

Creep Strength Of Chromium-Containing Conventional And ODS Steels In Oxygen-Controlled Pb At 650°C

Mariya Yurechko, <u>Carsten Schroer</u>, Olaf Wedemeyer, Aleksandr Skrypnik and Juergen Konys

INSTITUTE FOR APPLIED MATERIALS - MATERIAL PROCESS TECHNOLOGY | CORROSION DEPARTMENT

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Overview

Attractiveness of ODS:

- ✓ High-temperature strength and resistance to neutron irradiation.
- ✓ High oxidation resistance reached through Cr (9-14 mass%) and fine-grained structure with oxide particles.

Creep-rupture tests in oxygen-controlled heavy liquid metal (Pb)

Continuous control of oxygen concentration in Pb

Measurements:

- Oxygen activity close to the specimen
- λ -sensors in gas -inlet and -outlet
- λ -probe Temperature of Pb
 - Gas flow (Ar, Ar/H_2 and synthetic air)

Conditions:

□ stagnant Pb or LBE (900 ml)

$$\Box T_{max} = 650^{\circ}C$$

$$\Box \quad c_0^{max} = c_{HLM}^{saturation}$$

$$c_o^{min} = 10^{-8} - 10^{-9}$$
 mass %

CRISLA Facility:

- 5 independent capsules for HLM
- 3 independent capsules for air (gas)

CRISLA-capsule for gas

Gas out

Thermocouple

pecimen

CRISLA-capsule for HLM

Pull rod with

bellows

Gas in

Oxygen

sensor

Tested materials

9Cr-ODS (plates)								T91						
Fe		Cr	Мо	Mn		Ni	Y *	Fe	Cr	Мо	Mn	Si	V	
bal		8.8	1.92	0.33 0.3		21	0.34	bal	8.99	0.89	0.38	0.22	0.21	
12Cr-ODS (plates)									P92					
Fe	Cr	Мо	W	Ті	Mn	Ni	Y *	Fe	Cr	Мо	w	Mn	V	
bal	12.2	2 <0.01	1.94	0.25	<0.01	<0.01	0.17	bal	8.99	0.49	1.75	0.43	0.2	
14Cr-ODS (bars)														
Fe		Cr	w	Ti		Mn	Y *	T91						
bal		13.45	0.88	0.88 0.39		0.27								
* as Y203 Image: Comparison of the set of th												200 μm		
	E	xtrusion/ro	bling dir	ection										

Results for T91 and P92

- ✓ Generally ductile behaviour.
- Insignificant difference between Pb and air.
- ✓ P92 shows brittle rupture mode at 75 MPa (t_B =13,000h).

Indications for LME: Failure origin at surface. Pb at oxide scale/steel interface.
Indications for thermal aging: Increase in size and number of precipitates.
Difficult to separate the influence of these two effects in the creep-rupture tests.

Creep strength of 9-14 Cr ODS steels in Pb and air at 650°C

- ✓ 12Cr- and 14Cr-ODS: insignificant difference in strength in oxygen-controlled Pb and air at 650°C.
- The lower the stress, the bigger the difference in strength between 12/14Cr-ODS and 9Cr-ODS in Pb (and air).

Creep strength of 9Cr-ODS in comparison to conventional P92

 The lower the stress, the smaller the difference in strength between 9Cr-ODS and P92 (T91) in Pb (and air).

Fracture analysis of 14Cr-ODS

Ζ=62 %; ε_R=18 %

Ζ=4 %; ε_R=7 %

Ζ=5 %; ε_R=7 %

Ζ=6 %; ε_R=6 %

Secondary creep vs. Fracture mode of ODS

Summary: Creep and fracture

Conclusion

- \checkmark Creep-rupture in static Pb (650°C/10⁻⁶ mass%) generally similar to tests in air.
- ✓ Change in rupture mode for f/m P92 at 75 MPa in Pb.
- ✓ Influence of Pb and thermal aging not yet possible to separate.

- ✓ 12-14Cr (ferritic) ODSs generally stronger than 9Cr-ODS (ferritic/martensitic).
- ✓ Brittle fracture at low load, ductile fracture at high load (<330/350 MPa)
- ✓ Influence of deformation rate (secondary creep)?

Acknowledgment

✓ Funding by the EURATOM 7th Framework Programme within the cross-cutting project GETMAT is gratefully acknowledged.