10-3	2.6·10-4		Δt
	103.4	228.1	72.1	1	tmax
	217 VP 400	90 VP 400	1089 VP 50	,	CPU-time [min]
	1.026	0.991	0.987	1.093	U* _{max}
×	21.86	22.00	22.35	21.76	-

Conclusions

DNS of natural convection in liquid metals fully explicit time integration:

- strong restriction of Δt

implicit treatment of thermal diffusion terms:

- substantially increase of Δt
- no loss of physically relevant information

Analysis of semi-implicit schemes:

$$\lambda = \Delta t / \Delta x < 1$$
 $\lambda > 1$

ABCN-scheme:

-

+ +

LFCN-scheme:

+ +

(2 Δ t oscillations)

in practice:

time step increase: $\Delta t_{impl.}/\Delta t_{expl.} \le 50$

 \Longrightarrow

DNS of turbulent convection in liquid metals with justifiable computational expense