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Merits of DNS of gas-liquid flow

• Allows to get deeper insight into flow mechanisms 

and thus fosters physical understanding

– Here: bubble train flow in square mini-channel

• Provides a complete database of the 3D velocity 

and pressure field and phase distribution with high 

spatial and temporal resolution

– Here: analysis of liquid phase turbulence kinetic 

energy equation for bubble swarm flow



3

In-house code TURBIT-VOF

• Volume-of fluid method for interface tracking
– Interface is locally approximated by plane (PLIC method)

• Governing equations for two incompressible fluids
– Single field momentum equation with surface tension term

– Zero divergence condition for center-of-mass velocity

– Advection equation for liquid volumetric fraction f

• Solution strategy
– Projection method resulting in pressure Poisson equation 

– Explicit third order Runge-Kutta time integration scheme

• Discretization in space
– Finite volume formulation for regular staggered grid

– Second order central difference approximations
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Multi-phase micro process engineering

• Miniaturized devices offer certain advantages

– High interfacial area per unit volume

⇒ Enhanced heat and mass transfer

– Defined interface geometry 

⇒ Numbering up instead of scaling up

– Example: Micro bubble column*

• Flow pattern in single channel: bubble train flow

– Bubbles of identical shape move 

with same velocity

– Flow is fully characterized by 

a single “unit cell” of length Luc

Luc
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Numerical set up 

• Square vertical channel with cross section 2 mm × 2 mm

• Consideration of one flow unit cell only

• Account for influence of trailing/leading unit cells 

by periodic boundary conditions in axial direction

• Length of flow unit cell, Luc, is input parameter

• Flow is driven in vertical direction (y) by specified axial 

pressure gradient and buoyancy
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• Fluid properties

• Initial bubble shapes (void fraction ε = 33%)

• Simulations are started from gas and liquid at rest

Physical parameters 

ρl ρg µl µg σ

957 kg/m3 11.7 kg/m3 0.048 Pa s 1.84×10-4 Pa s 0.022 N/m

Factor 10 higher than ρ and µ of air
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Computational parameters 

Case Luc / W Domain Grid Time steps

A1 1 1 × 1 × 1 48 × 48 × 48 24,000

A2 1 1 × 1 × 1 64 × 64 × 64 60,000

B 1.25 1 × 1.25 × 1 48 × 60 × 48 24,000

C 1.5 1 × 1.5 × 1 48 × 72 × 48 26,000

D 1.75 1 × 1.75 × 1 48 × 84 × 48 26,000

E 2 1 × 2 × 1 48 × 96 × 48 28,000

Results on both grids show only slight differences 



8

Time history of mean velocities
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Bubble shape and velocity field 

Velocity field in vertical mid-plane

Right half: frame of reference moving with bubble 

Left half: fixed frame of reference
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Comparison with experiment

Case Luc / W CaB DB / W (UB–Jtotal)/UB UB/Jtotal

A 1 0.204 0.81 1.80 0.445

B 1.25 0.207 0.84 1.75 0.430

C 1.5 0.215 0.85 1.75 0.430

D 1.75 0.238 0.85 1.78 0.438

E 2 0.253 0.85 1.8 0.445

Experimental data* correlated in terms of capillary number CaB ≡ µlUB/σ

0.2 − 0.25 0.82 − 0.86 1.68 − 1.84 0.435 − 0.475

� � �

Non-dimensional bubble diameter Relative velocity Non-dimensional UB



11* Thulasidas, Abraham, Cerro, Chem. Eng. Science 50 (1995) 183-199

D
B

measured along channel diagonal*

Non-axisymmetric

bubble shape

Axisymmetric

bubble shape

CaB range in simulations

⇒ DB / W decreases with increase of CaB

DB / W

CaB

DB

DB W



12* Thulasidas, Abraham, Cerro, Chem. Eng. Science 50 (1995) 183-199

Bubble diameter in simulations

DB / W decreases with increase of CaB only if the

bubble length LB is larger than about 1.2 the channel width

(this is the case in the experiments by Thulasidas et al.) 
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Influence of capillary number 
top row: Ca = 0.205, bottom row: Ca = 0.043
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Turbulence modeling for bubbly flow

• No generally accepted model available in literature

• Analytical turbulence kinetic energy eq. for liquid phase*:
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Simulation of bubble swarm flow

• Simulation mimics section of a flat bubble column

– periodic b.c. in vertical and span-wise directions

– rigid lateral walls

• Domain: 1 × 1 × 1, Grid: 64 × 64 × 64

• Eight bubbles with dB/W = 0.25  ( ε = 6.5%) 

• Phase density ratio: 0.5

• Phase viscosity ratio: 1

• Bubble Eötvös number: 3.065

• Morton number: 3.06·10-6

x3

x1 x2
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Flow visualization

view from side view from top
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Plane 
averaging: 1 2
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Budget of k
L
-equation
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Models for interfacial term
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Performance of models for interfacial term
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Conclusions 

• Numerical simulation of bubble train flow

– Square vertical mini-channel (2 mm × 2 mm)

– Good agreement with experimental data from literature

– Investigation on influence of length of flow unit cell

– Strong influence of capillary number

• Liquid turbulence kinetic energy equation for bubbly flow

– production mainly by interfacial terms

– no local equilibrium between interfacial production and dissipation

⇒ significant redistribution by diffusion 

– interfacial terms can well be modeled by work of drag forces


