Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Institut für Reaktorsicherheit

# Volume-of-fluid method based numerical simulations of gas-liquid flow in confined geometries

M. Wörner, B.E. Ghidersa, M. Ilić, D.G. Cacuci

Research Center Karlsruhe, Institute for Reactor Safety, Germany

IAHR/SHF Workshop on

"Advances in the Modelling Methodologies of Two-Phase Flows" Lyons, France, November 24 – 26, 2004

# Merits of DNS of gas-liquid flow

- Allows to get deeper insight into flow mechanisms and thus fosters physical understanding

   Here: <u>bubble train flow in square mini-channel</u>
- Provides a complete database of the 3D velocity and pressure field and phase distribution with high spatial and temporal resolution
  - Here: <u>analysis of liquid phase turbulence kinetic</u> <u>energy equation for bubble swarm flow</u>

# In-house code TURBIT-VOF

- Volume-of fluid method for interface tracking
  - Interface is locally approximated by plane (PLIC method)
- Governing equations for two incompressible fluids
  - Single field momentum equation with surface tension term
  - Zero divergence condition for center-of-mass velocity
  - Advection equation for liquid volumetric fraction f
- Solution strategy
  - Projection method resulting in pressure Poisson equation
  - Explicit third order Runge-Kutta time integration scheme
- Discretization in space
  - Finite volume formulation for regular staggered grid
  - Second order central difference approximations

## Multi-phase micro process engineering

- Miniaturized devices offer certain advantages
  - High interfacial area per unit volume
    - $\Rightarrow$  Enhanced heat and mass transfer
  - Defined interface geometry
    - $\Rightarrow$  Numbering up instead of scaling up
  - Example: Micro bubble column\*



- Flow pattern in single channel: bubble train flow
  - Bubbles of identical shape move with same velocity
  - Flow is fully characterized by a single "unit cell" of length L<sub>uc</sub>



# Numerical set up

- Square vertical channel with cross section 2 mm  $\times$  2 mm
- Consideration of <u>one</u> flow unit cell only
- Account for influence of trailing/leading unit cells by <u>periodic boundary conditions</u> in axial direction
- Length of flow unit cell,  $L_{uc}$ , is input parameter
- Flow is driven in vertical direction (y) by specified axial pressure gradient and buoyancy

# **Physical parameters**

• Fluid properties Factor 10 higher than  $\rho$  and  $\mu$  of air

| $ ho_{l}$             | $ ho_{g}$              | $\mu_l$    | $\mu_g$                    | σ         |
|-----------------------|------------------------|------------|----------------------------|-----------|
| 957 kg/m <sup>3</sup> | 11.7 kg/m <sup>3</sup> | 0.048 Pa s | 1.84×10 <sup>-4</sup> Pa s | 0.022 N/m |

• Initial bubble shapes (void fraction  $\varepsilon = 33\%$ )



Simulations are started from gas and liquid at rest

## **Computational parameters**

| Case | $L_{ m uc}$ / W | Domain                | Grid                     | Time steps |
|------|-----------------|-----------------------|--------------------------|------------|
| A1   | 1               | 1 × 1 × 1             | $48 \times 48 \times 48$ | 24,000     |
| A2   | 1               | 1 × 1 × 1             | $64 \times 64 \times 64$ | 60,000     |
| В    | 1.25            | 1 × 1.25 × 1          | $48 \times 60 \times 48$ | 24,000     |
| С    | 1.5             | 1 × 1.5 × 1           | $48\times72\times48$     | 26,000     |
| D    | 1.75            | 1 × 1.75 × 1          | $48 \times 84 \times 48$ | 26,000     |
| Е    | 2               | $1 \times 2 \times 1$ | $48 \times 96 \times 48$ | 28,000     |

Results on both grids show only slight differences

#### Time history of mean velocities



Steady state values of bubble velocity  $U_B$  and mean liquid velocity  $U_l$ increase with increasing length of the flow unit cell

# **Bubble shape and velocity field**

#### Velocity field in vertical mid-plane

Right half: frame of reference moving with bubble Left half: fixed frame of reference







# **Comparison with experiment**

| Non-dimensional bubble diameter                                                                         |                     |                 | r Relativ     | Relative velocity Non-dimensional U <sub>B</sub> |                   |  |
|---------------------------------------------------------------------------------------------------------|---------------------|-----------------|---------------|--------------------------------------------------|-------------------|--|
| Case                                                                                                    | L <sub>uc</sub> / W | Ca <sub>B</sub> | $D_B/W$       | $(U_B - J_{total})/U_B$                          | $U_{B}/J_{total}$ |  |
| Α                                                                                                       | 1                   | 0.204           | 0.81          | 1.80                                             | 0.445             |  |
| В                                                                                                       | 1.25                | 0.207           | 0.84          | 1.75                                             | 0.430             |  |
| С                                                                                                       | 1.5                 | 0.215           | 0.85          | 1.75                                             | 0.430             |  |
| D                                                                                                       | 1.75                | 0.238           | 0.85          | 1.78                                             | 0.438             |  |
| Е                                                                                                       | 2                   | 0.253           | 0.85          | 1.8                                              | 0.445             |  |
| Experimental data <sup>*</sup> correlated in terms of capillary number $Ca_B \equiv \mu_U U_B / \sigma$ |                     |                 |               |                                                  |                   |  |
| 0.2 – 0.25                                                                                              |                     | 0.82 – 0.86     | 5 1.68 – 1.84 | 0.435 – 0.475                                    |                   |  |
|                                                                                                         |                     |                 | $\checkmark$  | $\checkmark$                                     | $\checkmark$      |  |

### **D**<sub>B</sub> measured along channel diagonal<sup>\*</sup>



## **Bubble diameter in simulations**



 $D_B/W$  decreases with increase of  $Ca_B$ <u>only</u> if the bubble length  $L_B$  is larger than about 1.2 the channel width (this is the case in the experiments by Thulasidas et al.)

### **D**<sub>B</sub> measured along channel diagonal<sup>\*</sup>



#### **Influence of capillary number** top row: Ca = 0.205, bottom row: Ca = 0.043



## **Turbulence modeling for bubbly flow**

- No generally accepted model available in literature
- Analytical turbulence kinetic energy eq. for liquid phase\*:

$$\frac{\partial}{\partial t}(\alpha_{L}k_{L}) + \nabla \cdot \left(\alpha_{L}k_{L}\overline{\mathbf{u}_{L}}\right) = \frac{1}{Re_{ref}} \nabla \cdot \left(\alpha_{L}\overline{\mathbb{T}_{L}^{'} \cdot \mathbf{u}_{L}^{'}}\right) - \nabla \cdot \left[\alpha_{L}\left(\overline{p_{L}^{'}\mathbf{u}_{L}^{'}} + \frac{1}{2}\overline{(\mathbf{u}_{L}^{'} \cdot \mathbf{u}_{L}^{'})\mathbf{u}_{L}^{'}}\right)\right]$$

$$\frac{\partial}{\partial t}(\alpha_{L}k_{L}) + \nabla \cdot \left[\alpha_{L}k_{L}\overline{\mathbf{u}_{L}^{'} \cdot \mathbf{u}_{L}^{'}}\right] + \frac{\partial}{\partial t}\left[\alpha_{L}\overline{\mathbf{u}_{L}^{'} \cdot \mathbf{u}_{L}^{'}\right] + \frac{\partial}{\partial t}\left[\alpha_{L}\overline{\mathbf{u}_{L}^{'} \cdot \mathbf{u}_{L}^{'} - \alpha_{L}\overline{\mathbf{u}_{L}^{'}}\right] + \frac{\partial}{\partial t}\left[\alpha_{L}\overline{\mathbf{u}_{L}^{'} \cdot \mathbf{u}_{L}^{'}}\right] + \frac{\partial}{\partial t}\left[\alpha_{L}\overline{\mathbf{u}_{L}^{'} \cdot \mathbf{u}_{L}^{'}}\right] + \frac{\partial}{\partial t}\left[\alpha_{L}\overline{\mathbf{u}_{L}^{'} \cdot \mathbf{u}_{L}^{'} - \alpha_{L}\overline{\mathbf{u}_{L}^{'} \cdot \mathbf{u}_{L}^{'}}\right] + \frac{\partial}{\partial t}\left[\alpha_{L}\overline{\mathbf{u}_{L}^{'} - \alpha_{L}\overline{\mathbf{u}_{L}^{'} -$$

# Simulation of bubble swarm flow

X<sub>1</sub> ↑

- Simulation mimics section of a flat bubble column
  - periodic b.c. in vertical and span-wise directions
  - rigid lateral walls
- Domain:  $1 \times 1 \times 1$ , Grid:  $64 \times 64 \times 64$
- Eight bubbles with  $d_{\rm B}/W = 0.25$  ( $\varepsilon = 6.5\%$ )
- Phase density ratio: 0.5
- Phase viscosity ratio: 1
- Bubble Eötvös number: 3.065
- Morton number:  $3.06 \cdot 10^{-6}$



### **Flow visualization**





view from top

 $X_2$ 

### Wall-normal profiles of mean quantities







## Budget of k<sub>L</sub>-equation



## Models for interfacial term

| Reference                                | Work of drag force, $W_{\rm D}^{*}$                                                                                                                                                                                                                                                            | Other contributions, $W_{\rm ND}^{*}$                                                                                                                                                                                                           |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Kataoka & Serizawa (1997)<br>Model 1, KS | $0.075 f_{\rm w} \left[ \frac{3}{4} \alpha_{\rm G} \frac{C_{\rm D}}{d_{\rm B}^*} U_{\rm T}^{*3} \right]$                                                                                                                                                                                       | $-\alpha_{\rm G}\frac{k_{\rm L}^{*3/2}}{d_{\rm B}^*}$                                                                                                                                                                                           |
| Hill et al. (1995)<br>Model 2, HWGI      | $\frac{3}{4} \frac{\alpha_{\rm G} C_{\rm D}}{d_{\rm B}^*} \left  \overline{\mathbf{u}_{\rm R}^*} \right  \left\{ \frac{\mu_{\rm L}^* \overline{\mathbf{u}_{\rm R}^*} \cdot \nabla^* \alpha_{\rm G}}{0.3 \rho_{\rm L}^* \alpha_{\rm L} \alpha_{\rm G}} + 2k_{\rm L}^* (C_{\rm t} - 1) \right\}$ | None                                                                                                                                                                                                                                            |
| Lahey & Drew (2000)<br>Model 3, LD       | $\frac{1}{4}\alpha_{\rm L}\left(1+C_{\rm D}^{4/3}\right)\alpha_{\rm G}\frac{\left \overline{\mathbf{u}_{\rm R}^*}\right ^3}{d_{\rm B}^*}$                                                                                                                                                      | None                                                                                                                                                                                                                                            |
| Morel (1997)<br>Model 4, M               | $\frac{3}{4} \alpha_{\rm G} \frac{C_{\rm D}}{d_{\rm B}^*} \left  \overline{\mathbf{u}_{\rm R}^*} \right ^3$                                                                                                                                                                                    | $\frac{1+2\alpha_{\rm G}}{2\alpha_{\rm L}}\alpha_{\rm G}\left\{\frac{{\rm D}_{\rm G}\overline{\mathbf{u}_{\rm G}^*}}{{\rm D}t^*}-\frac{{\rm D}_{\rm L}\overline{\mathbf{u}_{\rm L}^*}}{{\rm D}t^*}\right\}\cdot\overline{\mathbf{u}_{\rm R}^*}$ |
| Pfleger & Becker (2001)<br>Model 5, PB   | $1.44\alpha_{\rm L} \left[ \frac{3}{4} \alpha_{\rm G} \frac{C_{\rm D}}{d_{\rm B}^*} \left  \overline{\mathbf{u}_{\rm R}^*} \right ^3 \right]$                                                                                                                                                  | None                                                                                                                                                                                                                                            |

#### Performance of models for interfacial term



# Conclusions

- Numerical simulation of bubble train flow
  - Square vertical mini-channel (2 mm × 2 mm)
  - Good agreement with experimental data from literature
  - Investigation on influence of length of flow unit cell
  - Strong influence of capillary number
- Liquid turbulence kinetic energy equation for bubbly flow
  - production mainly by interfacial terms
  - no local equilibrium between interfacial production and dissipation
      $\Rightarrow$  significant redistribution by diffusion
  - interfacial terms can well be modeled by work of drag forces