



# FRACTURE BEHAVIOUR OF TUNGSTEN MATERIALS

# DEPENDING ON MICROSTRUCTURE

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft



Universität Karlsruhe (TH) Forschungsuniversität • gegründet 1825

**Michael Rieth & Andreas Hoffmann** 

Thanks for contributions and discussions to: C. Bichler, B. Dafferner, C. Grubich, S. Heger, U. Jäntsch, M. Klimenkov, W. Krauss, P. Norajitra, J. Reiser, W. Schulmeyer, H. Zimmermann



#### www.kit.edu

## **Overview, DEMO Divertor Design**







#### $\rightarrow$ J. Reiser, P. Norajitra, this conference



# **Motivation, Testing Method**

### Fracturing

- thermal load
- mechanical load
- manufacturing
- maintenance events



### Charpy Test

- DIN EU ISO 148-1, ...
- 3 mm x 4 mm x 27 mm
- notch depth 1mm
- span 22 mm





#### $\rightarrow$ M. Rieth, B. Dafferner, JNM

#### $\rightarrow$ P. Norajitra, W. Krauss, et al.

3 | M. Rieth, A. Hoffmann | 18th TOFE 2008 | October 2, 2008



Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft



### **High Temperature Charpy Tests**





#### drop weight design, vacuum vessel

#### opened furnace: view on support

4 | M. Rieth, A. Hoffmann | 18th TOFE 2008 | October 2, 2008



Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft



### **Materials, Rolling Texture**



#### 6 RODS

**4 PLATES** 







### **Microstructure**



#### WL10 Rod, Ø7 mm



Forschungsuniversität • gegründet 1825

### Microstructure



Forschungsuniversität • gegründet 1825

#### W-1%Re-1%La2O3 Rod, Ø10 mm







### **TEM Analysis**



#### WL10 Rod, Ø7 mm





Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft









### Fracture: W & WL10, 7 mm rods











### **Surface Fabrication**





#### W Rod, EDM

### W Rod, Diamond Saw





Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft



## **Delamination, Simple Analogy**







Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft













Forschungsuniversität • gegründet 1825

### **Results, Plate Materials**









### Fracture: W & WL10, plates



W















Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft











### **Conclusions**



| <b>Rod-Material</b>                   | DBTT  | BDTT / delamin.  | DDTT / <mark>ductile</mark> |
|---------------------------------------|-------|------------------|-----------------------------|
| TZM                                   | 300°C |                  | / <b>400°C</b>              |
| W, un-notched                         | 430°C |                  | / 450°C                     |
| W, sawed                              |       | 500°C / ≥600°C   | 750°C / <b>800°C</b>        |
| W                                     |       | 500°C / ≥600°C   | 850°C / <b>900°C</b>        |
| WVM                                   |       | 500°C / ≥600°C   | 950°C / <b>1000°C</b>       |
| WL10                                  |       | 450°C / ≥500°C ? | >1000°C / ???               |
| WL10opt                               |       | 500°C / ≥600°C   | >1000°C / ???               |
| W-1Re-1La <sub>2</sub> O <sub>3</sub> |       | 500°C / ≥600°C   | >1000°C / ???               |
| Plate-Material                        |       |                  |                             |

| TZM | <br>150°C / 200°C | >1000°C / ??? |
|-----|-------------------|---------------|
| W   | <br>450°C / 500°C | >1100°C / ??? |

- DBTT: ductile-to-brittle transition temperature
- brittle-to-delamination transition temperature BDTT:
- delamination-to-ductile transition temperature DDTT:



## Conclusions



Microstructure significantly defines transition temperatures (rod texture more favorable than that of plates)

ightarrow Oxide particles (and also potassium doping) promote delamination (but they are necessary for stabilizing GB  $\rightarrow$  suppr. re-crystallization)

Tungsten materials have a DBTT limit of ≥400°C (when produced by sintering & deformation, tested according to DIN EN ISO 148-1, …)



ightarrow Optimum fabrication probably only by aligning grains along the contour of the according part ightarrow deep drawing, twisting, pressing, ...





### Outlook





#### 20 | M. Rieth, A. Hoffmann | 18th TOFE 2008 | October 2, 2008



