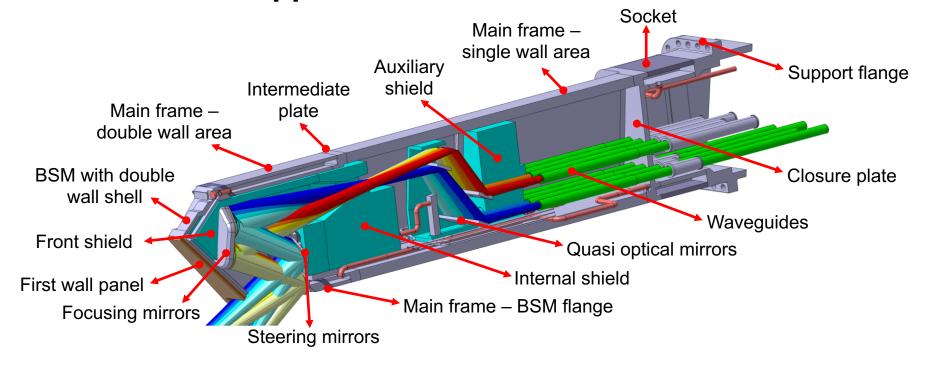
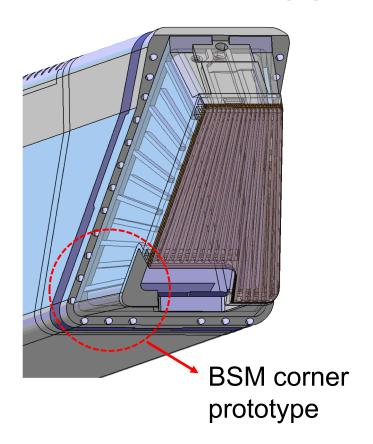


Outgassing Measurements for the ITER EC H&CD Upper Launcher


G. Aiello, A. Meier, T. Scherer, S. Schreck, P. Spaeh, D. Strauss, A. Vaccaro

Institute for Applied Materials – Applied Materials Physics

The EC H&CD Upper Launcher



In-vessel component:

- 316L(N)-IG stainless steel as structural material
- T=120-150°C (240°C for baking)
- Internal vacuum ~ 10⁻³-10⁻² Pa

Hot Isostatic Pressing (HIPing)

HIPing: one of the preferred manufacturing routes for Upper Launcher (UL) components.

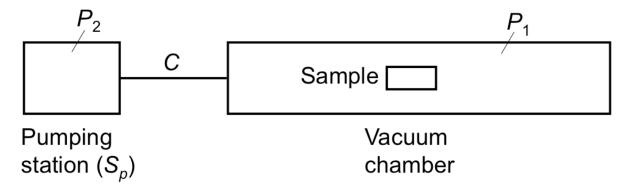
Outgassing measurements: why?

ITER Vacuum Handbook:

UL belongs to the

1st class of the
Vacuum Quality
Classification (VQC)

		Maximum Steady State Outgassing rate Pa.m ³ .s ⁻¹ .m ⁻²		
VQC⁺	Outgas temperature °C	Hydrogen isotopes	Impurities	Testing Guidelines
1	100 [‡]	1 x 10 ⁻⁷	1 x 10 ⁻⁹	Appendix 17
2	20	1 x 10 ^{-7*}		Appendix 17
3	20	1 x 10 ⁻⁸		Appendix 17
4	20	1 x 10 ⁻⁷		Published data and conformity to clean work plan.

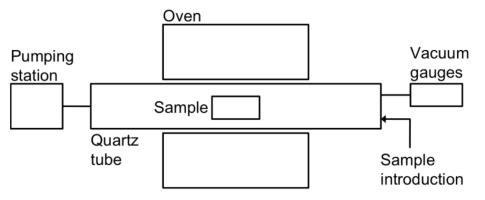

No outgassing data in literature for HIPed stainless steel

Experimental measurements are necessary to verify the compliance with the limits

Measurement technique

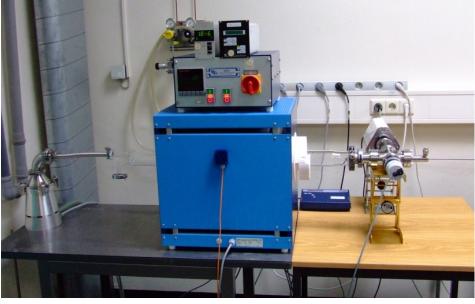
- Conductance method: $Q = C(P_1 P_2)$
- Variant of conductance method: $Q = CP_1$ (only if $C \ll S_p$)

 After blank and sample runs, the <u>specific outgassing</u>


 rate q of the sample is calculated as

$$q = \frac{C(P_{sR} - P_{bR})}{A_r}$$
 [Pa m³ s⁻¹ m⁻²]

Specific *partial* outgassing rates of the sample can be calculated.


Experimental setup

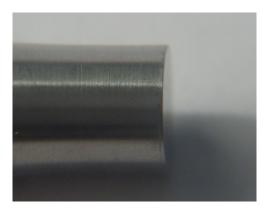
$$C = \frac{1}{6} \sqrt{\frac{2\pi RT}{M}} \frac{d^3}{I}$$

For N₂: $S_p / C \approx 143$

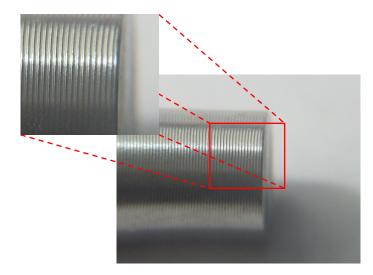
q depends on:

- time
- temperature
- surface finish
- material
- manufacturing process
- etc...

Stainless steel samples



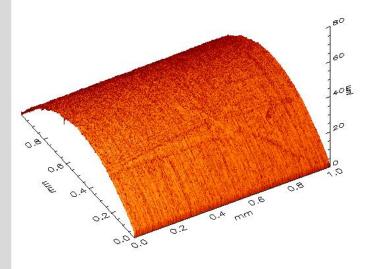
AISI 316LN by Powder HIPing


3 pairs AISI 317LMN by Rolling

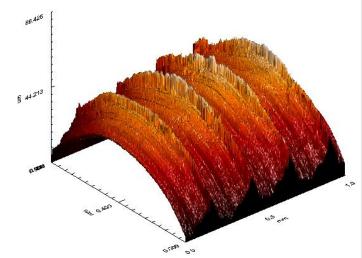
AISI 317LMN by Rolling + solid
HIPing

In each pair:

Polished sample


Sample with rills

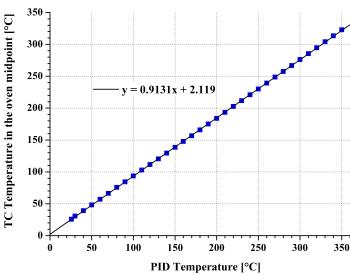
Roughness measurements


Purpose: determination of the surface factor of each sample

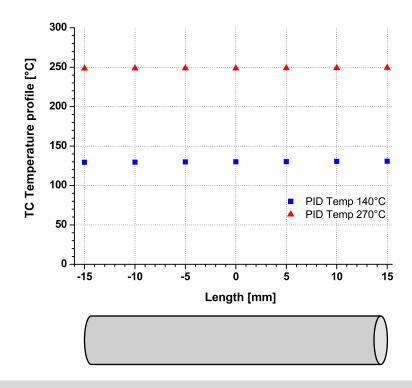
$$f_{s} = \frac{A_{r}}{A_{g}}$$

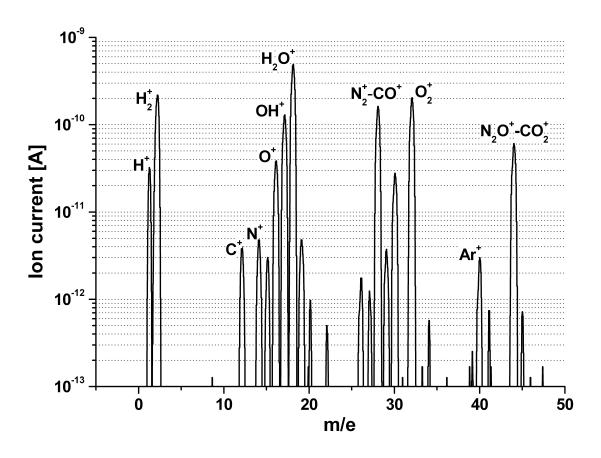
Polished sample $f_s \approx 1.2$

Raw data related to an area of 1 mm² obtained by optical method.



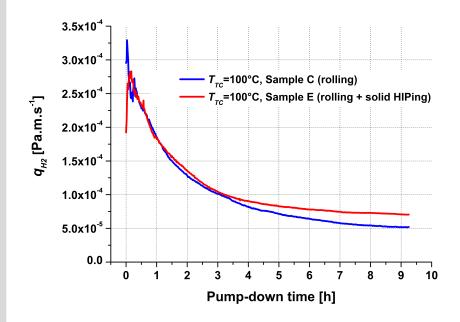
Sample with rills $f_s \approx 1.8$


Temperature calibration

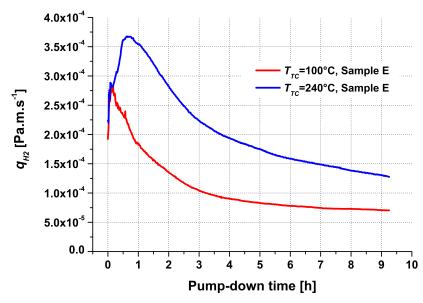


Calibration at pressures of ~ 10⁻⁵ Pa covering the temperature range of interest.

Typical mass spectrum



Gas species: H₂, H₂O, N₂/CO, O₂, Ar, N₂O/CO₂...


First results - 1

Effect of the solid HIPing

First results - 2

AISI 316LN samples by Powder HIPing

<i>q</i> [Pa m s ⁻¹]	Polished sample	Sample with rills
N ₂ /CO	1.63×10 ⁻⁴	6.58×10 ⁻⁴
O ₂	3.27×10 ⁻⁵	1.09×10 ⁻⁴
Ar	2.31×10 ⁻⁶	8.97×10 ⁻⁶
N ₂ O/CO ₂	4.65×10 ⁻⁵	1.88×10 ⁻⁴

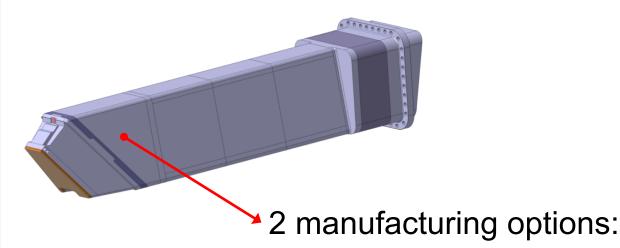
Effect of the surface finish at T_{TC} =100°C

Vacuum baking

ITER Vacuum Handbook:

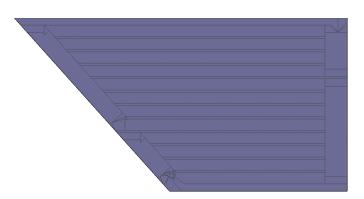
Vacuum Classification	Temperature (°C)	Time (hr)	Comment
VQC 1	240	24	
VQC 1*	350	24	Stainless steel and beryllium

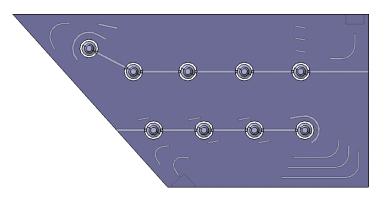
^{*} For vacuum items in line vicinity of plasma


Literature (Elsey, 1975):

300 series SS sample preparation	Measurement temperature [°C]	Specific outgassing rate of H ₂ [Pa m s ⁻¹]
Vacuum baking for 25 h at 300°C	100	2.8×10 ⁻⁷
Vacuum baking for 25 h at 300°C	100	5.9×10 ⁻⁸

Vacuum baking conditions must be consistent with the outgassing limits.


Double wall prototype and outgassing - 1



Nuclear heat loads up to 0.8 W cm⁻³

A suited vacuum chamber is going to be built for outgassing measurements of large prototypes.

Double wall prototype and outgassing - 2

Prototype obtained by deep hole drilling

Conclusions and outlook

- Outgassing limits pertaining to VQC are defined in the ITER Vacuum Handbook.
- An experimental setup has been developed to investigate the outgassing rates of HIPed SS samples.
- Preliminary results have shown that improvements of the setup are necessary: higher sample/chamber volume ratio, load lock system...
- Outgassing measurements are also foreseen for other manufacturing routes in order to verify the compliance with the outgassing limits.