

Influence of gas-phase reactions on catalytic reforming of isooctane

Torsten Kaltschmitt, Lubow Maier, Marco Hartmann, Christian Hauck, Olaf Deutschmann

33rd International Symposium on Combustion – Tsinghua University - Beijing

Institute of chemical technology and polymer chemistry

Introduction CPOX of higher hydrocarbons

2 26.04.2012

T. Kaltschmitt et al, 33rd International Symposium on Combustion – Tsinghua University -Beijing Institute of Chemical Technology and Polymer Chemistry

Motivation On-board fuel processing as future technology

Compact autothermal reformers for onboard electricity supply (APU)

Motivation Challanges in CPOX of higer HCs

High-temperature operBeside surface chem

<u>chomictry ic importa</u>

Post-reactions in the gas-phase downstream the catalyst make interpretation of the results more complicated

 $-c_1 - c_3$ precursors

N. Burke, D. Trimm, React. Kinet. Catal. Lett. 84 (2005)

T. Kaltschmitt et al, 33rd International Symposium on Combustion – Tsinghua University -Beijing Institute of Chemical Technology and Polymer Chemistry

Experimental Setup Rapid mixing below autoignition temperature

M. Hartmann, Sven Lichtenberg, Nicole Hebben, Dan Zhang, O. Deutschmann, Chemie Ingenieur Technik 81 (2009), 909-919

Experimental Setup Product gas processing and analysis

Total flow determination via internal standard methods and drycal[®] technology

M. Hartmann, Sven Lichtenberg, Nicole Hebben, Dan Zhang, O. Deutschmann, Chemie Ingenieur Technik 81 (2009), 909-919

Conversion with catalyst

Catalytic experiment Surface and gas-phase reactions

2D species distribution (molar fractions) along the catalyst. The symmetry axis of the channel and the gas-wall interface are at r = 0 and 0.5 mm, respectively.

M. Hartmann, L. Maier, H. D. Minh, O. Deutschmann, Combust. Flame 157 (2010) 1771-1782.

Catalytic experiment Ignition behaviour

Conversion without catalyst

Non-catalytic gas-phase experiment Post-catalyst regime for gas-phase reactions

11 26.04.2012

T. Kaltschmitt et al, 33rd International Symposium on Combustion – Tsinghua University -Beijing Institute of Chemical Technology and Polymer Chemistry

Non-catalytic gas-phase experiment Inlet conditions in non-catalytic case taken from catalytic case

Non-catalytic gas-phase experiment 1D steady state plug-flow simulation

DETCHEM^{PLUG}: isothermal, length 25.5 cm, radius 1cm, flow 0.318 m/s

MECHANISM M1: Westbrook-Kalghatgi gas phase chemistry: 1082 species, 8927 reactions

detailed *n*-heptane/*iso*-octane mechanism from LLNL

H.J. Curran, P. Gaffuri, W.J. Pitz, C.K. Westbrook, Combust. Flame 129 (3) (2002) 253–280

and detailed toluene mechanism from Dagaut

P. Dagaut, G. Pengloan, A. Ristori, Phys. Chem. Chem. Phys. 4 (2002) 1846–1854.

were merged.

Johan Andrae, David Johansson, Pehr Björnbom, Per Risberg, Gautam Kalghatgi,Combustion and Flame 140 (2005) 267–286

MECHANISM M2: based on work of Dean et al gas phase chemistry: 420 species, 3611 reactions, PAH pathway

C.A. Mims, R. Mauti, A.M. Dean, K.D. Rose, J. Phys. Chem. 98 (50) (1994) 13357–13372 K.M. Walters., A.M. Dean, H. Zhu, R.J. Kee, Journal of Power Sources 123 (2003) 182–189

Results Numerically predicted axial product profiles

- C₈ completely converted for z ≥ 5 cm
- H₂ and CO decrease
- HCs increase
- Thermal cracking leads to decreasing HC_{>3} for z ≥ 3 cm
- 10% H₂ conversion
- H₂O, CO₂ increase due to WGS and hydrogenation reactions

Results Product distribution as function of temperature

C/O = 1.6, 6 SLPM, symbols = experiment

- Minimum T is required
- C1-C3 observed at T > 850 K
- No C8 conversion below T < 850 K</p>
- Max. conversion of 87.5% at 1108 K
- M2 predictes less C1 C3 than M1 due to
 PAH formation
- C3 decreases for T >
 990 K because of
 higher formation
 enthalpy of ethylene
 and acetylene

Results Main- and side-products

- With rising C/O:
 - More soot precursor formation
 - Slight Syngas consumption
- Consumption of H₂O points to WGS for C/O < 1.3
- Consumption of H₂ for C/O > 1.3 points to methantion reactions

993 K, 6 SLPM, open symbols = experiment, <u>filled symbols = inlet</u>

Results Carbon Precursor Distribution along the Reactor

Conclusions

- Catalyst is covered with C downstream the position at which all O₂ is consumed at fuel rich conditions
- gas-phase plays important role in the conversion of the remaining fuel
- Gas-phase reactions are responsible for coke formation when unconverted fuel leaves the HT oxidation zone of the catalyst
- Cracking of remaining fuel increases concentrations of by-products and as a consequence of C-deposition
- Gas-phase reactions have to be considered in HT CPOX reformers especially in fuel-rich operation mode

Acknowledgment

Dr. Lubow Maier

Dr. Marco Hartmann

Prof. Dr. Olaf Deutschmann

- Colaborations
 - Prof. Dr. Robert J. Kee
 CHEMICAL ENGINEERING
 - Prof. Dr. Anthony M. Dean CHEMICAL ENGINEERING COLORADO SCHOOL OF MINES

DELPHI

Financial support

DELPHI