KIT

Karlsruhe Institute of Technology

.......

e fl
Ly HH“ M\nmumuu
Teae

SO o
L
f”wﬂ |

Scaling of
Taylor flow in
small square
channels of
different size

- i
T it i} :
i e e
LI T e

Qi

Martin Worner

Karlsruhe Institute of Technology
Institute for Nuclear and Energy Technologies

1t Int. Conf. Multiscale Multiphase Process Engineering
Kanazawa, Japan, October 4-7, 2011

KIT — University of the State of Baden-Wuerttemberg and
National Research Center of the Helmholtz Association

Content ﬂ(“;

® Introduction
® Monolith reactors and Taylor flow
® Numerical simulation of Taylor flow
@ Method and computational set-up
® Validation
® Results for different hydraulic diameters
® Comparison of bubble shape

® Scaling of bubble velocity, bubble diameter,
specific interfacial area

® Conclusions and outlook

2 October 5, 2011 M. Woérner - Scaling of Taylor flow in small square channels Institute for Nuclear and Energy Technologies




Monolith reactors h“(“;

® Ceramic block with hundreds Boger et al. 2004
of straight parallel channels ol

B Various cross-sectional
shapes, often square

® Hydraulic diameter is typically
in the range 0.5 — 5 mm

® Coated with a catalytically
active layer (washcoat)

® Most prominent application:
catalytic converter in cars
for exhaust gas cleaning

Courtesy of
Eberspacher GmbH& Co
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Multiphase monolith reactors ﬂ(“;

@ Attractive for heterogeneously
catalyzed gas-liquid reactions Uﬁ

.‘ Kreutzer, Moulijn

»

@ e.g. Fischer-Tropsch synthesis
® Advantages of Taylor flow (TF)

® Thin liquid fil.m.(bubble?-wall) TF in square channel, D,=1 mm

a Larg!e spe.cmc |r.1te.rfaC|aI area Bﬁ?\?‘é&'éﬁ‘}? ’ = lUl

® Recirculation within the DRESDEN

. . (Tobias Bauer, |
segmented liquid slugs Ridiger Lange) U [ | V|

® Unique combination of good mass
transfer properties and reduced
axial dispersion U

@ Here: Study influence of channel ‘
size on Taylor flow hydrodynamics T iﬂl }[ ‘ lﬂ

J
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Literature survey AT

® Hydrodynamic properties of Taylor flow (e.g. the liquid film
thickness &;/D,) are correlated in terms of the capillary
number Ca = 14 Ug/o which does not involve a length scale

® Numerical studies* for inviscid Taylor bubbles (in plane or
circular channels) indicate a certain non-linear influence of
the Reynolds number Re = p, UsD, /4 on 6/D;, and the
shape of the front and rear meniscus

® A change of D, modifies both Re and the E6tvos number
Eé = g(p,—pg)D,?/o (i.e. the relative importance of buoyancy)

® Here we study the overall effect of a change of the channel
size on hydrodynamic properties of co-current downward
Taylor flow in a square channel (with a viscous gas phase)
* Heil (2001), Giavedoni & Saita (1999), Kreutzer (2003)
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Content -\l‘("‘

® Numerical simulation of Taylor flow
@ Method and computational set-up
® Validation

6 October 5, 2011 M. Woérner - Scaling of Taylor flow in small square channels Institute for Nuclear and Energy Technologies




Simulation method* A\‘(“‘

® Governing equations

® Navier-Stokes equation in single field formulation with
surface tension term for two incompressible immiscible
Newtonian fluids with constant physical properties

® Numerical method
B Volume-of-fluid method with PLIC reconstruction

B Finite volume discretization on a staggered 3D
Cartesian grid

® Projection method for pressure-velocity coupling
® Explicit 3 order Runge-Kutta time integration scheme
® In-house computer code TURBIT-VOF

* for details see Oztaskin et al. Phys. Fluids 21 (2009) 042108
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Computational set-up for Taylor flow S‘(lT

[ ] Set_up Top: periodic b.c.
® co-current downward flow of L L
squalane (C3,Hg,) and nitrogen / \
® square channel (hydraulic
diameter D, )
® consideration of one unit cell
m periodic boundary conditions Ll
in vertical (axial) direction
® Prescribed parameters

® gas content: g5 =0.2 or 0.4

® unit cell length: L,/ D, =4 or 6
(grid up to 80 x 480 x 80 cells)

® pressure drop across the unit J\gl
cell Euref = Apuc / (pLUrefz) ‘ :

Walls:
no-slip

1199

Bottom: periodic b.c..
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Evolution in time ﬂ(“;
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Experimental validation* IT

Karlsruhe instiute of Technology

1.65mm ‘1.65mm| 1mm

* Experiments
by T.Bauer
and R. Lange

TECHNISCHE
UNIVERSITAT
DRESDEN

Keskin et al. AIChE J. 56 (2010) 1693-1702
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O
Fixed simulation parameters -\l‘("‘
® Non-dimensional unit cell length L./ D, = 4
@ Gas hold-up in unit cell =04
B Phys. properties squalane-nitrogen (20°C, 20 bar)
® Liquid density p. = 802 kg/m?3
® Gas density P = 23.6 kg/m3
® Liquid viscosity 4 =0.029 Pas
® Gas viscosity Us =0.01804 mPa s
B Coefficient of surface tension 0=0.0286 N/m
@ Liquid-to-gas density ratio ol pg =34
@ Liquid-to-gas viscosity ratio | ug =1607

® Morton number Mo = 3.6x10*
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Simulation cases AT

Karlsruhe Institute of Technology

D, La Eo IT Uy ot Ca Re
[mm] [ [ (] [m/s] [mis] [ [
05 1364 0067 -6 0.112 0074 0.114 1.55 . _onD,
05 1364 0067 -7 0.147 0.093 0.149 2.03 u
05 1364 0067 -8 0.200 0.120 0.202 1.67 A ~pa)D;
05 1364 0067 -9 0.260 0.149 0.263 3.59 7
05 1364 0067 -10 0.329 0.181 0.334 4.55
05 1364 0.067 -11 0411 0217 0417 568 Eu =P

LuC
Hy =Eu,, D —Fr,

ref U?

05 1364 0067 -12 0493 0254 0.500 6.82 5 L

1 2727 0267 -5 0257 0.149 0261 7.11 Fra Tmef

1 2727 0267 -6 0379 0.207 0.385 10.49 Cae w U,

2 5455 1.068 -29 0.179 0.114 0.181 9.89 e

Re= ADUs =La-Ca
2 5455 1.068 -3.1 0.210 0.130 0.213 11.60 u
2 54.55 1.068 -3.3 0.243 0.147 0.247 13.45 U, =012m/s, L, =D,
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Bubble shapes for D, = 0.5 mm XIT

Karlsruhe Institute of Technology

> Increase of Ca and Re = La Ca

> Increase of &, Ly, &g (Curvature of front meniscus) >

Decrease of Dy, Ly, K., (Curvature of rear meniscus)

slug?
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Comparison of bubble shapes

Dy, = 0.5 mm
Ca=0.202
Re= 1.7
Eo=0.067
Dy =2.0 mm
Ca=0.213
Re=11.6
Eo=1.068

® Combined influence of Re and E¢ for fixed value of Ca
® very small influence on &/D;, and ;o Dy,
® notable influence on «.,, D, (inertial effect, known in literature)
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Non-dimensional bubble velocity

25 e o
| Experimental data (upward flow)
+  Thulasidas et al. (1995) N g N
square ch. D, =2 mm + +4;_h_+
——— Liu etal. (2005) WA
circ. and sq. ch. ﬁ-::'r +
D =0.9-3mm +
2.0 h «F* $++t|’
o +
— |
N b
+ ;
-~ ++ j.-b' A
o + /
> - A&
1.5 Ry e
4F 44, -7 Present numerical data |
+_jf+ e (downward flow)
+ R —u— D=0.5mm
+ 4+ h
_______ - -e- D=1mm
] -4~ D=2mm
1.0 —ry ————r
0.01 0.1 1
Cal-]
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Karlsruhe Institute of Technology

® The ratio Ug/ J slightly
decreases with
increase of D,

B This is most probably
an effect of buoyancy

® For downward flow the
buoyancy force acts
opposite to the applied
pressure gradient force
so that with increase of
Eé the bubble slows
down relative to the total
superficial velocity J

Institute for Nuclear and Energy Technologies




Non-dimensional bubble diameter -\3‘("‘

1.0

1 " " n 1

0.9

D, /D, [

0.8

Dy e sy |
—8 = 0.7+0.5exp(-2.25Ca"*") |
D i

h

B < Dy is still slightly [
" changing in these
two simulations

]
—

—n— Dh= 0.5 mm
--6-- D =1mm
D,=2mm

0.7
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Kreutzer et al. (2005)
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® The ratio Dg/ D,
slightly increases
with increase of D,
(i.e. the liquid film
thickness decreases)

The correlation of
Kreutzer slightly
underestimates the
numerical values of
Dg / D, but can easily
be adapted (e.g.
change 0.5 to 0.56)

Institute for Nuclear and Energy Technologies

Non-dimensional interfacial area

2.3 T
—s— D=05mm g=AgV,
224 —* D=1mm . -
1 Dh= 2 mm ./
] l/./
— 214 pord L
lL. | / 23
B 2
Q. l/ 22
o 2.0 a L
] w21
1 aﬁ 2.0
1'9__ 1.9 B
18 [
i 04 0?=JG/J [(E]B 1.0:
18— — e
0.0 0.2 0.4 0.6
Cal-]
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® The influence of Re
and E6 on the non-
dimensional specific
interfacial area a,D,, is
negligible

There exists no
literature correlation for
a,D,, as function of Ca

The correlation of
Keskin et al. (2010)
aD, =2.9p5087
(solid line) yields a
wrong slope (dashed
line: aD, = 2.413038)

Institute for Nuclear and Energy Technologies
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® Conclusions and outlook
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Conclusions -\l‘("‘

@ Appropriately normalized hydrodynamic properties
of Taylor flow in square mini-channels of different
size scale with the capillary number

@ The influence of the Reynolds number and E6tvos
number is in general small (al least for D,, <2 mm)
® negligible influence on non-dimensional interfacial area
@ slight influence of Re on curvature of rear meniscus
® slight influence of E6 on ratio Ug / J for downward flow
@ These findings indicate that a transfer of exp. Or
numerical results obtained for a certain value of D,
to smaller/larger channels is possible

20 October 5, 2011 M. Wérner - Scaling of Taylor flow in small square channels Institute for Nuclear and Energy Technologies




Outlook -\1‘("’

@ Further simulations
® for D, = 1 and 2 mm at higher/smaller values of Ca
® simulations for D, =4 mm
® other fluid properties (influence of Laplace number)

@ Development of general quantitative scaling
relations in terms of Ca with corrections that
account for the influence of Re, EO, La

. ACkn OWI ed g e m e nts DFG Esﬁstfhiﬂnegsgememschaft

® A. Boran, Sakarya University, Turkey —stiicimersces
laone. o |
® DFG grant WO 1682/1-1 (SPP 1506) |l
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Displacement of liquid by an inviscid gas .\l‘(lT

® Inertial effects on liquid film thickness in 2D (planar)
Bretherton problem (numerical results, inviscid bubble)

0.4 . .
035 E M. Heil, Finite Reynolds
03 -&'\“\M Cass0 number effects in the
F Ca=10 Bretherton problem,
0.25 M Phys. Fluids 13 (2001)
i Coco:28 2517-2521
02|
—25 Z\S\M/_//_/’J
d osF
Ca=0.05
o4 |
i o
U v
- B
— d
M
005 : o . L1 H L
o 100 200
Re
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Shape of the rear meniscus AT

10

Numerical study (inviscid bubble)
o2 M.D. Giavedoni, F.A. Saita, The rear meniscus of a
s = long bubble steadily displacing a Newtonian liquid
“1 H—EZ°-om in a capillary tube, Phys. Fluids 11 (1999) 786-794
’ 0.4 - —Cz;ﬂ:1
Ca=05
0z | ca2
——Ca=4
0.0 T
1 4 5
. —— ® The rear meniscus shows a
f’ﬂ;{ T complex shape depending on
0.6+ +
.1 ;! the values of Ca and Re
0.4 4 —— Ca=0.001 . . .
——ce-om ® Of primary mque.;nce is the
I value of the capillary number
0.0 T T T
1 2 3 4 5
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Bubble shape - effect of Re

M. Kreutzer, Ph.D thesis, Delft University of Technology, 2003

-0.5

Figure 2.9: Shape of the gas-liquid interface for Re =1,10,100,200 at Ca =0.04

® Re and Ca are linearly related by the Laplace number La

_op.D,

==

® For a given fluid pair and channel size a change in Ca
goes along with a change in Re

Re=La-Ca, La
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E . t f TECHNIgCI_-[E
UNIVERSITAT
Xperlmen SO DRESDEN (T. Bauer, R. Lange) ™=
(Pressure = 20 bar)
U & T ™ T T T ™ T
[] =01 S Superfi\cial velocities
0.1 U U 0.20+ o P e Experiment
’ U © p=03 o Simulation
il 0.15- - ]

i I | e

@
J, 0.05 = 0104 . . ‘ o
| l 1 . S . p=07
. all D\ - N ’IE""\\ .
i | 005{ 7. e . 'r'fd \; - et
l] i oo M Lo T
; 7O ’ _
0.017 Lle) e o /709
U | 0.00 N
U gl 000 005 010 015 020 025
0.05 0.1 0.2
o J, [m/s]
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fuhe Institute of Technol

Steady bubble shape at different Ca ﬂ(“;

I mmx1mm

L, =6mm
&; =04
Re _ op, D,
Ca 4}
=La=2727
Ca = :uLUB
()
Re= pLDUy
H
Ca =
Re

27
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0.17 0.26 0.49
4.64 7.16 13.4

Institute for Nuclear and Energy Technologies
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Simulation cases

T

Karlsruhe Institute of Technology

D, La Eoé I1, Ug Jiot Ca Re Case NTIM
[mm] [ -] (] [m/s] [mis] [] -]
05 1364 0.067 -6 0112 0.074 0.114 1.55 ANB_O_0005_A 334000
0.5 1364 0.067 -7 0.147 0.093 0.149 2.03 ANB_O_0005_D 378000
05 13.64 0.067 -8 0.200 0.120 0.202 1.67 ANB_E_0005_E 296000
05 13.64 0.067 -9 0.260 0.149 0.263 3.59 ANB_E 0005_D 272000
0.5 13.64 0.067 -10 0.329 0.181 0.334 4.55 ANB_E_0005_B 224000
0.5 13.64 0.067 -11 0411 0.217 0.417 568 ANB_O 0005 B 314000
0.5 13.64 0.067 -12 0.493 0.254 0.500 6.82 ANB_O_0005_C 250000
1 2727 0267 -5 0257 0.149 0.261 7.1 TUD_SQUA_E 122000
1 2727 0267 -6 0379 0.207 0.385 1049 TUD_SQUA_O 140000
2 5455 1.068 -29 0.179 0.114 0.181 9.89 ANB_E_002_D 270000
2 5455 1.068 -3.1 0.210 0.130 0.213 11.60 ANB_E_002_B 180000
2 5455 1.068 -3.3 0.243 0.147 0.247 1345 ANB_E_002_C 272000
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