

Scherfestigkeit und tribologisches Verhalten von lasergelöteten Keramik-Stahl-Verbunden

J. Schneider, I. Südmeyer, M. Rohde Institut für Angewandte Materialien - IAM

Sonderforschungsbereich 483 -- Hochbeanspruchte Gleit- und Friktionssysteme auf Basis ingenieurkeramischer Werkstoffe

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

www.kit.edu

Motivation -- lasergestütztes Fügen

Versuchsmaterial

Material Eigenschaft	AI_2O_3	SSiC	Stahl	Incusil-Lot	50Sn48Ag2Ti
Hersteller	Friatec AG	ESK Ceramics	IAISI 1045	Morgan Chem.	KIT IAM
Dichte _ρ / g/cm³	3,9	3,0	7,8	9,7	8,3
Festigkeit _σ / MPa	350	400	560-710	338	-
E-Modul E / GPa	380	410	210	76	68
Wärmeleitfähigkeit λ, W/mK	38	145	44	166	-
Ausdehnungskoeffizient α , 10 ⁻⁶ m/K	8,4	4,1	11,0	18,2	-

Sonderforschungsbereich 483 www.sfb483.kit.edu

Experimentelle Methoden

Prozessbedingungen

- Laser-Rohstrahl
- Argonstrom ≥ 400 NI/h
- Druck p ≥ 2 MPa
- Temperaturmessung

IAM-AWP

$$\tau = \frac{\mathsf{P}_{\mathsf{F}}}{\pi \cdot \mathsf{R}^2}$$

- P_F: Bruchlast
- R: Probenradius
- τ: Bruchspannung
- m: Weibullmodul m

IAM-AWP

Pellet / Scheibe-Versuche

Tribologie

Trockenkupplung

Fügezone von Keramik-Stahl-Verbunden

- Inhomogene oder keine Benetzung von SSiC mit AgCuTi- und AgCuInTi-Loten trotz einer Ti reichen Reaktionszone
- Homogene, spaltfreie Benetzung und Ti-reiche Reaktionszone von Al₂O₃ mit AgCuTi- und AgCuInTi-Loten

Fügezone von SSiC-Stahl-Verbunden

- Gute, spaltfreie Benetzung mit SnAgTi-Loten mit Sn ≥ 30wt% oberhalb von T ≥ 900°C
- Dünne, inhomogene Ti reiche Reaktionszone
- Große Ti-Partikeln im Lotinneren

Thermische Kennwerte

Scherfestigkeit von Keramik-Stahl-Verbunden

Bruchflächen von Keramik/Stahl-Verbunden

1 mm

1 mm

τ_{Bruch} ≤ 15 MPa

Gleichmäßige Benetzung mit inhomogener Ti-reicher Reaktionszone

➡ Versagen teils in der Keramik / teils in der Grenzfläche

Tribologischer Modellprüfstand und Versuchsparameter

Tribologische Charakterisierung: vollkeramische Pellets

Tribologische Charakterisierung: vollkeramische Pellets

Tribologische Charakterisierung: Verbundpellets

Tribologische Charakterisierung: Verbundpellets

Zusammenfassung

Lasergestütztes Fügen von Keramik/Stahl-Verbunden

- Fügen von Al₂O₃/Stahl-Verbunden problemlos mit kommerziellen Loten möglich
- Geeignete Lote und Prozesse zum Fügen von SiC/Stahl-Verbunden entwickelt
- SSiC/Stahl-Verbunde erreichen Scherfestigkeiten > 30 MPa
- Keramische Friktionspellets in Kupplungsdemonstratorscheibe eingebunden

Tribologisches Verhalten

- Paarungen mit SSiC bieten Vorteile hinsichtlich des Reibungsverhaltens im Vergleich zu den Paarungen mit Al₂O₃
 - SSiC ⇔ höheres Reibungszahlniveau
 - SSiC ⇒ "geringerer" Reibungszahlgradient
- Paarung mit Al₂O₃ führt zu geringerer stationärer Verschleißrate
- Einsatz von Keramik/Stahl-Verbundpellets erlaubt die positive Beeinflussung des tribologischen Verhaltens

Vielen Dank für Ihre Aufmerksamkeit!

Deutsche Forschungsgemeinschaft

DIEG

Die Autoren danken der Deutschen Forschungsgemeinschaft für die Finanzierung des Teilprojektes B2 im Rahmen des Sonderforschungsbereichs 483 "Hoch beanspruchte Gleit- und Friktionssysteme auf Basis ingenieurkeramischer Werkstoffe ".