

Results of the QUENCH-DEBRIS bundle test

J. Stuckert, M. Große, J. Moch, C. Rössger, M. Steinbrück

QWS19, Karlsruhe 2013

Institute for Applied Materials; Program NUKLEAR

KIT – University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz Association

www.kit.edu

Objectives

 investigation of debris bed formation for bundle with completely oxidised Zry-4 claddings filled with segmented pellet simulators

• investigation of cooling of degraded bundle during the water reflood from bottom

Quench single rod test with completely oxidized claddingfilled with segmented pellets.Oxidation at 1773 K during 11600 s, quench with water 80 g/h

positions of upper W/Re thermocouples

Bundle elements at bundle bottom Image: Construction of the second s

bundle bottom

fastening of NiCrNi thermocouple

Post-test: overview of mostly intact Hf-shroud (only several cracks) after dismounting of heat insulation

180°

19.11.2013 J. Stuckert – QUENCH-DEBRIS (Q-17 QWS-19, Karlsruhe

Failures of Zry claddings and Hf shroud

QWS-19, Karlsruhe

Indication of debris relocation to GS#2 (reaction of thermocouples TGS installed at the top of GS#2)

Reflood simulation with pellet debris inside 21-rod-bundle. Cold water flow rate **10 g/s**

TC wetting at high elevation by 2-phase fluid

19.11.2013 J. Stuckert – QUENCH-DEBRIS (Q-17) QWS-19, Karlsruhe

Quench phase: water level oscillations and evaporation rate

Withdrawn grid spacer #4 (1350 -1390 mm) and remnant of cladding

remnant of rod #8: significantly oxidised

GS #4: completely oxidised

19.11.2013 J. Stuckert – QUENCH-DEBRIS (Q-17) QWS-19, Karlsruhe

Top view of grid spacer #3 (1090 mm)

pellet segments between heated rods

completely oxidised GS #3

cladding filled with pellet segments

empty cladding

19.11.2013 J. Stuckert – QUENCH-DEBRIS (Q-17) QWS-19, Karlsruhe

Endoscope observation of debris relocated under GS #3

sintered pellets at 950 mm

pellet segments at 920 mm between Zry and Hf claddings

blockage at elevation 910 mm

Debris collected at the top of grid spacer #3 (1090 mm)

19.11.2013 J. Stuckert – QUENCH-DEBRIS (Q-17) QWS-19, Karlsruhe

completely oxidized Zry cladding (segment of tube debris)

partially oxidized Hf cladding (deleted segment of cladding)

19.11.2013 J. Stuckert – QUENCH-DEBRIS (Q-17) QWS-19, Karlsruhe

Structure of Zry claddings between 450 and 750 mm

X-ray tomography

19.11.2013 J. Stuckert – QUENCH-DEBRIS (Q-17) QWS-19, Karlsruhe

bundle composition

cross-section at 400 mm: tomography; blockage 85%

Summary

The QUENCH-17 bundle test with 9 unheated internal rods (Zry-4 claddings) and 12 heated external rods (Hf claddings) was performed in two stages: 1) long pre-oxidation stage (78000 s) at T_{pct}=1750 K with complete oxidation of Zry-4 claddings between about 650 and 1150 mm, maximum oxidation of Hf claddings about 30%;
2) reflood stage with slow flooding from bottom (10 g/s, or about 3 mm/s through the debris bed).

• Hf claddings of heated rods were intact during whole test, Hf shroud was failed at 850 mm after 25000 s. First failure of Zry-4 cladding was registered at 5500 s. Noticeable internal oxidation was observed at upper bundle elevations.

• Mechanical impact on the end of pre-oxidation caused debris relocation to grid spacers at 1050 mm and 350 mm. Some Zry-4 claddings were not significantly damaged; the pellet segments relocated from the failed rods were captured between corresponding neighbour rods. Ceramics debris collected at the top of grid spacers consist of separate pellet segments and **relatively large cladding segments**.

• The **porosity** of debris bed is **significant**, no dense packing of debris particles was observed. **Large empty volumes** formed due to bending of rods. The maximum bundle blockage was about 85%.

• Steam production rate was **stagnated** during propagation of flooding water through the debris collected above grid spacers at 350 mm.

• Despite additional gas flow from breaches in the shroud and unheated rods, the course of the experiment closely followed the pre-test prediction, indicating that those events did not impact the test conduct.

• Impact of debris bed on reflooding remains open question. Detailed analysis of the reflood is planned in the near future to examine the latter question.

Acknowledgment

The authors would like to thank Mrs. U. Peters, Mrs. U. Stegmaier and Mrs. J. Laier and for intensive work during test preparation and post-test investigations

Thank you for your attention

http://www.iam.kit.edu/wpt/english/471.php/ http://quench.forschung.kit.edu/

19.11.2013 J. Stuckert – QUENCH-DEBRIS (Q-17) QWS-19, Karlsruhe

