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• Introduction and motivation

• Bubble train flow (BTF)

– Computational setup

– Simulation results and validation

• Residence time distribution (RTD)

– Procedure to evaluate RTD

– Results for RTD of bubble train flow

– Model for the RTD

• Conclusions and outlook 

Outline
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Gas-liquid flow in narrow channels 

with rectangular cross section

• Examples for devices

– Monolithic reactors with

catalytic walls

– Micro-channel network (MIT)

– Micro bubble column (IMM)

• Advantages

– Enhanced mixing in 

liquid slug

– Reduced axial dispersion

– Efficient mass transfer 

across interface
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Motivation

• Experimental investigation of these two-phase flows 

is difficult because of small dimensions and often 

yield integral data only

• Goal:

– Perform direct numerical simulation (DNS) of bubble 

train flow in a single channel to resolve local flow 

phenomena 

– Use DNS results to evaluate residence time 

distribution for liquid phase
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• Elongated bubble which fill 

almost the entire channel cross 

section (Taylor bubbles)

• Bubbles have identical shape and 

move with same axial velocity 

• The flow is fully described by a  

unit cell of length Luc consisting 

of one bubble and one liquid slug

Flow characterization

Luc
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Numerical set up 

• In-house code TURBIT-VOF
– Navier-Stokes eq. with surface tension term for two incompressible fluids

– Volume-of-fluid method (interface is locally approximated as plane)

• Consider one flow unit cell only (one bubble, one slug)

• Account for influence of trailing/leading unit cells 

by periodic boundary conditions in axial direction

• Co-current upward vertical flow driven by specified pressure gradient

• Length of flow unit cell, Luc, is input parameter
– simulations for different values of Luc and fixed void fraction  = 33%

• Comparison with experiments of Thulasidas et al.*
– Air bubbles in silicon oil

– Square channel with 2mm  2mm cross section ( W = 2mm)
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Computational parameters 

Case Luc / W Domain Grid Time steps

A1 1 1  1  1 48  48  48 24,000

A2 1 1  1  1 64  64  64 60,000

B 1.25 1  1.25  1 48  60  48 24,000

C 1.5 1  1.5  1 48  72  48 26,000

D 1.75 1  1.75  1 48  84  48 26,000

E 2 1  2  1 48  96  48 28,000

Results on both grids show only slight differences 
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Case A2
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Computed bubble shape and velocity field 

for different values of Luc

Velocity field in vertical mid-plane

Right half: frame of reference moving with bubble 

Left half: fixed frame of reference



10* Thulasidas, Abraham, Cerro, Chem. Eng. Science 50 (1995) 183-199

Comparison with experiment

Case Luc / W CaB DB / W (UB–Jtotal)/UB UB/Jtotal

A 1 0.204 0.81 1.80 0.445

B 1.25 0.207 0.84 1.75 0.430

C 1.5 0.215 0.85 1.75 0.430

D 1.75 0.238 0.85 1.78 0.438

E 2 0.253 0.85 1.8 0.445

Experimental data* correlated in terms of capillary number CaB ≡ lUB/

0.2  0.25 0.82  0.86 1.68  1.84 0.435  0.475

  

Non-dimensional bubble diameter Relative velocity Non-dimensional UB
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Residence time distribution

• The residence time distribution (RTD) is an important 

measure for characterization of any chemical reactor

– The RTD influences yield and selectivity

• Common experimental method to determine RTD*

– Add tracer at reactor inlet as a pulse and measure the tracer 

concentration at the outlet
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Examples for RTD

• Problems for micro reactors

– Reaction volume is usually much smaller than the volume of inlet 

and the volume necessary to measure tracer at outlet

• Alternative: Determine RTD from DNS data
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Procedure to evaluate RTD from DNS data

• Use fully developed DNS results for a certain instant in time

• Introduce virtual particles in mesh cells entirely filled with liquid

– particle distance = 1 / nppul   (number of particles per unit length)

• Track particles in fixed frame of reference

– Problem: Velocity field in fixed frame of reference is unsteady

– But: steady velocity field in frame of reference moving with bubble

– Determine fluid velocity at instant particle position from its relative 
position to the bubble, which is virtually moved with velocity UB

• Store time the particle needs to travel an axial distance of Luc

• Normalize histogram for all particles to obtain two RTD curves

– E*: no special weighting of particle residence times 

– E: weighting of particle residence time by axial velocity at release
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RTD for single phase planar Poiseuille flow
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Compartment model
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Compartment model for case A
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Compartment model for case C
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Compartment model for case E
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Conclusions 

• Direct numerical simulation of bubble train flow (BTF)
– Square vertical mini-channel of width W = 2 mm

– Co-current vertical flow of air bubbles in silicon oil

– Good agreement with experimental data from literature

• Original procedure to evaluate the liquid phase RTD
– Introduction of mass-less particles into volume of liquid phase

– Tracking of particles and detecting time to travel distance Luc

– Evaluated RTD can be approximated by compartment model 
with plug flow reactor and stirred vessel in series

• Outlook
– Identifying better model for liquid RTD of unit cell (?)

– Determine RTD for traveling distance nuc · Luc (nuc = 2, 3, ...)

– Obtain RTD for arbitrary nuc by convolution of RTD for nuc = 1 (?)


