

Ductilisation of W: Synthesis, analyses and characterization of W-laminates made of W-foils

J. Reiser¹, M. Rieth¹, B. Dafferner¹, A. Hoffmann²

- ¹ Karlsruhe Institute of Technology, Institute for Applied Materials, Germany
- ² PLANSEE SE, Reutte, Austria

18th PLANSEE seminar, 3 – 7 June 2013, Reutte

INSTITUTE FOR APPLIED MATERIALS, APPLIED MATERIALS PHYSICS

What is the problem?

- Divertor applications ask for a high temperature (1000°C) structural material
- \blacksquare W is the metal with the highest melting point of all metals ($T_S = 3422^{\circ}C$)
- Disadvantages:
 - Low fracture toughness, K_{IC} [MPa m^{1/2}]
 - High brittle-to-ductile transition temperature (BDTT)

Tokamak fusion reactor

picture: PLANSEE SE

Main question

Is it possible to expand the ductile properties of a W-foil to the bulk?

- Analyses of W-foil
 - Electron microscopy, 3PB, tensile tests
- Synthesis of W-laminate plates
 - Charpy impact tests
- Synthesis of W-laminate pipes
 - Charpy, burst test
- Outlook: W-laminates for high heat flux applications

Karlsruhe Institute of Technology

- Analyses of W-foil
 - Electron microscopy, 3PB, tensile tests
- Synthesis of W-laminate plates
 - Charpy impact tests
- Synthesis of W-laminate pipes
 - Charpy, burst test
- Outlook: W-laminates for high heat flux applications

Microstructure of W-foil, 100 μm

- Grain size:
 - As-received: 0.5 x 3 x 15 μm³
 - 1 h / 2700°C: 100 x 100 x 100 μm³
- Texture: {100} <011>; rotated cube
- Sub grains: nearly free from disl.
- Begin rxx: 1200°C

(pictures: J. Reiser, Y. Xiaoou, D.E.J. Armstrong)

3PB-tests on W-foil, 100 μm

3 point bending test at RT

Tensile tests on W-foil, 100 μm

Karlsruhe Institute of Technology

- Analyses of W-foil
 - Electron microscopy, 3PB, tensile tests
- Synthesis of W-laminate plates
 - Charpy impact tests
- Synthesis of W-laminate pipes
 - Charpy, burst test
- Outlook: W-laminates for high heat flux applications

W-laminate: microstructure

The mechanical properties of a W-laminate depend on

the condition of the W-foil as well as

J. Reiser, IAM-AWP, KIT

the interface after the joining process.

W-laminate: microstructure

- Condition of the W-foil:
 - As-received
 - Recrystallized
- Condition of the interface:
 - Wettability
 - Solid solution
 - Intermetalic compounds

$$T_S^{AgCu} = 780^{\circ}C$$

$$T_S^{Cu} = 1085^{\circ}C$$

 $T_{S}^{T_{i}} = 1670^{\circ}C$

$$T_{S}^{Zr} = 1855^{\circ}C$$

W-laminates: Charpy impact tests

- Can the ductile properties of a W-foil be transferred to the bulk?
 - As-received: improvement of 300°C

W-laminate made of AgCu

W-laminates: Charpy impact tests

- Can the ductile properties of a W-foil be transferred to the bulk?
 - improvement of 300°C As-received:
 - Recrystallized: improvement of 500°C

W-laminates: diffusion bonding with Ti

W-Ti diffusion bonding at 900°C

W-Ti phase diagram

2 solid solutions after

cooling down

(inter-) diffusion coefficients at 900°C

Diffusion: W in Ti > Ti in W

Interface, 900°C: 0 s, 1 h

- Phase boundaries
- Miscibility gap

W-laminates: diffusion bonding with Ti

W-Ti diffusion bonding at 900°C → cooling down at RT

- Eutectoid transformation
- WIDMANSTÄTTEN-kind structure
- β-Ti needles in α-Ti matrix

Quantitative scale of Ti: yellow = max., black = min.

W-laminates: diffusion bonding with Ti

- Charpy impact properties
 - Improvement of 200°C compared to W-plate material

Karlsruhe Institute of Technology

- Analyses of W-foil
 - Electron microscopy, 3PB, tensile tests
- Synthesis of W-laminate plates
 - Charpy impact tests
- Synthesis of W-laminate pipes
 - Charpy, burst test
- Outlook: W-laminates for high heat flux applications

W-laminates: pipes

- Howo can a tungsten pipe be produced?
 - Extrusion → very challenging
 - Drilling a hole in a rod
 - NEW: by rolling up a W-foil

15 mm

rod

AgCu, 780°C

Cu, 1085°C

Ti, 1670°C

Zr, 1855°C

W-laminates: pipes

- Characterization by
 - Charpy impact tests
 - Burst test

10 mm

Karlsruhe Institute of Technology

- Analyses of W-foil
 - Electron microscopy, 3PB, tensile tests
- Synthesis of W-laminate plates
 - Charpy impact tests
- Synthesis of W-laminate pipes
 - Charpy, burst test
- Outlook: W-laminates for high heat flux applications

Scientific outlook: ductility and toughness

Ductility:

Direct: TEM

■ Indirect: SRS, V = fingerprints of the kinetics of pl. deformation

Toughness:

Direct: TEM

■ Indirect: $\Delta H_{BDT}(K_{IQ})$ vs. ΔH_{kp} vs. ΔH_{d}

M. Klimenkov, U. Jäntsch (KIT)

Technical outlook: HHF applications

W-laminates for water- and helium-cooled divertors and CSP

1 mm

W-laminate plate: interlayer

J. Reiser, IAM-AWP, KIT

22

Thank you for your attention

The authors are grateful to: PLANSEE SE,

University of Oxford,

EFDA and

our colleagues from IAM (KIT).

