

Overview of LOCA tests performed at KIT during last 30 years

J. Stuckert

QWS19, Karlsruhe 2013

Institute for Applied Materials; Program NUKLEAR

KIT – University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz Association

www.kit.edu

Out-of-pile KfK single tube <u>isothermal</u> tests TUBA between 600°C and 1200°C: investigation of creep rupture time

P. Hofmann, S. Raff. KfK 3168, Juli 1981

scheme of **TUBA** rig (TUbe Burst Apparatus)

60 tests

samples: as received Zry-4 tubes (without pellets) with length of 60 mm;

pressure-less heating to work T in He;

filling of sample with Ar during 1 s to overpressures 2...200 bar;

one TC at sample bottom;

axial T difference between sample middle and sample end-plugs (pre-test): 25 K;

azimuthal ΔT : < 3 K;

strain measurement on cross projection with video camera.

Single tube <u>isothermal</u> TUBA tests: dependence of burst strain and rod bending on temperature

1) two minimums of the burst strain: at 900°C (α + β region) and 1050°C (β region);

2) significant rod bending at temperatures before phase transition (α region);

absence of rod bending at temperatures during and after phase transition;

3) axial contraction in α region due to anisotropy.

Single tube isothermal TUBA tests: criterion of creep rupture time (dependence of burst time on temperature and pressure)

KfK single rod transient tests FABIOLA

L. Schmidt, H. Lehning, K. Müller, D. Piel, H. Schleger. KfK 3250, Juni 1982

X-ray picture of FABIOLA rig

> 100 tests

samples: as received Zry-4 tubes with length of 200 mm, filled with AI_2O_3 or UO_2 pellets (*no influence of pellet material was detected*);

filling of sample with He during 1 s to overpressures 40...125 bar at 600°C;

transient heating in steam with rates 2...11 K/s until clad burst;

temperature measurements: 3 pyrometers along axial direction (75 mm interval), 3 thermocouples at burst position (only few samples; 120° interval);

axial T gradient between sample middle and sample end-plugs: 0.2 K/mm;

azimuthal ΔT : <u>15 K</u>;

strain measurement on longitudinal projection with X-ray camera.

Out-of-pile single rod <u>transient</u> tests FABIOLA: dependence of burst strain on temperature

minimum of burst strain lies in α + β -region at 900°C - similar to isotherm tests

QWS-19, Karlsruhe

- > No influence of irradiation on the oxide growth was indicated (up to 35 GWd/tU)
- > Close to the burst opening, the thickness of the inner oxide layer was similar to outer oxide
- > Essentially no oxide was found on the inner surface more than about 100 mm from the burst location
- > The observed oxidation did not influence the circumferential strain

> Fuel pellet fragmentation did not affect the cladding deformation process

> No influence of fission products on cladding burst strain was detected

19.11.2013 J. Stuckert – LOCA overview KfK-FZK-KIT QWS-19, Karlsruhe

Electrically heated fuel rod simulator (Test BSS 12)

Unirradiated (Test B11)

Irradiated to 35 000 MWd/t (Test G 3.2)

no influence of irradiation on

burst shape

13 / 23

14 / 23

QWS-19, Karlsruhe

FEBA: clad temperature evolution

19.11.2013 J. Stuckert – LOCA overview KfK-FZK-KIT

16 / 23

Out-of-pile bundle tests SEFLEX on influence of clad-fuel gaps and coolability of bundles blocked by pre-ballooned clads P. Ihle, K. Rust. KfK 4024, March 1986

QWS-19, Karlsruhe

Outcomes of REBEKA program

- The cooling effect of the two-phase flow increases the temperature differences on the cladding tube circumference and limits in this way the mean circumferential burst strains to values of about 50%.
- The circumferential burst strains of Zircaloy cladding tubes are kept relatively small due to temperature differences on the cladding circumference and the anisotropic strain behavior of Zircaloy.

comparison of FR2 data with REBEKA burst ctriterium

19.11.2013 J. Stuckert – LOCA overview KfK-FZK-KIT QWS-19, Karlsruhe

Summary of single rod and bundle tests (not pre-oxidised claddings) performed between 1978 and 1987

- Isothermal single cladding tests TUBA given conservative values on maximal burst \geq parameters (dependence of stress burst life on temperature and pressure)
- Rod bending was observed only at temperatures below phase transition $\alpha \rightarrow \alpha + \beta$ in Zircaloy- \geq 4 material (810°C)
- > Single rod tests FABIOLA with temperature transient confirmed observation of isothermal tests: minimum of burst strain lies in α + β -region at 900°C
- Single rod FR2 in-pile tests up to burn-up of 35 GWd/tU showed that 1) Fuel pellet fragmentation did not affect the cladding deformation process; 2) No influence of fission products on cladding burst strain was detected
- The observed oxidation degree did not influence the circumferential burst strain \geq
- Conclusions of out-of-pile tests REBEKA, SEFLEX and FEBA on bundle thermal-hydraulic \succ behaviour: 1) The cooling effect of the two-phase mixture which is intensified during reflooding increases temperature differences on the cladding tube circumference and thus limits the mean circumferential burst strains to values of about 50%; 2) An unidirected flow through the fuel rod bundle during the reflooding phase causes maximum cooling channel blockage of about 70%; 3) The coolability of deformed fuel elements can be maintained up to flow blockages of about 90%.

Bundle experiments of the new QUENCH-LOCA series

Objective and results

- Investigation of ballooning, burst and <u>secondary hydrogen</u> <u>uptake</u> of the cladding under representative design basis accident conditions
- Detailed post-test investigation of the <u>mechanical properties</u> of the claddings to check the embrittlement criteria and measurement of residual ductility
- Two experiments with Zircaloy-4 bundles were performed up to now as commissioning and reference tests
- Four bundle tests with non- and pre-hydrogenated M5[®] and ZIRLO[™] claddings will be performed up to 2015

Zircaloy-4 rods

hydrogen rupture of cladding bands inside during tensile tests cladding due to stress detected with concentration n⁰-radiography (rods with C_H<1000wppm) double ruptures due to hydrogen embrittlement (C_H<1000wppm)

Acknowledgment

The on-going QUENCH-LOCA experiments are supported and partly sponsored by the association of the German utilities (VGB).

Thank you for your attention

<u>https://www.iam.kit.edu/wpt/loca/</u> <u>http://www.iam.kit.edu/wpt/471.php</u> <u>http://quench.forschung.kit.edu/</u>

19.11.2013 J. Stuckert – LOCA overview KfK-FZK-KIT QWS-19, Karlsruhe

