

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Sz. Kolozsvári^{a)*}, P. Pesch^{a)}, C. Ziebert^{b)}, S. Ulrich^{b)}

- a) TZO Technologiezentrum für Oberflächentechnik Rheinbreitbach GmbH, Maarweg 30, 53619 Rheinbreitbach, Germany
- b) Forschungszentrum Karlsruhe, Institut für Materialforschung I, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany * Corresponding author, Tel.: +49 (0)2224 94 21 13; Fax: +49 (0)2224 94 21 20, E-mail adress: kolozsvari@tzo-gmbh.de

Deposition and characterization of hard coatings in the material system V-AI-N by reactive magnetron-sputtering

Aim of the work: deposition of new coatings in the material system V-AI-N on industrial plants, to achieve metastable nanostructured hard layers through systematical variation of deposition parameters as power density, plasma pressure and variation of the partial pressure of process-gases (Ar: N_2) **Realisation:** dc magnetron-sputter industrial deposition system (CemeCon

General approach:

- binary coatings: VN, VC (planned), AIN, (AIC)
- ternary coatings **VAIN**, VCN, VAIC, AICN
- V-AI-C-N-coatings

CC800/8) with possibility to process in rf mode

Flexible controlling: variation of many parameters in each process step possible

First results in dc-magnetron-sputtered binary VN-, AIN- and VAIN-coatings:

VN-coatings:

AIN-coatings:

3nm

3nm

Varied coating parameters Ar:N₂ ratio and U_{bias}

Ar:N ₂ -ratio	U _{bias} in V	L _{c1}	HV _{0.005}
250/150	-200	34	2830
250/150	-170	38	3050
250/150	-140	25	2560
250/150	-110	23	2500
250/150	-80	22	2440

Dependence of critical load and hardness values on bias voltage

nc-VN	N in at%	V in at%			
6nm	43,18	56,36			

Composition measured by means of EPMA-method

Coating parameter	ers (blas vo	itage variation	
AIN (or AI+N)	Ar:N ₂ -rati	o U _{bias} in V	
2nm w-AIN	250/40	-110	- 08 - 08
3nm w-AIN+AI	250/30	-110	- 00
3nm w-AIN+AI	250/30	-200	
3nm w-AIN	150/30	-110	
0.8 0.6 0.6 0.4 0.2 0.2 0.0 0.4 0.2 0.0 0.4 0.0 0.4 0.2 0.0 0.0 0.4 0.0 0.0 0.4 0.0 0.0 0.0 0.0		© ARK Arki, ratio = 25040	XRD-spectra matrix due to
AIN (or AI+N)	N in at%	Al in at%	
2nm	38,07	60,68	in the second se
3nm	30,08	68,78	Ö w-AIN (100) v

43,54

17,07

Composition measured by means of EPMA-method

55,37

75,22

VAIN-coatings:

	/aried coating parameters are pressure (Ar:N ₂ ratio, I.case Ar quantity=const., 2.case N ₂ =const.) and U _{bias}									
I	Ar:N ₂ -ratio 1.case	Ar:N ₂ -ratio 2.case	U _{bias} in V at Ar:N ₂ =250/150		5000	■ VAIN: Ar/N₂-ratio=const.		140 -		
Ī	250/30	300/150	-80		4500		nits	120 -		
	250/50	250/150	-110		کا عور 1200 کا		arh u	80 -	VAIN	

Results and Outlook:						
<u>Results VN:</u>	Results AIN:	Results VAIN:				
VN-coating nanocrystalline	difficult processing by both dc	VAIN-coating nanocrystalline				
• average crystallite size ~6nm	and rf magnetron sputtering	• average crystallite size ~4nm				
near-stoichiometric	• average crystallite size ~3nm	near-stoichiometric				
 friction coefficient ~0.7 	• w-AIN-structure, near-amorph	• friction coefficient ~0.7				

This R&D project is partially funded by the Federal Ministry for Education and Research (BMBF) within the framework "Research **GEFÖRDERT VON BETREUT VOM** for the Production of tomorrow"; under the grant 02PU2000 and is supported by the Project Management Agency Research für Bildung Forschungszentrum Karlsruhe (PTKA) Center Karlsruhe (PTKA), branch office Dresden, in the field of production and manufacturing technologies (PFT). und Forschung

