RECENT RESULTS FROM MEASUREMENTS OF CO₂, CH₄, CO and N₂O AT THE GAW STATION, CAPE POINT

E-G. Brunke, C. Labuschagne, B. Parker and H.E. Scheel

Overview
CO₂: time series and DDEs
CH₄: increasing again
CO: recent decreasing trend
N₂O: analytical challenges

Advection of air masses

40

Cape Point: CO₂ half-hourly means

Recently assessed CO₂ uncertainty

CO₂ determination of 2 new lab standards - NOAA assigned values

Growth rates of CO_2 [ppm yr⁻¹] as a function of wind direction for the periods 1999 – 2005 and 2006 – 2008.

→ Maximal for the northerly sector. increasing anthropogenic sources associated with the recent expansion of the greater Cape Town area.

 CO_2 levels: Increased by 7.6% (27 ppm) since 1993. The growth rate has increased from 1.6 ppm yr⁻¹ in early 1993 to 2.1 ppm yr⁻¹ at the end of 2008.

CO₂ Draw-Down Events (DDEs)

Lower cut-off line applied to the CO_2 time series.

Values below this line (> 5 ppm and > 1.5 hrs) have been classified as drawdown events (DDEs).

DDEs are observed primarily in the afternoon.

Calculated travelling time of approx. 4.2 hours (avg. wind velocity of 10 m/s) from the main draw-down area, 150 km to the east of the station, where a maximum CO_2 uptake around noon is assumed.

Frequency of DDEs as a function of rainfall in source regions

Annual cycle

DDEs preferentially during mid-year (peak of the rainy season) and when the regional wheat crops reach their maximum growth potential.

DDE frequency correlates well with total winter rainfall.

→ Asumption that greater wheat production (during wet years) leads to more extensive and effective CO_2 uptake.

Number of DDEs vs. rainfall

Interannual variability

Evidence for CO₂ draw-down regions to the East

Back trajectory data from

NOAA-ESRL

-35

-40

-45

-50

Wind and trajectory data point to significant CO_2 terrestrial sink (wheat growing region) to the east of Cape Point (150 to 300 km radius).

CO₂ Draw-Down Regions

N (Malmesbury) & E (Caledon) wheat growing zones

Canola

Barley

Wheat growing regions to the north and east of Cape Point (150 to 300 km radius).

Cape Point: CH₄ half-hourly means

CPT: Wind sector-dependent CH4 growth rates, 1999-2005 & 2006-2008

Growth rates of CH_4 [ppb yr⁻¹] as a function of wind direction for the periods 1999 – 2005 and 2006 – 2008 are maximal for the northerly sector.

→ Increasing anthropogenic sources associated with the recent expansion of the greater Cape Town area (e.g. new waste treatment plants).

Results currently still on CPT CO scale. Update to GAW scale in preparation.

Analytical stability of CO system

N₂O: Analytical problems and challenges after upgrade to new GC

- ➢ Visually good N₂O chromatograms from an Agilent 6890N GC (with back flush & O₂ removal and without).
 Peak/baseline ratio ≈ 1900.
- N₂O reproducibility ≥ 0.3 ppb. Mostly values of NOAA lab standards (when injected as unknowns) only determined with an uncertainty of 1 ppb.
- ECD stability sometimes inversely related to atmospheric pressure.
- Peak outliers sometimes follow a specific pattern and at other times occur sporadically.
- Question of unidentified interfering effects. However, scrubbers for CO₂ and moisture have not revealed such problems.
- Satisfying results for comparisons of SF₆.

Summary

- CO₂ levels have increased by 7.6% (27 ppm) since measurements began in 1993. The growth rate itself has also increased from 1.6 ppm yr⁻¹ in early 1993 to 2.1 ppm yr⁻¹ at the end of 2008.
- CO₂ time series also characterised by DDEs, which often reach values of about 5 ppm below the background minimum. This is mainly a winter phenomenon and associated with wheat growing regions.
- Analysis of 2009 NOAA lab standards showed that CO₂ falls within 0.02 ppm of assigned values with respect to existing lab standards.
- > Long-term CH_4 increase with overall decrease in growth-rates between 1983 and 2003. Stabilisation until 2006 followed by recent increase.
- CO: Since 2003 a slight overall decline with abnormally low annual mean values for 2006 and 2008. Possibility of recent analytical artefacts cannot be ruled out.
- N₂O: Uncertainty ~1 ppb with new analytical system. Several phenomena (problems) observed. However, no clear indication of their causes. Systematic tests to be continued. Any external advice is welcome.

Acknowledgements

Local authorities: South African National Parks (SANP) Portnet

- Integration of N₂O and SF₆ peaks with a forced baseline method. AC being used at present to obtain best results.
- Tailing can cause integration problems
 - Integration can occur anywhere from AB to AC.

