

Description of the TMI-2 Accident: OECD-Benchmark final results with ASTEC

H. Muscher

Institute for Applied Materials

KIT – University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz Association

www.kit.edu

Outline of the Benchmark Exercise

2

- BCs, Core degradation parameters
- Nominal TMI-2 steady state
- Chronology of main events
- code to code comparison of some results

Participant	Country	Code
GRS	Germany	ATHLET-CD
ENEA	Italy	ASTEC
IKE	Germany	ATHLET-CD
IRSN	France	ICA/CAT
IVS	Slovakia	ASTEC
KIT*	Germany	ASTEC, MELCOR
Tractebel	Belgium	MELCOR
RUB	Germany	ATHLET-CD
BARC	India	ASTEC
IBRAE-RAS	Russia	SOCRAT
INRNE	Bulgaria	ASTEC

IAM

Parameter	KIT_ASTEC
Zry-4 ox kinetics	Cathcart-Pawel (low temp. range) Prater-Courtright (high temp. range)
Cladding failure criteria (T = clad temperature) (ε = ZrO ₂ layer thickness)	T > 2300 K and ε < 0.3 mm; T > 2500 K and ε > 0.3 mm
T_m of oxide (UO ₂ and ZrO ₂)	2550 K
Debris formation criteria	2300 - 2500 K
Debris porosity and particle diameter	Porosity = 40%, D = 3 mm

SG Steam pressure = 70 bar after t = 200 s
Water level = 1 m after t = 200 s, controlled by auxiliary feed water injection

QWS19, Karlsruhe

CSNI/CAPS: justification, safety significance

> info on the capability of code/models to predict the key phenomena during the SA

- > of interest by comparing results from several codes
- Since codes extended their range of applicability to the late phase, it is necessary to challenge them to the full extent of their capabilities, even if they are less reliable
- research is focused on degraded core reflooding/ coolability, consistent with that: the BE involves late phase degradation
- \rightarrow $\Delta p \&$ level control on SG secondary side:

 \Box Const. value of steam $\Delta p = 70$ bar after 200 s

Const. value of water level = 1 m after t = 200 s by AFW injection

- No letdown
- Const. value of **make-up** flow rate **= 3 kg/s** over the whole transient
- the approx. prediction of core degradation and the effects of SA measures to stop or delay the progression of an SA are of high safety significance; uncertainties remain on the limits to in-vessel coolability (threats to containment integrity)
- ➤ TG decided to launch a 1st transient calc. starting from a seq close to the one calc in the previous TMI BE, but without HPI in the late phase, and thus until v f: →nomination of the two participants by KIT
- > The aim of the transient calc. was mainly:

To achieve a better harmonization of different code IDs regarding geometry, initial s-s and BC

To choose the timing of HPI/LPI for different core degradation *reflooding* seq-s and identify potential low Δp scenarios, also by opening of the PORV

Introduction

- The objectives/ scope of the BE on TMI2 were outlined: radial/axial core power
- profiles according to specification OECD MSLB BE Report (1999) as well as ATMI geometry
- 3 SA seq-s: to investigate core reflood / in the lower head until vf different degree of invessel core degradation /melt progression: (incl. molten corium relocation -slumping into LP)
- 1st transient calc. started from a seq close to the one of the ATMI Benchmark, but w/o HPI in the late phase, and thus until vessel failure (vf)
- identifying low Δp scenarios: timely opening of the PORV etc
- SCENARIO Nr.1: INIT EVENT small break of 20 cm² in the hot leg A, with contemporary loss
 of main feed water (t = 0 s)
- Reactor scram on high pressurizer Δp signal
- AFW startup at 100 s
- Primary pump shutdown when primary mass < 85 t
- Neither HPI nor LPI system actuation
- Free evolution of the transient until vf
- 2nd/3rd BE scenario (SBO+ surge-line DEGB 387cm²): flow rates 28 kg/s vs. 360 kg/s

SBL	OCA sec	uence	SBO sequence		SBO 3 rd seq.		
Base	Reflood	Reflood	Base	Reflood	Reflood	Reflood	Reflood
case	10 t	45 t	case	10 t	45 t	10 t	45 t

TMI-2 isometric schematic drawing

FIGURE II-23. TMI-2 Isometric Schematic Drawing

QWS19, Karlsruhe

H. Muscher – Benchmark TMI-2

TMI-2 Core End-State Configuration

TMI-2 nominal steady state: KIT-ASTEC modeling results

Parameter	Unit	ASTEC KIT	TMI-2
Reactor core power	MW	2772	2772
Pressurizer pressure	MPa	14.9	14.96
Temp hot leg A	К	591	591.15
Temp hot leg B	К	591	591.15
Temp cold leg A	К	564	564.15
Temp cold leg B	К	564	564.15
Mass flow rate loop A	kg/s	8820	8800
Mass flow rate loop B	kg/s	8800	8800
Pressurizer collapsed level	m	5.59	5.588
Pressurizer water mass	kg	14600	13710
Total primary mass	kg	222400	222808
Steam ∆p SG A	MPa	6.41	6.41
Steam ∆p SG B	MPa	6.41	6.41
Steam temp SG A	К	567.0	572.15
Steam temp SG B	К	567.0	572.15
Riser collapsed level SG A	m	3.21	-
Riser collapsed level SG B	m	3.21	-
Downcomer collapsed level SG A	m	4.52	-
Downcomer collapsed level SG B	m	4.52	-
Liq mass SG A	kg	16800	-
Liq mass SG B	kg	16800	-
Feedwater flow rate SG A	kg/s	772	761.1
Feedwater flow rate SG B	kg/s	772	761.1
Feed water temp SG A & B	K	511	511.15

- ASTEC KIT s-s in good agreement with new TMI2 specifications
- Main deviations are:

•Pressurizer water mass (may depend on reference elevation for level measurement)

•SG steam temp. is under-predicted by 5 °C, with consequent overestimation of the feed water flow rate to match the right SG power removal

In-vessel core degradation –comparative temp. mapping

9

Chronology of main events- a quick look table (LOCA Stage 1)

EVENT	Time (s)/ ASTEC KIT
Break opening & main feed water loss	0
Pressurizer PORV opens	17.1
Reactor scram	21.8
Pressurizer PORV closes	25.3
Full SG dry out	27.0
Startup of AFW	100.3
Pressurizer is empty	128
Stop of primary pumps	2177
1 st fuel rod clad perforation/burst	3737
1 st clad melting & dislocation	4040
1 st ceramic melting & dislocation	-
First molten mat slumping into LP	4681
Vessel failure	10937

- 1st fuel rod perforation occurs at t = 3737 s due to Zry clad dissolution by Inconel grids
- Molten mat. slumping into the LP through the core by-pass after baffle melting
- 1st mat. slumping at t = 4681s followed by further massive molten material slumping
- VF at t = 10937 s by rupture criteria

Discussion points

Key-role for ASTEC models at the current State of the Art NPP performance (evidence given)

U-H vs. best fit (Schanz` recommendation) kinetics of Zry ox by steam

Coupling with SUNSET for sensitivity studies (propagation of uncertainties) related study: GRS, SUSA- approach of 1992 for "code to code" data set comparisons /final report

Analysis of base case results regarding transient th_H of the TMI-2 accident: 3 different hypothetical, but plausible alternative SA-scenarios

Ref ID adopted, ENEA & an IRSN Majority of captured trends -consistent with the (intuitive) expectation Results dependent on the imposed BC, IC...changing the max Δt influences the results

the output is satisfactory

Tables, fig-s, spread sheets were submitted to the BE-chair, G. Bandini, ENEA results were presented 6 times at WGAMA/ OECD Meetings in Paris;

2nd and 3rd stage (new ASTEC-runs) for TMI-2 BE purposes (ref. ID): upgraded transients obtained/ actual outcomes: sent to the chairman in time Actions foreseen for the 2nd and 3rd stage: main requirements (runs) are fulfilled, work nearly completed: Report, recommendations and suggestions will follow till 28th of Feb. 2014

Further discussion at this stage of ASTEC TMI-2 simulations

SBO + line break scenario runs performed many times, (**redundant runs**) to get more experience further discussion needed (on the basis of ***.lst** files)

For both *reflood* cases M_{TCO} = 10t (Trigger value 1) M_{TCO} = 45t (Trigger value2)

only M from magma corium, / Differences at the $\Delta\tau$, when CESAR stops and ICARE starts

Short time in-between: a linear interpolation suggested;

SBO+ surge line break scenario modeled; runs with the same parameters done

redundant runs: to get experience, how ASTEC works here, further discussions (on the basis of ***.Ist** files) SBO-sensitivity (parameter studies) still to be performed,

Mandatory post processing – further work still to be continued on :

- early phase modeling (HT, mechanical behavior, movement of mat)
- · late phase modeling (idem)

 $M_{TCO} = 10t$ (Trigger value 1) 1765sek till 2765 sek (3rd stage of our BE) $M_{TCO} = 45t$ (Trigger value 2) 2176sek till 3176 sek (3rd stage)

I will get the opportunity to obtain a second PC under a LINUX platform, (or a part of a cluster) exclusively for ASTEC runs.

Conclusions

• ASTEC has the potential to simulate real NPP performance (some evidence given here) Many ISPs were already calculated using ASTEC (*P. Chatelard, 15y*)

- Dynamic behavior (time dependences; evolution)/ profiles developed can be visualized online ...
- New skills developed / some insight into stru-s, philo behind ASTEC...
- Captured NPP TMI- (overall) trends are consistent with the (intuitive) expectation
- Results /outputs/ satisfactory to me being presented / discussed at 6 WGAMA/ OECD/NEA-Meetings in Paris;
- Tables, fig-s ,spread sheets upgraded transients were submitted to the BE-chairman in time
- Up till now main requirements are fulfilled, work completed in time (partially done) following recommendations
- -->Presentation at the 17th QWS Karlsruhe given

20.11.2013

- An ERMSAR paper and an NURETH paper were prepared with G. Bandini, ENEA et al. (published)
- Actual outcomes: new EXCEL plots (transients) delivered shortly to ENEA, Bologna

Ref. ID adopted being developed by ENEA; clarification was needed only at some particular points Specifications (3rd seq) selected : 2nd SBO + surge-line DEGB with an increased total HPI *reflood* rate of 360 kg/s for 1000s starting at 10t/45t of degraded core. Objectives & scope outlined: 3rd SBO-SA - *"no more than a sensitivity case of the 2nd SBO reflood-case*" (citation, GB)

submission of my EXCEL charts (= modified ASTEC *.plot files) needed for the global revised results comparison file. Numbers are given in the ERMSAR paper

TMI-2 BE Outlook

actual outcomes: analyses to be conducted until vf

- > concerning the obtained numbers : a kind of "semi quantitative time-series analysis" has to be continued
- > Contribution for the 3rd SBO-SA seq. as indicated in the OECD summary record
- > 3rd SBO-SA "no more than a sensitivity case of the 2nd SBO reflood-case" (citation, GB)
- Further EXCEL charts (= modified ASTEC *.plot files) needed for the global revised results comparison files. Regarding the status, "We need to finalize the large amount of work already done and discuss the contents of the Final Report that is due by the beginning of the next year". (G. Bandini, cited),
- > additional Uncertainty Analysis with SUNSET or SUSA / GRS, done by GRS, partly done by KIT
- > presentation of comparison files by G. Bandini at WGAMA/ CSNI/ PRG, 2014
- Mandatory post processing further work still to be continued on:
- \rightarrow Writing a 25 pages report, waiting for an external independent review

Addendum: mid-term transients, SBO, 2nd case 45t, color coded

Addendum: mid-term transients, SBO, 2nd case 45t, colour coded

Addendum: long-term transient, SBO, 2nd case 45t, colour coded water field

Addendum: long-term transients, SBO, 2nd case 45t, colour coded maps

Addendum: mid-term transients, SBO schematic/ revisited

IAM

M=45 t/ right vs. M=10 t/ left (reflooding cases, 2nd stage)

A LOCA seq. with the start of core reflood triggered by the total degraded mass of M = 10t/ 45t , respectively; Base case calc.-s repeated, outputs \rightarrow to the Chair

M= 45 t/right vs.M=10 t/ left (reflooding cases, forwarded)

45 t/right vs.10 t/left (reflooding cases)

45 t vs.10 t (reflooding cases)- corresponding T-fields

Water level fields: for M= 45 t vs.10 t (reflooding cases)preliminary results

Trigger values M= 45 t vs.10 t (reflooding cases)

Trigger: 45 t vs.10 t (reflooding cases)

Trigger value : 45 t vs.10 t (reflooding cases)

48

Trigger 45t vs.10t (reflooding cases)

Trigger 45 t vs.10 t (reflooding cases)

Trigger: 45 t vs.10 t (reflooding cases)

Trigger 45 t vs.10 t (reflooding cases)

Trigger 45 t vs.10 t (reflooding cases)

Trigger: 45 t vs.10 t (reflooding cases)

Trigger 45t vs.10t (reflooding cases)

Trigger 45 t vs.10 t (reflooding cases)

Trigger 45 t vs.10 t (reflooding cases)

Trigger: 45 t vs.10 t (reflooding cases)

Trigger: 45 t vs.10 t (reflooding cases)

SBO base case/ two simulations, compared

SBO base case/ two redundant simulations, forwarded

SBO base case/ two simulations,ff

SBO base case/ two simulations,ff

