

The Large Scale Data Facility

Data Intensive Computing for scientific Experiments

A. García¹, S. Bourov¹, A. Hammad¹, V. Hartmann², T. Jejkal², P. Neuberger², R. Stotzka², J. van Wezel¹, B. Neumair¹, A. Streit¹

- Steinbuch Centre for Computing, KIT
- ² Institute for Data Processing and Electronics, KIT

PDSEC/IPDPS 2011, Anchorage | May 20, 2011

Executive summary

- Many experiments have a data-management problem!
- This project aims at improving the situation, with adapted infrastructure and services
- Data Intensive Computing workflows are critical for the value of the data
- We present the Roadmap and Outlook

Science produces data!

- Experiments getting exponentially more data
 - ← Moore's law (cheaper IT)!
 - remember the Large Hadron Collider @ CERN? it's "small" today!
 - ⇒ experiments need storage
 - ⇒ need computationally intensive services
 - ⇒ need sophisticated data analysis workflows

- Old data is very valuable
 - for reprocessing
 - to analyse change in time
 - for analysis by other scientists, in other contexts
- Invisible (not-found, no-metadata) data is lost data
 - ⇒ administration and accessibility greatly increases data value
 - ⇒ single big DB with scientific data is more valuable than many small ones
- Data is used by large virtual communities
 - ⇒ communication and simple access to data is critical

000

Ariel García - LSDF

Science produces data!

- Experiments getting exponentially more data
 - ← Moore's law (cheaper IT)!
 - remember the Large Hadron Collider @ CERN? it's "small" today!
 - ⇒ experiments need storage
 - ⇒ need computationally intensive services
 - ⇒ need sophisticated data analysis workflows

- Old data is very valuable
 - for reprocessing
 - to analyse change in time
 - for analysis by other scientists, in other contexts
- Invisible (not-found, no-metadata) data is lost data
 - ⇒ administration and accessibility greatly increases data value
 - ⇒ single big DB with scientific data is more valuable than many small ones
- Data is used by large virtual communities!
 - ⇒ communication and simple access to data is critical

Science produces data!

- Experiments getting exponentially more data
 - ← Moore's law (cheaper IT)!
 - remember the Large Hadron Collider @ CERN? it's "small" today!
 - ⇒ experiments need storage
 - ⇒ need computationally intensive services
 - ⇒ need sophisticated data analysis workflows

- Old data is very valuable
 - for reprocessing
 - to analyse change in time
 - for analysis by other scientists, in other contexts
- Invisible (not-found, no-metadata) data is lost data
 - \Rightarrow administration and accessibility greatly increases data value
 - ⇒ single big DB with scientific data is more valuable than many small ones
- Data is used by large virtual communities
 - ⇒ communication and simple access to data is critical

PDSEC 2011

Ariel García - LSDF

Science produces data!

- Experiments getting exponentially more data
 - ← Moore's law (cheaper IT)!
 - remember the Large Hadron Collider @ CERN? it's "small" today!
 - ⇒ experiments need storage
 - ⇒ need computationally intensive services
 - ⇒ need sophisticated data analysis workflows

- for reprocessing
- to analyse change in time
- for analysis by other scientists, in other contexts
- Invisible (not-found, no-metadata) data is lost data
 - ⇒ administration and accessibility greatly increases data value
 - ⇒ single big DB with scientific data is more valuable than many small ones
- Data is used by large virtual communities!
 - ⇒ communication and simple access to data is critical

Ariel García - LSDF

Why do experiments produce so much data?

Zebrafish embryo, raw picture, 4MB (24 per fish)

DIC

Why do experiments produce so much data?

- Institute of Toxicology and Genetics @ KIT
 - ⇒ Zebra fishes' embryonal development reconstruction
 - \Rightarrow Toxicological studies of drugs
 - High Throughput Microscopy
 - fully automated microscopes
 - robot moves object to microscope
 - can potentially run 24*7
 - produce high resolution images (4 MB each)
 - over varying parameters (focus point, wavelength, ...)
 - \approx 200k images per day, 2 TB/day
 - Estimated: 1+ PB/year in 2012,6 PB/year in 2014
 - Raw data must be heavily analysed

Why do experiments produce so much data?

- Institute of Toxicology and Genetics @ KIT
 - ⇒ Zebra fishes' embryonal development reconstruction
 - \Rightarrow Toxicological studies of drugs
 - High Throughput Microscopy
 - fully automated microscopes
 - robot moves object to microscope
 - can potentially run 24*7
 - produce high resolution images (4 MB each)
 - over varying parameters (focus point, wavelength, ...)
 - pprox pprox 200k images per day, 2 TB/day
 - Estimated: 1+ PB/year in 2012,6 PB/year in 2014
 - Raw data must be heavily analysed

000

The Large Scale Data Facility Project

aka: LSDF

Started end of 2009 at KIT

- involving several institutes
- tight cooperation with BioQuant of Univ. Heidelberg
- to address the needs of Data Intensive Science
 - providing large scale storage
 - open protocols and APIs for access to data and metadata
 - transparent access over background storage and technology changes
 - added value services and tools for processing data
 - development and deployment of community specific services

The Large Scale Data Facility Project

aka: LSDF

Started end of 2009 at KIT

- involving several institutes
- tight cooperation with BioQuant of Univ. Heidelberg
- to address the needs of Data Intensive Science
 - providing large scale storage
 - open protocols and APIs for access to data and metadata
 - transparent access over background storage and technology changes
 - added value services and tools for processing data
 - development and deployment of community specific services

What infrastructure are we talking about?

- currently 2 PB in 2 storage systems
- with direct connection to some institutes
- tape backend for archive and backup

PDSEC 2011 Ariel García - LSDF

How to deal with so much data?

- Metadata is essential
 - Needs to be stored and kept up to date with data
 - Metadata schema is highly project-dependent
 - \Rightarrow we use a project metadata DB

How to deal with so much data?

Metadata is essential

Which access APIs and tools?

- Hardware and software choices limit the access protocols and APIs
 - ⇒ not all components accessible through all methods
 - ⇒ need a unified access layer
 - Abstract Data Access Layer, low-level interface to LSDF
 - ⇒ extensible to support new backends, authentication mechanisms
- For end-users: DataBrowser
 - graphical tool for exploring and managing the LSDF data
 - based on ADAL-API
 - connects to the meta-data repository
 - will be available as web GUI.

Which access APIs and tools?

- Hardware and software choices limit the access protocols and APIs
 - ⇒ not all components accessible through all methods
 - ⇒ need a unified access layer
 - Abstract Data Access Layer, low-level interface to LSDF
 - ⇒ extensible to support new backends, authentication mechanisms
- For end-users: DataBrowser
 - graphical tool for exploring and managing the LSDF data
 - based on ADAL-API
 - connects to the meta-data repository
 - will be available as web GUI

The current architecture

PDSEC 2011

10

Can we process the data?

- Data has to be processed!
- Exascale ⇒ bring computing to the data!! (15 days to transfer 1 PB over ideal 10Gb/s link)
- ⇒ dedicated 60 nodes cluster
- Hadoop environment
 - + 110 TB Hadoop filesystem
 - extreme scalability on commodity hardware
- Cloud environment OpenNebula
 - users can deploy own dedicated data-processing VMs (customized environment!)
 - reliable, highly flexible, and very fast to deploy

Can we process the data?

- Data has to be processed!
- Exascale ⇒ bring computing to the data!! (15 days to transfer 1 PB over ideal 10Gb/s link)
- ⇒ dedicated 60 nodes cluster
 - Hadoop environment
 - + 110 TB Hadoop filesystem
 - extreme scalability on commodity hardware
 - Cloud environment OpenNebula

11 PDSEC 2011

The facility

Software

DIC

Outlook

Ariel García - LSDF

Can we process the data?

- Data has to be processed!
- Exascale ⇒ bring computing to the data!! (15 days to transfer 1 PB over ideal 10Gb/s link)
- ⇒ dedicated 60 nodes cluster
- Hadoop environment
 - + 110 TB Hadoop filesystem
 - extreme scalability on commodity hardware
- Cloud environment OpenNebulaOpenNebula.org
 - users can deploy own dedicated data-processing VMs
 (customized environment!)
 - reliable, highly flexible, and very fast to deploy

11 PDSEC 2011

Ariel García - LSDF

Data processing at LSDF

- Experiments should be able to process data locally
 - ⇒ help the users automate the workflows
- Allow tagging data and triggering execution via DataBrowser
- Data from finished workflows stored and tagged in DB

used for zebrafish microscopy data

Data processing at LSDF

- Experiments should be able to process data locally
 - ⇒ help the users automate the workflows
- Allow tagging data and triggering execution via DataBrowser
- Data from finished workflows stored and tagged in DB

used for zebrafish microscopy data

12 PDSEC 2011

Outlook

How to deal with data?

- With dedicated Hadoop applications
 - DNA sequencing and reconstruction using Hadoop tools
 - 3D Biomedical data visualization processing 1 TB dataset in 20min
- With Cloud instances, if customized SW environment is required
 - Integrated with the Kepler workflow orquestrator
 - user-friendly interface

How to deal with data?

- With dedicated Hadoop applications
 - DNA sequencing and reconstruction using Hadoop tools
 - 3D Biomedical data visualization processing 1 TB dataset in 20min
- With Cloud instances, if customized SW environment is required
 - Integrated with the Kepler workflow orquestrator
 - user-friendly interface

What's ahead?

Improved storage, network capacity: 6 PB in 2012

Investigate and deploy new technologies

- Data management system iRODS (ongoing)
- Object Storage
- Additional communities integrated in 2011
 - KATRIN experiment, neutrino mass
 - Meteorology and climate research ("archival" quality)
 - Geophysics
- Expanding project to offer more community tailored support

Added-value services

- working with experiments towards integrated data-management workflow
 - KATRIN experiment
 - ANKA synchrotron radiation source

What's ahead?

Ariel García - LSDF

Improved storage, network capacity: 6 PB in 2012

Investigate and deploy new technologies

- Data management system iRODS (ongoing)
- Object Storage
- Additional communities integrated in 2011
 - KATRIN experiment, neutrino mass
 - Meteorology and climate research ("archival" quality)
 - Geophysics
- Expanding project to offer more community tailored support

Added-value services

- working with experiments towards integrated data-management workflow
 - KATRIN experiment
 - ANKA synchrotron radiation source

What's ahead?

Improved storage, network capacity: 6 PB in 2012

Investigate and deploy new technologies

- Data management system iRODS (ongoing)
- Object Storage
- Additional communities integrated in 2011
 - KATRIN experiment, neutrino mass
 - Meteorology and climate research ("archival" quality)
 - Geophysics
- Expanding project to offer more community tailored support

Added-value services

- working with experiments towards integrated data-management workflow
 - KATRIN experiment
 - ANKA synchrotron radiation source

Concluding remarks

- Infrastructure and storage services up and running
- First software tools available
- Experimental data being stored and processed
- Many scientific communities interested and getting involved

Focus on users, added value services

- Can't just "store files"
- Training for new tools, data management workflows
- Same problem at most (all?) research institutions
 - ⇒ Open for new partnerships, international collaborations

Thanks for listening!

Questions?