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Abstract.  The impact of the aerosol on the state of the atmosphere, especially on clouds and 
precipitation, is investigated in this study for the regional scale. The CCN distributions are 
simulated on the base of anthropogenic and natural emissions of aerosol particles and their 
gaseous precursors with a comprehensive online coupled model system. Therefore the simulations 
comprise the temporal and spatial variation of aerosol particles in the atmosphere and show their 
impact on clouds and precipitation. 
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Introduction

Recent modeling studies followed a variety of approaches to improve the 
understanding of aerosol-cloud interactions responsible for the largest uncertainties in 
understanding the climate change7). Studies with temporal and spatial high resolved 
models showed the response of individual clouds on changes in the aerosol load4),11), 20).
Global climate models investigated the impact of aerosols on large scales in space and 
time12),15). Although the distribution of clouds and aerosol particles are mesoscale 
features only a few studies focused on this scale until now9),14). The variations in the 
distribution of aerosol particles caused by the spatial and temporal variation of the 
emissions and the ongoing physical and chemical processes are not considered yet in 
these mesoscale studies.  

Model System 

Studying the interaction of the aerosol and the atmosphere with a numerical model at 
a specific scale requires the treatment of the relevant physical, chemical, and aerosol 
dynamical processes at a comparable level of complexity. To fulfill these requirements 
we developed the model system COSMO-ART for the regional to continental scale. 
COSMO-ART is based on the non-hydrostatic weather forecast model COSMO 
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(Consortium for Small-scale Modeling) of the German Weather Service (DWD) and is 
online coupled with comprehensive modules for gas phase chemistry and aerosol 
dynamics. ART stands for Aerosols and Reactive Trace gases. COSMO-ART includes 
complex photochemistry to calculate the temporal and spatial distribution of the gaseous 
precursors of the secondary aerosol particles. MADEsoot2),17) represents the aerosol 
population within COSMO-ART by several overlapping log-normal distributions. For 
submicron particles five modes are used. Two modes represent secondary, internally 
mixed particles consisting of sulphate, ammonium, nitrate, secondary organic 
compounds, and water, one mode represents pure soot and two more modes represent 
aged soot particles consisting of sulphate, ammonium, nitrate, organic compounds, 
water and soot in an internal mixture. All modes are subject to condensation and 
coagulation. The emissions of natural NOx and VOC emissions, sea salt, and mineral 
dust are parameterized in terms of the land-use and the meteorological conditions. 
Anthropogenic emissions of SO2, CO, NOx, NH3, and VOC are prescribed at each grid 
point with an hourly resolution. A detailed description of the model formulation can be 
found in 21).

Activation and Cloud Scheme 

The number of activated particles is calculated by integration of the size distribution 
of the individual modes. The critical radius for the integration is determined with Köhler 
theory10). For the calculation of the maximum supersaturation a parameterized solution 
of the supersaturation balance equation for an ascending cloud parcel is used1)

considering the cloud-base vertical velocity13), the aerosol size distribution, and the 
chemical composition of the individual modes. The cloud scheme is an extended 
version of the operational scheme used for operational weather forecast with the 
COSMO model5). Prognostic equations for cloud liquid water content, cloud droplet 
number density, rain water content, ice water content, and snow water content are 
solved. For the representation of autoconversion, accretion and selfcollection of cloud 
drops a double-moment parameterization19) is used. Nucleation of droplets occurs only 
at cloud base8) with respect to grid scale vertical advection and turbulent diffusion. 

Results

Several simulations were performed for Central Europe with a spatial resolution of 7 
km and 40 vertical levels. The results show changes in CCN number density of several 
hundred percent within a few hours and kilometers (figure 1a). Beside the number 
density of the aerosol particles the considered size distribution and chemical 
composition of the particles are important factors for the distribution of the CCN. The 
simulations indicate that in the area of a forming cloud the availability of CCN is higher 
than in the surrounding area (figure 1b). Possible reasons are the intensified vertical 
transport of aerosol in these areas and the influence of the high humidity on the 
chemical composition of the particles. Therefore the distribution of CCN number 
density and clouds is related to each other. The enhancement of CCN in areas of cloud 
formation is currently not considered in global models.
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Compared with a simulation that was performed with a fixed homogenous aerosol 
distribution (II) the simulations allowing variable aerosol distributions (I) lead to 
changes in cloud droplet number density. Consequently, this has an influence on the 
warm rain process. The changes in precipitation are mostly below 1 mm/h i.e. they are 
caused by drizzle events. High CCN-concentrations weaken the initial formation of rain 
and tend to delay the rain formation in warm clouds (figure 2a). Depending on the 
lifetime of the cloud system the net precipitation amount can remain the same, but with 
temporal and spatial shifts in the distribution of precipitation (figure 2a, 2b). 

        a)                b) 

Figure 1 a) CCN for 1% supersaturation (greyscale) and cloud contours at Würzburg b) Relation of 
CCN for 1% supersaturation from cloudy to cloud-free grid points.

    
a)       b) 

Figure 2 a) Difference (I-II) in rain amount from 0 UTC to 12 UTC, b) Differences (I-II) in the 
hourly precipitation amount (greyscale) and in the total precipitation amount (line) for a 7km wide band 
at y=280km.
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SUMMARY

The interaction of CCN and clouds has been simulated with the online coupled 
model-system COSMO-ART. The aerosol is simulated on the base of gaseous and 
particulate emissions and therefore no prescribed aerosol concentrations are necessary. 
The simulations show that the distribution of CCN and the distribution of clouds are 
related to each other because of first principles like vertical advection. The strong 
variability of the aerosol and its properties causes temporal and spatial shifts of the 
precipitation. Because the changes are in the order of 1mm/h the impact is most 
significant for drizzle events. 
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