

LACOMECO project within the 7th EU FWP Large Scale Experiments on Core Degradation, Melt Retention and Containment Behaviour

A. Miassoedov

Institute for Nuclear and Energy Technologies

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association

Project details

- Four KIT large-scale experimental facilities, QUENCH, LIVE, DISCO, and HYKA are offered to external partners from EU within the Transnational Access to Large Research Infrastructures (TALI) Project of the 7th EU FWP:
 - 1 experiment in QUENCH
 - 1 experiment in LIVE
 - 1 experiment in DISCO
 - 2 experiments in HYKA
- Investigation of accident scenarios from core degradation to melt formation and relocation in the vessel, melt dispersion to the reactor cavity, and hydrogen related phenomena in severe accidents
- Activities within the LACOMECO project are strongly coupled to SARNET2

R&D priorities on severe accident management

- High priority (further research is considered as necessary)
 - Core coolability during reflood and debris cooling
 - Ex-vessel melt pool configuration during Molten Corium Concrete Interaction (MCCI), ex-vessel corium coolability by top flooding
 - Melt relocation into water, ex-vessel Fuel Coolant Interaction (FCI)
 - Hydrogen mixing and combustion in containment
 - Oxidising impact (Ruthenium oxidising conditions/air ingress for High Burn-up and Mixed Oxide fuel elements) on source term
 - Iodine chemistry in Reactor Coolant System (RCS) and in containment

R&D priorities on severe accident management

- Medium priority (these items should be investigated further as already planned in the different research programs):
 - Hydrogen generation during reflood and melt relocation in vessel
 - Corium coolability in lower head
 - Integrity of Reactor Pressure Vessel (RPV) due to external vessel cooling
 - Direct containment heating (DCH)
- Low priority (could be closed after the related activities are finished):
 - Corium coolability in core catcher with external cooling
 - Corium release following vessel rupture
 - Crack formation and leakages in concrete containment
 - Aerosol behaviour impact on source term (in steam generator tubes (SGT) and containment cracks)
 - Core reflooding impact on source term

QUENCH facility

- Bundle with 21-31 fuel rod simulators of ~2,5 m length
- Electrically heated length: ~1 m; max. power ~70 kW
- Fuel simulated by ZrO₂ pellets
- Quenching (from the bottom) with water or saturated steam
- Gas analysis by mass spectrometry (H₂, steam ...)
- Fully instrumented to measure T, p, flow rates, water level, etc.
- Corner rods removable during tests

LIVE facility

- 1:5 scaled RPV, Ø1 m, wall thickness ~30 mm
- cooling vessel to allow cooling by water or air
- heating furnace of ~220 I volume
- volumetric heating system
- maximum temperatures of up to 1100 C
- central and non-central melt relocation

Instrumentation

thermocouples

camera

observation

- mechanical sensors
- video (optical and IR) cameras
- recording of the power input
- extraction of melt samples

DISCO facility

7

General Objectives:

- Upper bound of pressure, at which no relevant dispersal occurs
- Amount of corium dispersed from the cavity
- Location of corium
- Investigation of different cavity geometries
- Pressure build-up during DCH
- Hydrogen source during DCH

Main data:

- Containment vessel
- RPV and RCS vessel
- Steam accumulator
- Simulant melt
- Gas
- Burst pressure

- 14.0 m³, 1 MPa 0.08 m³, 2 MPa
- 0.08 m³, 4 Mpa
- alumina-iron melt (2400 K)
- steam, air, hydrogen
- 0.7 2.5 MPa
- Variable cavity geometry, different failure modes

HYKA facilities for hydrogen research

Parameters of the test vessels

- A1: 110 m³, 100 bar
- A3: 30 m³, 60 bar
- A6: 23 m³, 40 bar

8

- Analysis of H₂ distribution and combustion processes in severe PWR accidents and BWR incidents
- Provision of an adequate scientific basis for reliable hydrogen risk reduction in NPPs

Selection of the proposals with participation of

- Members of the LACOMECO Executive Group
- SARNET2 experts
- SARNET2 Work Package coordinators
 - objective was to link the activities of the LACOMECO project to the SARNET2 NoE
- SARNET2 Sub-Work Package leaders (based on the experiment objectives and research topics proposed)
 - WP4: ASTEC (ASTEC)
 - WP5: Corium and Debris Coolability (COOL)
 - WP6: Molten Corium Concrete Interaction (MCCI)
 - WP7: Containment (CONT)
- The LACOMECO Scientific Officer of DG RTD

Selected LACOMECO experiments

QUENCH:

 QUENCH-16: Slow oxidation of fuel rod bundles in air atmosphere (KFKI / AEKI, Budapest, Hungary together with INRNE Sofia, Bulgaria)

LIVE:

LIVECERAM: Dissolution kinetics of a pure KNO₃ crust by a KNO₃/NaNO₃ melt (CEA, Grenoble, France)

DISCO:

 DISCO-FCI: Ex-vessel fuel coolant interaction experiment in the DISCO facility (IRSN, Fontenay-aux-Roses, France)

HYKA:

- UFPE: Upward flame propagation experiment in air-steam-hydrogen atmosphere (JSI, Ljubljana, Slovenia)
- DETHYD: Detonations in partially confined layers of hydrogen-air mixtures (WUT, Warsaw, Poland)
- HYGRADE: Hydrogen concentration gradients effects understanding and modelling with data from experiments at HYKA (CEA, Saclay, France)

The LACOMCEO partners gratefully acknowledge funding by Euratom to support the work within LACOMECO and SARNET2 projects

Thank you for your attention

11 A. Miassoedov 17th International QUENCH Workshop, November 22-24, 2011 KIT Campus North, Karlsruhe, Germany