The Large Scale Data Facility

Data Intensive Computing for scientific Experiments

A. García¹, S. Bourov¹, A. Hammad¹, V. Hartmann², T. Jejkal², P. Neuberger², R. Stotzka², J. van Wezel¹, B. Neumair¹, A. Streit¹

¹ Steinbuch Centre for Computing, KIT
² Institute for Data Processing and Electronics, KIT

PDSEC/IPDPS 2011, Anchorage | May 20, 2011
Executive summary

- Many experiments have a data-management problem!
- This project aims at improving the situation, with adapted infrastructure and services
- Data Intensive Computing workflows are critical for the value of the data
- We present the Roadmap and Outlook
What is the data challenge?

Science produces data!

- Experiments getting exponentially more data
 ⇐ Moore’s law (cheaper IT)!
 - remember the Large Hadron Collider @ CERN? it’s “small” today!
 - experiments need storage
 - need computationally intensive services
 - need sophisticated data analysis workflows

- Old data is very valuable
 - for reprocessing
 - to analyse change in time
 - for analysis by other scientists, in other contexts

- Invisible (not-found, no-metadata) data is lost data
 - administration and accessibility greatly increases data value
 - single big DB with scientific data is more valuable than many small ones

- Data is used by large virtual communities!
 - communication and simple access to data is critical
What is the data challenge?

Science produces data!

- Experiments getting exponentially more data
 ⇐ Moore’s law (cheaper IT)!
 - remember the Large Hadron Collider @ CERN? it’s “small” today!
 ⇒ experiments need storage
 ⇒ need computationally intensive services
 ⇒ need sophisticated data analysis workflows

- Old data is very valuable
 - for reprocessing
 - to analyse change in time
 - for analysis by other scientists, in other contexts

 Invisible (not-found, no-metadata) data is lost data
 ⇒ administration and accessibility greatly increases data value
 ⇒ single big DB with scientific data is more valuable than many small ones

- Data is used by large virtual communities!
 ⇒ communication and simple access to data is critical
What is the data challenge?

Science produces data!

- Experiments getting exponentially more data
 ⇐ Moore’s law (cheaper IT)!
 - remember the Large Hadron Collider @ CERN? it’s “small” today!
 ⇒ experiments need storage
 ⇒ need computationally intensive services
 ⇒ need sophisticated data analysis workflows

- Old data is very valuable
 - for reprocessing
 - to analyse change in time
 - for analysis by other scientists, in other contexts

- Invisible (not-found, no-metadata) data is lost data
 ⇒ administration and accessibility greatly increases data value
 ⇒ single big DB with scientific data is more valuable than many small ones

- Data is used by large virtual communities!
 ⇒ communication and simple access to data is critical
What is the data challenge?

Science produces data!

- Experiments getting exponentially more data
 ⇐ Moore’s law (cheaper IT)!
 - remember the Large Hadron Collider @ CERN? it’s “small” today!
 ⇒ experiments need storage
 ⇒ need computationally intensive services
 ⇒ need sophisticated data analysis workflows

- Old data is very valuable
 - for reprocessing
 - to analyse change in time
 - for analysis by other scientists, in other contexts

- Invisible (not-found, no-metadata) data is lost data
 ⇒ administration and accessibility greatly increases data value
 ⇒ single big DB with scientific data is more valuable than many small ones

- Data is used by large virtual communities!
 ⇒ communication and simple access to data is critical
Why do experiments produce so much data?

Zebrafish embryo, raw picture, 4MB (24 per fish)
Why do experiments produce so much data?

- Institute of Toxicology and Genetics @ KIT
 ⇒ Zebra fishes’ embryonal development reconstruction
 ⇒ Toxicological studies of drugs
 - High Throughput Microscopy
 - fully automated microscopes
 - robot moves object to microscope
 - can potentially run 24*7
 - produce high resolution images (4 MB each)
 - over varying parameters (focus point, wavelength, ...)

- ≈ 200k images per day, 2 TB/day
- Estimated: 1+ PB/year in 2012,
 6 PB/year in 2014
- Raw data must be heavily analysed
Why do experiments produce so much data?

- Institute of Toxicology and Genetics @ KIT
 - Zebra fishes’ embryonal development reconstruction
 - Toxicological studies of drugs
- High Throughput Microscopy
 - fully automated microscopes
 - robot moves object to microscope
 - can potentially run 24*7
 - produce high resolution images (4 MB each)
 - over varying parameters (focus point, wavelength, ...)

- ≈200k images per day, 2 TB/day
- Estimated: 1+ PB/year in 2012,
 - 6 PB/year in 2014
- Raw data must be heavily analysed
The Large Scale Data Facility Project

aka: LSDF

Started end of 2009 at KIT
- involving several institutes
- tight cooperation with BioQuant of Univ. Heidelberg

- to address the needs of Data Intensive Science
 - providing large scale storage
 - open protocols and APIs for access to data and metadata
 - transparent access over background storage and technology changes
 - added value services and tools for processing data
 - development and deployment of community specific services
The Large Scale Data Facility Project

aka: LSDF

Started end of 2009 at KIT

- involving several institutes
- tight cooperation with BioQuant of Univ. Heidelberg

- to address the needs of Data Intensive Science
 - providing large scale storage
 - open protocols and APIs for access to data and metadata
 - transparent access over background storage and technology changes
 - added value services and tools for processing data
 - development and deployment of community specific services
What infrastructure are we talking about?

- currently **2 PB** in 2 storage systems
- dedicated **10 GE** network backbone
- with direct connection to some institutes
- tape backend for archive and backup
How to deal with so much data?

- Metadata is essential
 - Needs to be stored and kept up to date with data
 - Metadata schema is highly project-dependent
 ⇒ we use a project metadata DB
How to deal with so much data?

- Metadata is essential
 - Needs to be stored and kept up to date with data
 - Metadata schema is highly project-dependent
 ⇒ we use a project metadata DB
Which access APIs and tools?

- Hardware and software choices limit the access protocols and APIs
 - not all components accessible through all methods
 - need a unified access layer
 - Abstract Data Access Layer, low-level interface to LSDF
 - extensible to support new backends, authentication mechanisms
- For end-users: DataBrowser
 - graphical tool for exploring and managing the LSDF data
 - based on ADAL-API
 - connects to the meta-data repository
 - will be available as web GUI
Which access APIs and tools?

- Hardware and software choices limit the access protocols and APIs
 - not all components accessible through all methods
 - need a **unified access layer**
 - Abstract Data Access Layer, low-level interface to LSDF
 - extensible to support new backends, authentication mechanisms
- For end-users: **DataBrowser**
 - graphical tool for exploring and managing the LSDF data
 - based on ADAL-API
 - connects to the meta-data repository
 - will be available as web GUI
The current architecture

Scientific users

DataBrowser

ADALAPI

Experiment DAQ

Network

Protocols

HTTP
SCP
GridFTP
NFS
CIFS

DB

Online Storage - GPFS

Backup

HDFS
Can we process the data?

- Data has to be processed!
- Exascale ⇒ bring computing to the data!!
 (15 days to transfer 1 PB over ideal 10Gb/s link)
 ⇒ dedicated 60 nodes cluster

- Hadoop environment
 + 110 TB Hadoop filesystem
 - extreme scalability
 on commodity hardware
- Cloud environment OpenNebula
 - users can deploy own dedicated data-processing VMs
 (customized environment!)
 - reliable, highly flexible,
 and very fast to deploy
Can we process the data?

- Data has to be processed!
- Exascale ⇒ bring computing to the data!!

 (15 days to transfer 1 PB over ideal 10Gb/s link)
- ⇒ dedicated 60 nodes cluster
- Hadoop environment
 + 110 TB Hadoop filesystem
 - extreme scalability
 on commodity hardware
- Cloud environment OpenNebula

- users can deploy own dedicated data-processing VMs
 (customized environment!)
- reliable, highly flexible, and very fast to deploy
Can we process the data?

- Data has to be processed!
- Exascale ⇒ *bring computing to the data!!*

 (15 days to transfer 1 PB over ideal 10Gb/s link)

⇒ dedicated 60 nodes cluster

- **Hadoop environment**

 + 110 TB Hadoop filesystem

 - extreme scalability

 on commodity hardware

- **Cloud environment** **OpenNebula**

 OpenNebula.org

 - users can deploy own dedicated data-processing VMs

 (customized environment!)

 - reliable, highly flexible, and very fast to deploy
Data processing at LSDF

- Experiments should be able to process data locally
 - help the users automate the workflows
- Allow tagging data and triggering execution via DataBrowser
- Data from finished workflows stored and tagged in DB
- used for zebrafish microscopy data
Data processing at LSDF

- Experiments should be able to process data locally ⇒ help the users automate the workflows
- Allow tagging data and triggering execution via DataBrowser
- Data from finished workflows stored and tagged in DB
- used for zebrafish microscopy data
How to deal with data?

- With dedicated Hadoop applications
 - DNA sequencing and reconstruction using Hadoop tools
 - 3D Biomedical data visualization processing 1 TB dataset in 20min

- With Cloud instances, if customized SW environment is required
 - Integrated with the Kepler workflow orquestrator
 - user-friendly interface
How to deal with data?

- With dedicated Hadoop applications
 - DNA sequencing and reconstruction using Hadoop tools
 - 3D Biomedical data visualization processing 1 TB dataset in 20min

- With Cloud instances, *if customized SW environment is required*
 - Integrated with the Kepler workflow orchestrator
 - User-friendly interface
What’s ahead?

- Improved storage, network capacity: 6 PB in 2012

Investigate and deploy new technologies

- Data management system iRODS (ongoing)
- Object Storage

- Additional communities integrated in 2011
 - KATRIN experiment, neutrino mass
 - Meteorology and climate research (“archival” quality)
 - Geophysics

- Expanding project to offer more community tailored support

Added-value services

- working with experiments towards integrated data-management workflow
 - KATRIN experiment
 - ANKA synchrotron radiation source
What’s ahead?

- Improved storage, network capacity: 6 PB in 2012

Investigate and deploy new technologies

- Data management system iRODS (ongoing)
- Object Storage

- Additional communities integrated in 2011
 - KATRIN experiment, neutrino mass
 - Meteorology and climate research (“archival” quality)
 - Geophysics

- Expanding project to offer more community tailored support

Added-value services

- working with experiments towards integrated data-management workflow
 - KATRIN experiment
 - ANKA synchrotron radiation source
What’s ahead?

- Improved storage, network capacity: 6 PB in 2012

Investigate and deploy new technologies

- Data management system iRODS (ongoing)
- Object Storage

- Additional communities integrated in 2011
 - KATRIN experiment, neutrino mass
 - Meteorology and climate research (“archival” quality)
 - Geophysics

- Expanding project to offer more community tailored support

Added-value services

- working with experiments towards integrated data-management workflow
 - KATRIN experiment
 - ANKA synchrotron radiation source
Concluding remarks

- Infrastructure and storage services up and running
- First software tools available
- Experimental data being stored and processed
- Many scientific communities interested and getting involved

Focus on users, added value services

- Can’t just “store files”
- Training for new tools, data management workflows

- Same problem at most (all?) research institutions
 ⇒ Open for new partnerships, international collaborations
Thanks for listening!

Questions?