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Background

Dr. Martin Wörner03.06.2010

Fischer-Tropsch-Synthesis (conversion of CO & H2 into liquid fuels)

Sasol Inc:  6 Mio. t fuel per year by bubble column reactors (diam. 12 m)

Monolith reactors with Taylor flow offer higher yield by similar selectivity 
Güttel et al. Ind. Eng. Chem. Res. 47 (2008) 6589

Goal
Investigate hydrodynamics of Taylor flow
in a single square mini-channel by detailed 
numerical simulations

www.sasol.com

Monolith-Loop-Reaktor
de Deugd et al. Cat. Today 79 (2003) 495
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Simulation model

Governing equations*
Navier-Stokes equation in single field formulation with 
surface tension term for two incompressible immiscible 
Newtonian fluids with constant physical properties

Numerical method*
Volume-of-fluid method with PLIC reconstruction

Finite volume discretization an a staggered 3D 
Cartesian grid

Projection method for pressure-velocity coupling

Explicit 3rd order Runge-Kutta time integration scheme

In-house computer code TURBIT-VOF

Dr. Martin Wörner03.06.2010

* for details see Öztaskin, Wörner, Soyhan, Phys. Fluids 21 (2009) 042108
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Code validation by 2D Bretherton problem*

Dr. Martin Wörner03.06.2010
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Computational set-up for Taylor flow

Set-up
co-current downward flow of 
squalane (C30H62) and nitrogen

consideration of one unit cell

square channel with internal 
cross section 1 mm × 1 mm

periodic boundary conditions 
in vertical (axial) direction

Parameter
gas content: εG = 0.2 or 0.4

unit cell length: Ly = 4 or 6 mm
(grid up to 80×480×80 cells)

pressure drop across the unit 
cell is prescribed (but varied for 
different cases)

Dr. Martin Wörner03.06.2010
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Evolution in time

Dr. Martin Wörner03.06.2010

(35000 time steps)
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Uref = 0.3 m/s, tref = 0.333 s

Luc = 4 mm, εG = 0.4
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Experiments of                    (T. Bauer, R. Lange)

Dr. Martin Wörner03.06.2010

(Pressure = 20 bar)
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Comparison of bubble shape*

Dr. Martin Wörner03.06.2010

*Keskin et al., AIChE Journal, in press
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Steady bubble shape at different Ca
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Front and rear curvature
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Steady bubble shape for higher Ca

Dr. Martin Wörner03.06.2010

uc G4 mm,  0.2, 0.65, 17.7L Ca Reε= = = =

Bubble front and 

bubble body are 

axisymmetric, 

bubble rear is not! 

Approximate relation for the local interface 
curvature κ at a point xi located on the interface
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Axial profiles of liquid pressure
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Lower corner pressure

at bubble nose is in 

qualitative agreement with

numerical results of 

Hazel & Heil (2002)

for a semi-infinite bubble

and Stokes flow 
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Axial profiles of liquid pressure
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Lower pressure difference

in corner at bubble rear 

results in lower local

interface curvature as 

compared to channel 

sides
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Transition to annular flow

For large prescribed pressure drop no steady bubble 
velocity rise is obtained

The liquid slug length decreases and becomes zero

Dr. Martin Wörner03.06.2010

uc G4mm,  0.4L ε= =
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Transition to annular flow

Dr. Martin Wörner03.06.2010

time

Luc = 4 mm, εG = 0.4
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Conclusions

The curvature of the front (rear) meniscus at the channel axis 
increases (decreases) with increase of the capillary number

The values of the non-dimensional front/rear curvature in a square 
channel are similar to those in a circular channel

At high values of the capillary number we find a novel bubble shape 
regime, not reported in literature so far, where the bubble nose and 
body are axisymmetric, while the bubble rear is not; instead the rear 
meniscus shows a symmetry with respect to the channel mid-planes 
and diagonals

This shape of the rear meniscus has its origin in substantial variations 
of the liquid pressure in cross-sections at the bubble rear; the large 
pressure differences are presumably caused by inertial effects along 
curved streamlines

Can this shape be confirmed by experiments? What is the range of 
(Ca, Re) where this novel shape may exist?

Dr. Martin Wörner03.06.2010
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Thank you for your attention
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Theoretical analysis of curvature

Dynamic boundary condition normal to the interface

Assumptions:

Non-dimensional interface curvature

At front and rear stagnation point:

Dr. Martin Wörner03.06.2010
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Theoretical analysis of curvature

At front and rear stagnation point:

Dr. Martin Wörner03.06.2010
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Axial profiles of axial velocity
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