

Development of partially water soluble binder system for ceramic powder Injection moulding

Thomas Hanemann, Oxana Weber

Institute for Applied Materials & Department of Microsystems Engineering (IMTEK) at University of Freiburg

Outline

- 1. Process chain Micro Powder Injection Molding
- 2. Feedstock requirements
- 3. Compounding of established feedstock systems
- 4. Process chain of new developed feedstock system
 - 1. Reactive compounding
 - 2. Melt viscosity
 - 3. Injection molding
 - 4. Debinding and sintering
- 5. Conclusion and outlook

Process chain Micro-PIM

www.mikrospritzgiessen.de

Advantages of Micro-PIM

- Exploits established plastic micro replication technology for the realization of ceramic and metal microparts
- Enables multi-component fabrication
- Huge potential for automation
- Low cost fabrication method for ceramic and metallic microparts
- Technology close to industry

But: moulding is only a part of a complex process chain

Feedstock requirements - general

- Huge solid of at least 45 vol% (ceramic) or 60 vol% (metal)
- average particle size should be smaller than a 10th of the smallest structural detail
- Iow viscosity @ moderate temperatures
- simple and reproducible compounding
- no phase separation under large shear stress
- good mold filling behavior
- high green stability
- simple debinding and sintering

Feedstock requirements - micro

- Microsized parts often possess complex and fragile structures
- structural aspect ratio can be higher than one
- high structural homogeneity required
- near-net-shape structure necessary, mechanical postprocessing almost impossible
- defect-free demolding

Compounding of established feedstock systems

Binder system	PE/Wax
Partial solubility	n-hexane
ceramic	ZrO ₂ (bimodal), Al ₂ O ₃ , Si ₃ N ₄ , BaTiO ₃ , ATN
metal	17-4PH, 316L, Cu, Au, W, W-La ₂ O ₃ , WC-Co

- Torque recording kneader, extruder, shear-rolls
- Compounding temperature: 125-180°C
- Viscosity: 100-500 Pa s

Process chain of new feedstock system

Modified process chain

Reactive compounding

- MMA/PMMA reactive resin/phenanthrene as plastizizer
- PEG300 as water soluble component
- Polyethyleneglycolalkylether (Brij92/93) as surfactant
 - concentration 8.8 mg/m² filler surface area
- Microsized ZrO₂ (Tosoh TZ-3YS-E)
 - Average particle size: 0.45 µm
 - Specific surface area: 6.6 m²/g
 - Sinter density: 6.05 g/cm³
- Torque controlled dissolver (VMA: Getzmann AE03-C1)
- Compounding parameters
 - 25°C
 - 1000 rpm
 - 15 min
- Maximum measured torque < 1.2 Nm

Reactive compounding - zirconia load sweep

Submicron-sized ZrO₂

- Stable torque up to a zirconia load of only 33 vol%
- At higher solid loadings
 - pronounced evaporation of MMA due to evolved shear heat
 - insufficent wetting of the dissolver blade

Melt viscosity - zirconia load sweep

Melt viscosity increases with zirconia load

- Melt viscosity drops with increasing temperature
- Stable feedstocks up to 36 vol%

Solid load to small for powder injection moulding

Measurement of the effective zirconia load by combustion experiments

- Observed MMA-loss during reactive compounding
- Effective zirconia load significantly higher
 - Initial 36 vol% means effective 48 vol%

Solid load sufficient for powder injection moulding

Injection Moulding of test specimen

- Feedstock with (initial 33 vol%), effective 45 vol% zirconia processed
- Isothermal process control
- Green density 3.45 g/cm³ (57 % theoretical density of zirconia)

Debinding and sintering

- Two strategies:
 - Solvent (water) assisted (deionized water, 8 h, 25°C) plus thermal debinding
 - Direct thermal debinding
- Sintering

Debinding and sintering

Debinding strategy	Density (g/cm ³)	Theoretical density (%)
Solvent plus thermal debinding	5.98	98.1 ± 1.1
Thermal debinding	6.05	98.9 ± 0.2

- Sinter densities almost identical
- Improved quality by using combined debinding

Conclusion and Outlook

- Successful use of environmental-friendly binder system was shown
- Waiving of solvent-assisted debinding possible
- Importance of interface chemistry
- Huge ceramic densities possible
- Replication of "real" microsized parts
- Further extension to metal injection moulding

Lisa Merklein for reactive compounding

Peter Holzer for injection moulding

Ceramics Interest Group