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Benchmark objectives

 Gather information on the capability of the code/models to predict
the key phenomena during reactor severe accident sequences by
comparing the various results from several computer codes

 Simulate representative severe accident sequences with well
defined boundary conditions up to different degree of in-vessel
core melt progression:

– Extend the analysis to molten core slumping into the lower plenum

– Address core reflooding issue starting from different degree of core
degradation

 Perform sensitivity studies on more important and uncertain key
parameters and evaluate their impact on core melt progression

3



ERMSAR 2013, Avignon, October 2-4, 2013

Schedule and links

 The project was linked with the WP5.4 “Corium and Debris
Coolability – Bringing Research into Reactor Applications”
of EU/SARNET2

 The activity has been carried out by a Group of Participants
including members from WGAMA and SARNET2
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Kick-off meeting February 2011

Review meetings 2011 – 2013

Final meeting before preparation of the
draft report

September 2013

Distribution of the final report February 2014
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Participants and codes
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Participant Country Code

GRS

Germany

ATHLET-CD Mod 2.2 Cycle B

IKE ATHLET-CD V2.2C

KIT ASTEC V2.0R2p2 and MELCOR 1.8.6

RUB ATHLET-CD V2.2A

ENEA Italy ASTEC V2.0R1p2

IRSN France ICARE/CATHARE V2.3rev1

IVS Slovak Republic ASTEC V2.0R2p2

INRNE Bulgaria ASTEC V2.0R2p2

Tractebel Engineering Belgium MELCOR 1.8.6

BARC India ASTEC V2.0R2p2

IBRAE-RAS Russia SOCRAT V3

 All participants were SARNET2 partners except IBRAE-RAS
from Russia (11 organizations, 8 countries)
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TMI-2 steady-state at nominal power
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Parameter Unit
Calculated values

(range)
TMI-2

plant data

Reactor core power MW 2772 2772

Pressurizer pressure MPa 14.82 - 15.15 14.96

Hot leg temperature K 589.3 - 594.8 591.15

Cold leg temperature K 560.3 - 565.7 564.15

Primary loop flow rate kg/s 8472 - 8888 8800

Pressurizer collapsed level m 5.05 - 5.94 5.588

Total primary mass kg 219830 - 225650 222808

SG secondary pressure MPa 6.41 - 6.55 6.41

SG steam temperature K 564.7 - 588.3 572.15

SG feed water flow rate kg/s 701.8 - 791.0 761.1
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 2 base case accident sequences + 4 reflooding scenarios starting from different
core degradation conditions (10 and 45 tons of degraded core materials) have
been calculated in the frame of SARNET2 (until March 2013)

Severe accident sequences

Small Break LOCA
(SBLOCA + SG fw trip)

Surge Line Break
(SLB + Loss of off-site power)

Recovery of
HPI (28 kg/s)

1.0
Base case

10 t
core
deg.

2.0
Base case

45 t
core
deg.

10 t
core
deg.

45 t
core
deg.

10 t
core
deg.

45 t
core
deg.

2.1
Refl.

2.2
Refl.

2.3
Refl.

2.4
Refl.

1.1
Refl.

1.2
Refl.

Recovery of
LPI (300 kg/s)

No
HPI / LPI

Recovery of
HPI (28 kg/s)

No
HPI / LPI
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SBLOCA sequence

INITIATING EVENT: Small break of 20 cm2 in the hot leg of Loop A with
simultaneous loss of SG main feed-water (t = 0 s)

 Reactor scram on high pressure signal

 Auxiliary feed-water startup after 100 s Pressure (70 bar at 200 s) and level
control (1 m at 200 s) on SG secondary side

 Primary pump coastdown when primary coolant mass < 85 tons

Boundary conditions: constant make-up flow rate = 3 kg/s – No letdown flow

Base Case and Reflooding Scenarios:

 Base case without reflooding (no HPI/LPI injection)  Free evolution of the
transient until vessel failure

 Low flow rate reflooding of a slightly degraded core (deg. mass MD = 10 tons)

 Low flow rate reflooding of a highly degraded core (deg. mass MD = 45 tons)
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SBLOCA: Base case without reflooding (1/2)

Break mass flow rate Primary coolant mass

Core collapsed level

Clad temp. at core top

PP stop (85 tons)
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SBLOCA: Base case without reflooding (2/2)

Primary pressure

H2 cumul. mass

Mass in
the lower
plenum

Mass of
degraded
core
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SBLOCA: Low flow rate reflooding (1/4)

Core collapsed level

Clad temp. at core top

MD = 10 tons

Core collapsed level

Clad temp. at core top

MD = 10 tons

MD = 45 tons

MD = 45 tons
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SBLOCA: Low flow rate reflooding (2/4)

Break mass flow rate

Primary coolant mass

Break mass flow rate

Primary coolant mass

MD = 10 tons

MD = 10 tons

MD = 45 tons

MD = 45 tons
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SBLOCA: Low flow rate reflooding (3/4)

H2 cumulated mass

Primary pressure

H2 cumulated mass

Primary pressure

MD = 10 tons

MD = 10 tons

MD = 45 tons

MD = 45 tons
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SBLOCA: Low flow rate reflooding (4/4)

Mass in
the lower
plenum

Mass of
degraded
core

Mass in
the lower
plenum

Mass of
degraded
core

MD = 10 tons

MD = 10 tons

MD = 45 tons

MD = 45 tons
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SBLOCA results analysis

 Rather small uncertainties on thermal-hydraulic behavior of the
plant until the onset of core uncovery and heat-up

 Most significant deviations are recorded after the onset of
ceramic melting and core slumping in the lower plenum

 Large deviations in core degradation and hydrogen generation
during reflooding. However, all codes agree in calculating more
or less delayed stop of core melt progression, limited core
slumping and no vessel failure in the late phase
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SLB sequence
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INITIATING EVENT: Surge Line Break with simultaneous loss of off-site
power (SBO) at t = 0 s

 Reactor scram , SG feed-water trip and primary pump coastdown at t = 0 s

Boundary conditions: No auxiliary feed-water - No make-up flow – No letdown flow

Base Case and Reflooding Scenarios:

 Base case without reflooding (no HPI/LPI injection)  free evolution of the
transient until vessel failure

 Low flow rate reflooding of a slightly degraded core (deg. mass MD = 10 tons)

 Low flow rate reflooding of a highly degraded core (deg. mass MD = 45 tons)
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SLB: Base case without reflooding (1/2)

Break mass flow rate Primary coolant mass

Core collapsed level

Clad temp. at core top
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SLB: Base case without reflooding (2/2)

Primary pressure

H2 cumul. mass

Mass in
the lower
plenum

Mass of
degraded
core
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SLB: Low flow rate reflooding (1/4)

Core collapsed level

Clad temp. at core top

Core collapsed level

Clad temp. at core top

MD = 10 tons

MD = 10 tons MD = 45 tons

MD = 45 tons
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SLB: Low flow rate reflooding (2/4)

Primary coolant mass Primary coolant mass

Break mass flow rate Break mass flow rate

MD = 10 tons

MD = 10 tons

MD = 45 tons

MD = 45 tons
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SLB: Low flow rate reflooding (3/4)

H2 cumul.
mass

H2 cumul. mass

Primary pressure Primary pressure

MD = 10 tons

MD = 10 tons MD = 45 tons

MD = 45 tons
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SLB: Low flow rate reflooding (4/4)

Mass in
the lower
plenum

Mass of
degraded
core

Mass in
the lower
plenum

Mass of
degraded
core

MD = 10 tons

MD = 10 tons

MD = 45 tons

MD = 45 tons
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SLB results analysis

 Difference in steam starved conditions during oxidation seems
to increase the uncertainties in core heat-up and H2 generation

 Lack of a residual water level in the core during the late
degradation phase leads to largest deviations in spreading of
core melt, core collapse and core slumping in the lower plenum

 Largest uncertainties during the low flow rate reflooding are
introduced by the different time needed to fill-up the lower
plenum and then to start effective core quenching In most
calculations core melt progression and material slumping into the
lower plenum cannot be terminated, and then the vessel failure is not
prevented
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Conclusions (1/2)

 General robustness of the codes is confirmed All codes were
able to calculate the accident sequences up to the most severe
degradation state and under degraded core reflooding conditions

 Thanks to the harmonization of initial steady-state and boundary
conditions the uncertainties on plant thermal-hydraulic behavior
were minimized, at least before significant core degradation
takes place

 After significant core melting leading to fuel rod collapse, debris-
molten pool spreading and core slumping the deviation in code
results largely increases, primarily due to different degradation
models used by the codes to simulate the late degradation phase
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Conclusions (2/2)

 Some differences in plant-core discretization and core
degradation parameters might contribute to increase the spread
in code results These effects are strictly connected with the
user effect, and might be amplified by the degree of freedom left
by the code developers in the selection of code input parameters

 Importance of code user guidelines is then strengthened, at least
for reducing the difference between users of the same code.
However, it appears from the benchmark exercise that the main
reason for the extent of the results spread in not the user effect,
but the difference in phenomenological modeling

 Uncertainties on the calculation of reflooding scenarios are still
rather large, especially in case of later core reflooding
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