

#### Numerical evidence for a novel non-axisymmetric bubble shape regime in square channel Taylor flow

#### Dr. Martin Wörner

Karlsruhe Institute of Technology Institute for Nuclear and Energy Technologies





www.kit.edu

# Outline



- Background
- Simulation model
  - Numerical method
  - Computational set-up
- Results
  - Bubble shape for different capillary numbers
  - Local interface curvature and pressure field
  - Transition from slug flow to annular flow

#### Conclusions

## Background



#### **Fischer-Tropsch-Synthesis** (conversion of CO & H<sub>2</sub> into liquid fuels)

- Sasol Inc: 6 Mio. t fuel per year by bubble column reactors (diam. 12 m)
- Monolith reactors with Taylor flow offer higher yield by similar selectivity Güttel et al. Ind. Eng. Chem. Res. 47 (2008) 6589



## **Simulation model**



#### Governing equations\*

Navier-Stokes equation in single field formulation with surface tension term for two incompressible immiscible Newtonian fluids with constant physical properties

#### Numerical method\*

- Volume-of-fluid method with PLIC reconstruction
- Finite volume discretization an a staggered 3D Cartesian grid
- Projection method for pressure-velocity coupling
- Explicit 3<sup>rd</sup> order Runge-Kutta time integration scheme

In-house computer code TURBIT-VOF

\* for details see Öztaskin, Wörner, Soyhan, Phys. Fluids **21** (2009) 042108



#### **Computational set-up for Taylor flow**



Set-up

- co-current downward flow of squalane (C<sub>30</sub>H<sub>62</sub>) and nitrogen
- consideration of one unit cell
- square channel with internal cross section 1 mm × 1 mm
- periodic boundary conditions in vertical (axial) direction

#### Parameter

- **gas content:**  $\varepsilon_{G} = 0.2$  or 0.4
- unit cell length: L<sub>y</sub> = 4 or 6 mm (grid up to 80×480×80 cells)
- pressure drop across the unit cell is prescribed (but varied for different cases)







# **Comparison of bubble shape\***





\*Keskin et al., AIChE Journal, in press

### Steady bubble shape at different Ca





### Front and rear curvature





### Steady bubble shape for higher Ca









Bubble front and bubble body are axisymmetric, bubble rear is not!

Approximate relation for the local interface curvature  $\kappa$  at a point  $\mathbf{x}_i$  located on the interface

$$\kappa(\mathbf{x}_{i}) \approx \frac{p_{B} - p_{L,i}(\mathbf{x}_{i})}{\sigma}$$



# Axial profiles of liquid pressure





**14** 03.06.2010 Dr. Martin Wörner

## **Transition to annular flow**



- For large prescribed pressure drop no steady bubble velocity rise is obtained
- The liquid slug length decreases and becomes zero





## Conclusions



- The curvature of the front (rear) meniscus at the channel axis increases (decreases) with increase of the capillary number
- The values of the non-dimensional front/rear curvature in a square channel are similar to those in a circular channel
- At high values of the capillary number we find a novel bubble shape regime, not reported in literature so far, where the bubble nose and body are axisymmetric, while the bubble rear is not; instead the rear meniscus shows a symmetry with respect to the channel mid-planes and diagonals
- This shape of the rear meniscus has its origin in substantial variations of the liquid pressure in cross-sections at the bubble rear; the large pressure differences are presumably caused by inertial effects along curved streamlines
- Can this shape be confirmed by experiments? What is the range of (Ca, Re) where this novel shape may exist?



## Thank you for your attention

### Theoretical analysis of curvature



Dynamic boundary condition normal to the interface

$$p_{\mathrm{L},i} - p_{\mathrm{G},i} + \tau_{\mathrm{L},i}^{\perp} - \tau_{\mathrm{G},i}^{\perp} = \boldsymbol{\sigma}\boldsymbol{\kappa} \qquad \tau_{\mathrm{L},i}^{\perp} = \mu_{\mathrm{L}} \left( \nabla \mathbf{v}_{\mathrm{L}} + (\nabla \mathbf{v}_{\mathrm{L}})^{\mathrm{T}} \right) : \mathbf{n}_{\mathrm{i}} \mathbf{n}_{\mathrm{i}} \tau_{\mathrm{G},i}^{\perp} = \mu_{\mathrm{G}} \left( \nabla \mathbf{v}_{\mathrm{G}} + (\nabla \mathbf{v}_{\mathrm{G}})^{\mathrm{T}} \right) : \mathbf{n}_{\mathrm{i}} \mathbf{n}_{\mathrm{i}}$$

Assumptions:  $p_{G,i} = p_B = const.$ ,  $\mu_G / \mu_L = 0.0006 \implies \tau_{G,i}^{\perp} \approx 0$ Non-dimensional interface curvature

$$K \equiv \kappa D_{\rm h} \approx \frac{D_{\rm h}}{\sigma} \left( p_{\rm L,i} - p_{\rm B} + \tau_{\rm L,i}^{\perp} \right)$$

At front and rear stagnation point:

$$\tau_{\mathrm{L,tip/rear}}^{\perp} = \mu_{\mathrm{L}} \left( \nabla \mathbf{v}_{\mathrm{L}} + (\nabla \mathbf{v}_{\mathrm{L}})^{\mathrm{T}} \right) \Big|_{\mathrm{tip/rear}} : \mathbf{e}_{\mathrm{y}} \mathbf{e}_{\mathrm{y}} = 2 \mu_{\mathrm{L}} \left. \frac{\partial v_{\mathrm{L}}}{\partial y} \right|_{\mathrm{tip/rear}}$$

Institute for Nuclear and Energy Technologies

ı.

### Theoretical analysis of curvature



At front and rear stagnation point:



