

Max-Planck-Institut für Plasmaphysik

D. Wagner¹, M. Thumm², G. Gantenbein², J. Flamm², J. Neilson³, R. Vernon⁴

¹MPI für Plasmaphysik, Association EURATOM-IPP , D-85748 Garching, Germany ²Forschungszentrum Karlsruhe, Association EURATOM-FZK, IHM, D-76021 Karlsruhe, Germany ³Calabazas Creek Research, 690 Port Drive, San Mateo, CA 94404-1010, USA ⁴University of Wisconsin, Madison, Wisconsin, 53706-1691, USA

Outline:

- Introduction
- Broadband beam excitation
- Cavity design
- Measurements

INTRODUCTION (1)

- Testing of quasi-optical mode converters requires the excitation of high-order volume modes at low power levels.
- Mode converters for advanced multi-frequency gyrotrons need to be efficient for different modes over a wide frequency range
- Mode generator required for cold tests to excite several modes with high mode purity in this frequency range
- In our case main modes of interest are:

TE_{22,6} @ 110.0 GHz TE_{24.7} @ 124.7 GHz

INTRODUCTION (2)

Principle:

(Alexandrov et al., Int. J. Infrared and Millimeter Waves, 13 (1992), pp.1369)

INTRODUCTION (3)

- Field distribution of high-order modes can be decomposed into a spectrum of plane waves $m \cdot R$
- All rays ($\vec{S} = \vec{E} \times \vec{H}^*$) are tangential to the caustic with radius: $r_c = \frac{m \cdot R}{x_{mn}}$
- The reflection angles of the rays at the waveguide wall are given by:

$$\cos(\Theta) = \frac{m}{x_{mn}} \qquad \qquad \sin(\psi_B) = \frac{k_c}{k_0} = \frac{x_{mn} \cdot c_0}{2\pi \cdot R \cdot f}$$

- Gaussian beam excitation using a smooth Gauss horn (output mode mixture app. 86% TE_{11} + 1% $TE_{11}(180^\circ)$ + 12.6% $TM_{11}(180^\circ)$ + 0.4% $TM_{12}(180^\circ)$)
- Linear horn (2 phasing sections)

- calculated bandwidth $\approx\pm$ 7%
- center frequency: 122.5 GHz

• Ex.: horn pattern at center frequency (122.5 GHz, at z = 59 mm)

- Lens horn contains 2 cylindrical teflon lenses
- Designed to generate astigmatic beam at f = 122.5 GHz with w_{01} = 10 mm, w_{02} = 33 mm at d_2 = 353 mm
- Measured lens horn beam at the position of the quasi-parabolic mirror:

CAVITY DESIGN (1)

CAVITY DESIGN (2)

- Coupling holes over whole circumference
 - \rightarrow reduces counter rotation
 - \rightarrow minimizes re-radiation
- Calculated frequency dependence of the coupling factor:

- Calculated eigenvalue spectra (R_o=19.65mm)
- Optimum mode separation by appropriate choice of inner conductor radii

CAVITY DESIGN (4)

PP

MEASUREMENTS (1)

CAVITY DESIGN (5)

IDD

MEASUREMENTS (2)

MEASUREMENTS (3)

CAVITY DESIGN (6)

MEASUREMENTS (4)

MODE GENERATOR SETUP

MEASUREMENTS (5)

CONCLUSIONS

- Mode generator for $\rm TE_{22,6}$ @ 110 GHz and $\rm TE_{24,7}$ @ 124.7 GHz built and tested.
- First results show clear mode patterns with low counter rotation. Frequency matches design values within 20 MHz.
- Mode generator shipped to University of Wisconsin.