The Application of a Black-Box Solver with Error Estimate to Different Systems of PDEs

Torsten Adolph and Willi Schönauer

Forschungszentrum Karlsruhe Institute for Scientific Computing Karlsruhe, Germany

{torsten.adolph, willi.schoenauer}@iwr.fzk.de

http://www.fzk.de/iwr http://www.rz.uni-karlsruhe.de/rz/docs/FDEM/Literatur

Motivation

Numerical solution of non-linear systems of Partial Differential Equations (PDEs)

- Finite Difference Method (FDM)
- Finite Element Method (FEM)
- Finite Volume Method (FVM)

Finite Difference Element Method (FDEM)

Combination of advantages of FDM and FEM: FDM on unstructured FEM grid

Supported by: German Ministry of Research (BMBF) Research Alliance Fuel Cells of Baden-Wuerttemberg

Objectives

- Elliptic and parabolic non-linear systems of PDEs
- 2-D and 3-D with arbitrary geometry
- Arbitrary non-linear boundary conditions (BCs)
- Subdomains with different PDEs
- Robustness
- Black-box (PDEs/BCs and domain)
- Error estimate
- Order control/Mesh refinement
- Efficient parallelization (on distributed memory parallel computers)

Difference formulas of order q on unstructured grid

Discretization error estimate

e.g. for
$$u_x$$
: $u_x = u_{x,d,q} + ar{d}_{x,q} = u_{x,d,q+2} + ar{d}_{x,q+2}$
 $ightarrow d_{x,q} = u_{x,d,q+2} - u_{x,d,q} \left\{ + ar{d}_{x,q+2}
ight\}$

Error equation

$$Pu \equiv P(t,x,y,u,u_t,u_x,u_y,u_{xx},u_{yy},u_{xy})$$

Linearization by Newton-Raphson

Discretization with error estimates d_t , d_x , \ldots and linearization in d_t , d_x , \ldots

$$egin{array}{lll}
ightarrow \Delta u_d = & \Delta u_{Pu} + \Delta u_{D_t} + \Delta u_{D_x} + \Delta u_{D_y} + \Delta u_{D_{xy}} = & (ext{level of solution}) \ & = Q_d^{-1} \cdot \left[(Pu)_d \ + \ D_t \ + \ \{D_x \ + \ D_y \ + \ D_{xy}\}
ight] & (ext{level of equation}) \end{array}$$

Only apply Newton correction Δu_{Pu} :

$$ightarrow Q_d \cdot \Delta u_{Pu} = (Pu)_d$$
 (computed by LINSOL, Univ. of Karlsruhe)

Other errors for error control and error estimate

Academic Examples

Generate "test PDE" from original PDE for given solution $P\bar{u}$: $Pu=0 \Rightarrow Pu-P\bar{u}=0$

PDE system: $u_{xx}+u_{yy}+\omega_y-f_1=0$ $v_{xx}+v_{yy}-\omega_x-f_2=0$ $u\omega_x+v\omega_y-(\omega_{xx}+\omega_{yy})/Re-f_3=0, \ Re=1$

Boundary conditions: $u-g_1=0$, $v-g_2=0$, $\omega+u_y-v_x-g_3=0$

Test solution:Sugar loaf type function $\bar{u} = e^{-32(x^2+y^2)}$ Solution domain:Unit circle with 751 nodes, 1410 elementsSelf-adaptation:Mesh refinement and order control, tol=0.25%

	no. of	no. of	no. of ref.	no. of nodes with order		es r	global relat. error		sec. for
cycle	nodes	elem.	nodes	2	4	6	exact	estimated	cycle
1	751	1410	132	427	320	4	0.305E-01	0.280E-01	1.021
2	1332	2493	345	180	1144	8	0.109E-01	0.950E-02	3.604
3	2941	5469		360	2556	25	0.179E-02	0.174E-02	10.086

HP XC6000, Univ. of Karlsruhe, 1500 MHz Itanium2 core, 6000 MFLOPS peak, np=8 processors

Academic Examples (continued)

Numerical Simulation of PEM Fuel Cells

Domain of solution:	Gas diffusion	layer	(GDL)
---------------------	---------------	-------	-------

Variables: Molar flux densities of oxygen, water vapour and nitrogen in x- and y-direction, partial pressures for oxygen, water vapour and nitrogen, total pressure and current density

Numerical Simulation of PEM Fuel Cells (continued)

6 transport equations

$$\frac{\dot{n}_{o}^{x}}{DKn_{o}} + \frac{p_{w}\dot{n}_{o}^{x} - p_{o}\dot{n}_{w}^{x}}{D_{ow} \cdot p} + \frac{p_{n}\dot{n}_{o}^{x} - p_{o}\dot{n}_{n}^{x}}{D_{on} \cdot p} = -\frac{1}{RT}\frac{\partial p_{o}}{\partial x} + \frac{p_{o}}{RTp}\frac{\partial p}{\partial x} - \left[\frac{B_{o}}{DKn_{o}} + \frac{B_{o}p_{w}}{D_{ow} \cdot p}(1 - \frac{B_{w}}{B_{o}}) + \frac{B_{o}p_{n}}{D_{on} \cdot p}(1 - \frac{B_{n}}{B_{o}})\right]\frac{p_{o}}{RTp}\frac{\partial p}{\partial x}$$
$$B_{\nu} = B_{\nu}(p_{o}, p_{w}, p_{n}, p)$$

3 material balances

$$\frac{\partial \dot{n}_o^x}{\partial x} + \frac{\partial \dot{n}_o^y}{\partial y} = 0$$

condition for total pressure

$$p = p_o + p_w + p_n$$

Tafel equation for current density i on reaction layer

$$i = f_v i_0 \left(\frac{p_o}{p_o^{ref}}\right)^{\gamma} \exp\left[\frac{\alpha n F\left(U_0 - U_z - \frac{d_{mem}}{\kappa_{mem}}i\right)}{RT}\right]$$

i = 0 in the remainder (dummy variable)

Numerical Simulation of PEM Fuel Cells (continued)

Contour plot of molar flux density of water vapour in y-direction and its error (typical result)

Numerical Simulation of PEM Fuel Cells (continued)

Numerical Simulation of Solid Oxide Fuel Cells

Solution domain consists of 2 subdomains: Anode and gas channel

Dividing line, coupling conditions, different PDE systems

Variables: Flow velocities in x- and y-direction, mole fractions for methane, carbon monoxide, hydrogen, carbon dioxide and steam, and pressure

Nonlinear system of 8 PDEs

Rectangular grids: 80 imes 41 in anode and gas channel

Consistency order q=4

HP XC6000 with 8 processors

CPU time for master processor: 510 sec

Numerical Simulation of Solid Oxide Fuel Cells (continued)

Gas channel

4 species balances

$$-\left[\frac{\partial(p_K \cdot u_{x,K} \cdot Y_{CO,K})}{\partial x} + \frac{\partial(p_K \cdot u_{y,K} \cdot Y_{CO,K})}{\partial y}\right] + \frac{\partial\left(D_{CO,gas}\frac{\partial(p_K \cdot Y_{CO,K})}{\partial y}\right)}{\partial y} = 0$$

Equation of continuity

$$\frac{\partial(\rho_K \cdot u_{x,K})}{\partial x} + \frac{\partial(\rho_K \cdot u_{y,K})}{\partial y} = 0$$

2 Navier-Stokes equations

$$\rho_{K} \cdot \left(u_{x,K} \frac{\partial u_{x,K}}{\partial x} + u_{y,K} \frac{\partial u_{x,K}}{\partial y} \right) = -\frac{\partial p_{K}}{\partial x} + \frac{\partial}{\partial x} \left(\mu \left(2 \cdot \frac{\partial u_{x,K}}{\partial x} - \frac{2}{3} \cdot \left(\frac{\partial u_{x,K}}{\partial x} + \frac{\partial u_{y,K}}{\partial y} \right) \right) \right) + \frac{\partial}{\partial y} \left(\mu \left(\frac{\partial u_{x,K}}{\partial y} + \frac{\partial u_{y,K}}{\partial x} \right) \right)$$

Dalton's law

$$Y_3 + Y_4 + Y_5 + Y_6 + Y_7 = 1$$

Numerical Simulation of Solid Oxide Fuel Cells (continued)

<u>Anode</u>

5 species balances

$$-\left[\frac{\partial(p_A \cdot u_{x,A} \cdot Y_{CO,A})}{RT \partial x} + \frac{\partial(p_A \cdot u_{y,A} \cdot Y_{CO,A})}{RT \partial y}\right] + \frac{\partial\left(D_{CO,gas}^{eff} \frac{\partial(p_A \cdot Y_{CO,A})}{RT \partial y}\right)}{\partial y} + \frac{\partial\left(D_{CO,gas}^{eff} \frac{\partial(p_A \cdot Y_{CO,A})}{RT \partial x}\right)}{\partial x} + r_{CH_4} - r_s = 0$$

Darcy's law in x- and y-direction

$$\frac{\partial p_A}{\partial x} = -\frac{\mu}{k_p} u_{x,A}$$

Dalton's law

 $Y_3 + Y_4 + Y_5 + Y_6 + Y_7 = 1$

Numerical Simulation of Solid Oxide Fuel Cells (continued)

Mole fraction of carbon monoxide and its error for the anode

Fluid/Structure Interaction for a High Pressure Diesel Injection Pump

Solution domain consists of 3 subdomains: Housing, piston and lubrication gap Dividing lines, coupling conditions, different PDE systems Variables: displacements in z- and r-direction and stresses in housing and piston velocities in z- and r-direction and pressure in lubrication gap Nonlinear system of 6 PDEs in housing and piston **3 PDEs in gap** piston Rectangular grids: 401×81 in housing gap 401×641 in gap 401×40 in piston housing Consistency order q=2CPU time for master processor: 40 HP XC6000, 32 proc., Itanium2 1.5 GHz. **Quadrics interconnect:** 452.5 min cf. SGI Altix 4700 (LRZ Munich), 32 proc., ╎┽──0.0025 Itanium2 1.6 GHz. **NUMAlink:** 385.5 min 20

Torsten Adolph

Fluid/Structure Interaction for a High Pressure Diesel Injection Pump (continued)

Piston/Housing

3 elasticity equations in z-, φ -, r-direction

$\frac{1}{E} \left[\sigma_z - \sigma_{z,old} - \nu (\sigma_{\varphi} - \sigma_{\varphi,old}) - \nu (\sigma_r - \sigma_{r,old}) \right] - \frac{\partial w}{\partial z} = 0$

1 elasticity equation in rz-direction

$$\frac{1+\nu}{E}\left(\tau_{rz} - \tau_{rz,old}\right) - \frac{1}{2}\left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial r}\right) = 0$$

2 equilibrium equations

$$\frac{\partial \sigma_r}{\partial r} + \frac{\partial \tau_{rz}}{\partial z} + \frac{1}{r}(\sigma_r - \sigma_{\varphi}) = 0$$

Lubrication gap

2 Navier-Stokes equations

$$u\frac{\partial u}{\partial r} + w\frac{\partial u}{\partial z} = -\frac{1}{\rho}\frac{\partial p}{\partial r} + \frac{\eta}{\rho}\left(\frac{\partial^2 u}{\partial r^2} + \frac{1}{r}\frac{\partial u}{\partial r} - \frac{u}{r^2} + \frac{\partial^2 u}{\partial z^2}\right)$$

Equation of continuity

$$\frac{\partial u}{\partial r} + \frac{u}{r} + \frac{\partial w}{\partial z} = 0$$

Fluid/Structure Interaction for a High Pressure Diesel Injection Pump (continued)

Nested iterations for the solution process necessary

- exit if $p > p_{max}$

- exit if w_{max} does not change anymore

- exit if
$$p_{z=z_{max}}=0$$

- exit if $(Pu)_d$ small enough

Fluid/Structure Interaction for a High Pressure Diesel Injection Pump (continued)

Velocity w in z-direction for 2000 bar and its error

Volume flow: 2.65 cm³/s

Concluding Remarks

- Black-box PDE solver FDEM (URL: http://www.rz.uni-karlsruhe.de/rz/docs/FDEM/Literatur)
- User input: any PDE system, any domain, 2-D and 3-D
- Domain may consist of several subdomains with different PDEs \rightarrow Dividing lines
- Unique feature: error estimate
- Efficient parallelization with MPI

We offer a service to solve the PDEs of cooperation partners.