Turbulent heat flux balance for natural convection in air and sodium analysed by direct numerical simulations

M. Wörner, G. Grötzbach

Kernforschungszentrum Karlsruhe Institut für Reaktorsicherheit 76021 Karlsruhe Germany

Introduction

Motivation
 turbulent heat transfer in buoyant flows

k-e turbulence model

$$\overline{u_i'T'} = -\kappa_t \frac{\partial \overline{T}}{\partial x_i}, \quad \kappa_t = \frac{v_t}{Pr_t}$$

- inadequate for buoyant flows

full differential models for $\overline{u_i'T'}$

- closure of unknown correlations

Objective

- detailed analysis of all terms in ui'T'-equation
- turbulent natural convection in sodium and air
- evaluation of direct simulation results

Rayleigh-Bénard convection

geometry

- dimensionless numbers
 - Rayleigh-number:

$$Ra = \frac{g\beta \left(T_{W1} - T_{W2}\right)D^3}{v \kappa}$$

- Prandtl-number: $Pr = v/\kappa$ air: Pr = 0.71, sodium: Pr = 0.006

- Grashof number: Gr = Ra/Pr

Direct simulation method

- full conservation equations for
 - mass
 - momentum
 - energy
- three-dimensional, time-dependent
- resolve all scales
 - \rightarrow no model assumptions no parameters

Computer code TURBIT

- finite volume method
- spatial discretization
 - finite differences
 - staggered grid
- time integration
 - momentum equation
 explicit Euler Leapfrog scheme
 projection method of Chorin
 - thermal energy equation
 semi-implicit Leapfrog-Crank-Nicholson
 scheme
- verified for natural and forced convection in various fluids

Case specifications

Fluid	Ra	Gr	grid
air	630,000	$0.9 \cdot 10^6$	$200 \cdot 200 \cdot 39$
sodium	24,000	$4\cdot10^6$	$250 \cdot 250 \cdot 39$

boundary conditions:

- periodic in horizontal direction $(X_{1,2} = 8)$
- walls: no slip condition constant wall temperatures

• initial conditions

- final data of air / sodium simulations with lower Ra

Evaluated results

• mean temperature

vertical turbulent heat flux

Transport equation for u₃'T'

- turbulent Rayleigh-Bénard convection
 - no mean velocity $\overline{u_i} = 0$
 - no gradients in horizontal directions

$$0 = \underbrace{-u_3^{'2}}_{\partial x_3} \frac{\partial \overline{T}}{\partial x_3} + \overline{T^{'2}}_{\partial x_3}$$

$$-\frac{\partial}{\partial x_3} \left(\frac{1}{u_3'^2 T'} + p'T' - \frac{1}{Pr\sqrt{Gr}} u_3' \frac{\partial T'}{\partial x_3} - \frac{1}{\sqrt{Gr}} T' \frac{\partial u_3'}{\partial x_3} \right)$$

$$-\frac{1}{\sqrt{Gr}}\left(1+\frac{1}{Pr}\right)\frac{\partial u_3'}{\partial x_i}\cdot\frac{\partial T'}{\partial x_i}$$

$$+\frac{p'}{\partial x_3}$$

Turbulent heat flux budget

• air (Pr = 0.71)

• sodium (Pr = 0.006)

Analysis of diffusion of u_3 'T'

$$-\frac{\partial}{\partial x_{3}}\left(\begin{array}{c} \overline{u_{3}'^{2}T'} + \overline{p'T'} - \frac{1}{Pr\sqrt{Gr}} \overline{u_{3}'} \frac{\partial T'}{\partial x_{3}} - \frac{1}{\sqrt{Gr}} \overline{T'} \frac{\partial u_{3}'}{\partial x_{3}} \\ \end{array}\right)$$

air

Conclusions

- Direct numerical simulation
 - turbulent Rayleigh-Bénard convection
 - air and sodium
- Balance of vertical turbulent heat flux
 - no local equilibrium $P \neq PS$
 - molecular destruction is important sink
 - redistribution of $\overline{u_3'T'}$ by diffusion
 - turbulent diffusion mainly due to p'T'
- Standard turbulence models
 - neglect pressure diffusion
 - neglect molecular destruction