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Advantages of Micro-PIM -\X‘(IT

Exploits established plastic micro replication technology for the realization of
ceramic and metal microparts

Enables multi-component fabrication
Huge potential for automation
Low cost fabrication method for ceramic and metallic microparts

Technology close to industry

But: moulding is only a part of a complex process chain
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Feedstock requirements - general

Huge solid of at least 45 vol% (ceramic) or 60 vol% (metal)

average particle size should be smaller than a 10t of the smallest structural detail
low viscosity @ moderate temperatures

simple and reproducible compounding

no phase separation under large shear stress

good mold filling behavior

high green stabllity

simple debinding and sintering



Feedstock requirements - micro

Microsized parts often possess
complex and fragile structures

structural aspect ratio can be higher than one
high structural homogeneity required

near-net-shape structure necessary,
mechanical postprocessing almost impossible

defect-free demolding
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Compounding of established feedstock systems 'ﬂ(".

Binder syster

Partial solubility n-hexane
ceramic ZrO, (bimodal), Al,O,, Si;N,, BaTiO5, ATN
metal 17-4PH, 316L, Cu, Au, W, W-La,0,;, WC-Co

= Torque recording kneader, extruder, shear-rolls
= Compounding temperature: 125-180°C
= Viscosity: 100-500 Pa s
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Process chain of new feedstock system 'ﬂ(".

Binder composition: Ceramic or metal filler: Binder system PMMA/PEG
1. suitable additive selection Particle characterization

2. base viscosity adjustment (spec. surface area, particle size) Partial solubility water
ceramic ZrO,
metal 17-4PH

Reactive feedstock compounding:
1. Accessible max. solid load
2. Compounding parameter
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Feedstock postprocessing Feedstock characterization
1. Thermal polyn?erlzatlon - 1. Meltwstcosm,f Polyethylenglycol (PEG)
2. Pelletizing 2. Real solid load
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Micro injection moulding
1. Moulding parameter
2. Greenbody quality
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Debinding Sintering
1. With/without solvent - 1. Sinter parameter
2. Thermal 2. Oven atmosphere

Polymethylmethacrylat
(PMMA)




Modified process chain Q(IT
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Compounding Polymerization Granulation

Thermal Debinding Solvent Debinding Injection Moulding
Sintering



10

Reactive compounding

MMA/PMMA reactive resin/phenanthrene as plastizizer
PEG300 as water soluble component
Polyethyleneglycolalkylether (Brij92/93) as surfactant

= concentration 8.8 mg/m? filler surface area
Microsized ZrO, (Tosoh TZ-3YS-E)

= Average particle size: 0.45 pm
= Specific surface area: 6.6 m3/g
= Sinter density: 6.05 g/cm3

Torque controlled dissolver (VMA: Getzmann AE03-C1)
Compounding parameters

= 25°C

= 1000 rpm

= 15 min
Maximum measured torque < 1.2 Nm
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Reactive compounding - zirconia load sweep
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= Stable torque up to a zirconia load of only 33 vol%

= At higher solid loadings
= pronounced evaporation of MMA due to evolved shear heat

= insufficent wetting of the dissolver blade
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Melt viscosity - zirconia load sweep
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Shear rate (1/s)
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= Melt viscosity increases with zirconia load
= Melt viscosity drops with increasing temperature
= Stable feedstocks up to 36 vol%

> Solid load to small for powder injection moulding



Measurement of the effective zirconia load by
combustion experiments

Measured zirconia load (vol%)

Linear fit equation:

50 - y = -0.68 + 1.36x
Fit stability index R* = 0.995
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= Observed MMA-loss during reactive compounding
= Effective zirconia load significantly higher
= |nitial 36 vol% means effective 48 vol%
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2 > Solid load sufficient for powder injection moulding




Injection Moulding of test specimen (IT

Gating System

Tribological Disc
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= Feedstock with (initial 33 vol%), effective 45 vol% zirconia processed
= |sothermal process control
= Green density 3.45 g/cms3 (57 % theoretical density of zirconia)
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Debinding and sintering AT
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= Two strategies:

= Solvent (water) assisted (deionized water, 8 h, 25°C) plus thermal debinding
= Direct thermal debinding

= Sintering
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Debinding and sintering

Debinding strategy Density (g/cm3) Theoretical density (%)

Solvent plus thermal 598 98.1+1.1
debinding

Thermal debinding 6.05 98.9+0.2

Free space
faced side

Solid substrate
faced side

= Sinter densities almost identical
= |Improved quality by using

Solvent/ o bined debindi
Greenbody  thermal debinding 1Mermal debinding compinea depinding
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Conclusion and Outlook '-\S‘(IT

® Successful use of environmental-friendly binder system was shown
® Waiving of solvent-assisted debinding possible
® Importance of interface chemistry

® Huge ceramic densities possible

® Replication of “real* microsized parts

® Further extension to metal injection moulding
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