Analysis of the transport equation of temperature variance dissipation rate by direct numerical simulation data of natural convection

M. Wörner, G. Grötzbach Forschungszentrum Karlsruhe Institut für Reaktorsicherheit Postfach 3620, D-76021 Karlsruhe Germany

May 28, 1996

3rd International Symposium on Engineering Turbulence Modelling and Measurements Heraklion-Crete, Greece May 27-29, 1996

Introduction

Statistical modelling of turbulent buoyant flows

Closure assumptions are based on

- ullet mechanical turbulence time scale $~ au=rac{k}{arepsilon}$
- ullet thermal turbulence time scale $au_{ heta} = rac{\overline{T'^2}/2}{arepsilon_T}$

$$k-arepsilon-\overline{T'^2}$$
 - Model

- ullet au calculated from transport equations for k and arepsilon
- τ_{θ} calculated from
 - transport equation for $\overline{T'^2}$
 - prescribed constant time scale ratio $R= au_{ heta}/ au$
- ullet shortcomings: $R \neq \text{const.}$, but depends on
 - Prandtl number of fluid
 - importance of buoyancy
 - turbulence level
 - type of thermal boundary conditions
- \Rightarrow need to solve transport equation for $arepsilon_T$

Objective

Analytical transport equation for $\varepsilon_T = \kappa \, \overline{\frac{\partial T'}{\partial x_j} \, \frac{\partial T'}{\partial x_j}}$

$$\begin{split} \frac{D\varepsilon_{T}}{Dt} &= -2\kappa \frac{\overline{\partial T'}}{\partial x_{j}} \frac{\partial u'_{l}}{\partial x_{j}} \frac{\partial \overline{T}}{\partial x_{l}} - 2\kappa \overline{u'_{l}} \frac{\overline{\partial T'}}{\partial x_{j}} \frac{\partial^{2} \overline{T}}{\partial x_{l} \partial x_{j}} \\ &- 2\kappa \overline{\frac{\partial T'}{\partial x_{j}} \frac{\partial T'}{\partial x_{l}} \frac{\partial \overline{u}_{l}}{\partial x_{j}}} - 2\kappa \overline{\frac{\partial T'}{\partial x_{j}} \frac{\partial u'_{l}}{\partial x_{j}} \frac{\partial T'}{\partial x_{l}}} \\ &- 2\kappa^{2} \overline{\left(\frac{\partial^{2} T'}{\partial x_{j} \partial x_{l}}\right)^{2}} - \frac{\partial}{\partial x_{l}} \left(\overline{\varepsilon'_{T} u'_{l}} - \kappa \frac{\partial \varepsilon_{T}}{\partial x_{l}}\right) \end{split}$$

- unknown correlations need to be modelled
- no experimental information about ε_T -equation

Present contribution:

Use Direct Numerical Simulation data of turbulent natural convection to

- investigate relevance of different terms
- investigate performance of model assumptions

Physical Model

Rayleigh-Bénard convection:

Natural convection in fluid layer heated from below

Dimensionless numbers:

Rayleigh number

$$Ra = \frac{g\beta \Delta T_{Wall} D^3}{\nu \kappa}$$

- ullet Prandtl number $Pr=
 u/\kappa$
 - here: air Pr = 0.71, sodium Pr = 0.006
- ullet Grashof number Gr=Ra/Pr
- Boussinesq number $Bo = Ra \cdot Pr$

Numerical Simulations

Governing equations (dimensionless)

$$\frac{\partial u_j}{\partial x_j} = 0$$

$$\frac{\partial u_i}{\partial t} + \frac{\partial (u_i u_j)}{\partial x_j} = -\frac{\partial p}{\partial x_i} + \frac{1}{\sqrt{Gr}} \frac{\partial^2 u_i}{\partial x_j \partial x_j} - (T_{ref} - T)\delta_{i3}$$

$$\frac{\partial T}{\partial t} + \frac{\partial (T u_j)}{\partial x_j} = \frac{1}{\sqrt{Bo}} \frac{\partial^2 T}{\partial x_j \partial x_j}$$

- Direct Numerical Simulation (DNS) ⇒ use spatial discretization which resolves all scales of turbulence
- Computer code TURBIT (Finite Volume Method)
- Parameter and grid data of simulations

	air	sodium
\overline{Pr}	0.71	0.006
Ra	630,000	24,000
Bo	447,300	144
Gr	887,324	4,000,000
$X_{1,2}$	7.92	8.0
$N_{1,2}$	200	250
N_3	49	49

Results (\square =air, \triangle =sodium)¹

 \bullet Vertical profile of mean temperature \overline{T}

ullet Vertical profile of $arepsilon_T=rac{1}{\sqrt{Bo}}\overline{rac{\partial T'}{\partial x_j}}\overline{rac{\partial T'}{\partial x_j}}$

 $^{^{1}}$ overbar denotes ensemble and time averaging of quantity

Transport equation for ε_T

$$ullet$$
 here: $\overline{u_3}=0$, $\frac{\partial \overline{\phi}}{\partial x_{1,2}}=0$ \Rightarrow

$$\begin{split} \frac{\partial \varepsilon_{T}}{\partial t} &= \underbrace{-\frac{2}{\sqrt{Bo}} \, \overline{\frac{\partial T'}{\partial x_{j}} \, \overline{\frac{\partial u_{3}'}{\partial x_{j}}} \, \overline{\frac{\partial T}{\partial x_{3}}}}_{P_{\varepsilon_{T}}^{1}} - \underbrace{\frac{2}{\sqrt{Bo}} \, \overline{u_{3}'} \, \overline{\frac{\partial T'}{\partial x_{3}}} \, \overline{\frac{\partial^{2}T}{\partial x_{3}\partial x_{3}}}}_{P_{\varepsilon_{T}}^{2}} \\ &= \underbrace{-\frac{2}{\sqrt{Bo}} \, \overline{\frac{\partial T'}{\partial x_{l}} \, \overline{\frac{\partial T'}{\partial x_{3}}} \, \overline{\frac{\partial u_{l}}{\partial x_{3}}}}_{P_{\varepsilon_{T}}^{2}} - \underbrace{\frac{2}{\sqrt{Bo}} \, \overline{\frac{\partial T'}{\partial x_{j}} \, \overline{\frac{\partial u_{l}'}{\partial x_{j}} \, \overline{\frac{\partial T'}{\partial x_{l}}}}_{P_{\varepsilon_{T}}^{2}} \\ &= \underbrace{-\frac{2}{Bo} \, \overline{\left(\frac{\partial^{2}T'}{\partial x_{j}\partial x_{l}}\right)^{2}}}_{\gamma_{\varepsilon_{T}}} - \underbrace{\frac{\partial}{\partial x_{3}} \left(\overline{\varepsilon_{T}'u_{3}'} - \frac{1}{\sqrt{Bo}} \, \overline{\frac{\partial \varepsilon_{T}}{\partial x_{3}}}\right)}_{D_{\varepsilon_{T}} = D_{\varepsilon_{T}, t} + D_{\varepsilon_{T}, m}} \end{split}$$

 $P^1_{arepsilon_T}, P^2_{arepsilon_T} =$ generation by mean temperature field $P^3_{arepsilon_T} =$ generation by mean velocity field $P^4_{arepsilon_T} =$ generation by fine scale turbulence interaction $\gamma_{arepsilon_T} =$ destruction by fine scale turbulence interaction $D_{arepsilon_T} =$ turbulent and molecular diffusion

Budget of ε_T

• air (Bo = 447, 300)

 P_{ε_T} (\square), γ_{ε_T} (+), D_{ε_T} (\triangle), balance difference (- - -)

Generation of ε_T

• air (Bo = 447,300)

• sodium (Bo = 144)

Model for generation/destruction terms ¹

$$P_{\varepsilon_{T}}^{1} + P_{\varepsilon_{T}}^{3} + P_{\varepsilon_{T}}^{4} + \gamma_{\varepsilon_{T}} = \underbrace{C_{P1} \frac{\varepsilon_{T}}{T'^{2}} P_{T}}_{M_{1}} + \underbrace{C_{P2} \frac{\varepsilon_{T}}{k} P_{k}}_{M_{2}}$$
$$-C_{D1} \underbrace{\frac{\varepsilon_{T}}{T'^{2}}}_{M_{3}} - C_{D2} \underbrace{\frac{\varepsilon \varepsilon_{T}}{k}}_{M_{4}}$$

where
$$P_T=-\overline{u_j'T'}\cdot \frac{\partial \overline{T}}{\partial x_j}$$
 , $P_k=-\overline{u_i'u_j'}\cdot \frac{\partial \overline{u_i}}{\partial x_j}$

• results for air ²

$$P_{\varepsilon_T}^1 + P_{\varepsilon_T}^3 + P_{\varepsilon_T}^4 + \gamma_{\varepsilon_T}(\square), M_1 + M_2 + M_3 + M_4(\triangle)$$

$${}^{2}C_{P1} = 1.8, C_{P2} = 0.72, C_{D1} = 2.2, C_{D2} = 0.8$$

¹Nagano & Kim, J. Heat Transfer, **110** (1988) 583

Profiles of model terms $M_{1,2,3,4}$

• air (Bo = 447, 300)

• sodium (Bo = 144)

 $M_1(\square), M_2(\circ), M_3(\triangle), M_4(+)$

Models for turbulent diffusion of ε_T

$$\overline{\varepsilon_T' u_i'} = -C_S \frac{k}{\varepsilon} \overline{u_i' u_j'} \frac{\partial \varepsilon_T}{\partial x_i}, \quad C_S = 0.22 \quad (1)$$

$$\overline{\varepsilon_T' u_i'} = -C_{DD} \frac{k^2}{\varepsilon} \frac{\partial \varepsilon_T}{\partial x_i}$$
, $C_{DD} = 0.03$ (2)

ullet Evaluated profile of $\overline{arepsilon_T' u_3'}$ for air

ullet Profile of $\overline{\varepsilon_T' u_3'}$ predicted by model 1 (\Box) and 2 (\triangle)

Conclusions

- Direct Numerical Simulation data of turbulent natural convection
 - air Gr = 887,324, Bo = 447,300
 - sodium Gr = 4,000,000, Bo = 144
- Budget of ε_T
 - almost local equilibrium $P_{\varepsilon_T} \approx \gamma_{\varepsilon_T}$
 - high Boussinesq number
 - ⇒ generation/destruction due to fine scale turbulence interaction are dominant terms
 - $-P_{\varepsilon_T}^2$ changes sign
- Modelling of ε_T -equation
 - model for generation/destruction terms performs very well at high Bo
 - gradient diffusion model is inadequate