

Advanced Numerical Simulation for Reactor Safety

8th European conference on Euratom research and training in reactor systems

14-16 October 2013, Vilnius, Lithuania

- Numerical simulation tools used for the <u>design and</u> <u>safety evaluation</u> of NPP are under continuous <u>development</u>, <u>improvement</u> and <u>validation</u>.
- Goals of the SNETP for 2020:

SCIENCE RESEARCH

Co-organised by

- maintain safety and competitiveness in fission technology
- provide long-term waste management solutions
- A key challenge:
 - Development and consolidation of integrated simulation platforms for current and future fission reactor designs.
- Some EU initiatives for R&D in reactor safety:
 - SNETP, Horizon 2020 and NUGENIA

Co-organised by

8th European conference on Euratom research and training in reactor systems

14-16 October 2013, Vilnius, Lithuania

Supercomputer century, new tools available (TOP 500)

- In FP7, ambitious projects were launched to develop powerful simulation platforms for reactor multi-physics analyses
- NURESIM platform

NURISP and NURESAFE projects

HPMC project

THINS project III

Vilnius, 14-16 October 2013

SCIENCE

RESEARCH

EU2013.LT

- NURESIM project established the basic architecture of the NURESIM platform and resulted in a first prototype of a truly integrated multiphysics simulation environment.
- The NURISP project was conceived as a consolidation of the platform plus an extension towards higher-resolution both in space and time.
- The NURESAFE project will show the extended capabilities of the platform and demonstrate the readiness of the tool for Industrial safety applications.

Vilnius, 14-16 October 2013

NURESAFE objectives:

- To develop the NURESIM Software Integrated Platform
 - Includes core-physics, thermal-hydraulics, fuel thermo-mechanics
- For simulation of LWR
 - PWR incl. VVER, BWR
 - Normal operation and design basis accidents
- A reference platform
 - Includes state-of-the art codes, well validated
- A Common European development
 - 23 partners contributing (Research centers, Universities, industry)

The NURISP-NURESAFE process

Selected results from NURISP: Thermomechanics

LOCA simulation: Development of a complete set of models for the numerical simulation of dispersed flow film boiling regime at a CFD scale

PHEBUS LOCA TEST View of ballooned zones

During LOCA reflooding phase :

Specific thermohydraulic effects in the ballooned core area

Flow deviation around the balloons

Modification of heat transfers

Development of a coupling between thermomechanics and thermalhydraulics codes

→Improved modeling of **dispersed flow film boiling** at CFD scale including:

Radiative heat transfer Droplet size evolution and dynamics Heat transfer at drop impact

Selected results from NURISP: Multi-Physics

Multi-physics and multi-scale coupling: Development of a coupling standard involving: Interpolation procedures, data communication, temporal schemes, ...

HPMC (High Performance Monte Carlo Reactor Core Analysis) 1.10.2011- 30.9.2014

- Main goals:
 - Improved coupling with thermalhydraulics
 - Optimized depletion calculations
 - Time dependent Monte Carlo
 - Use of High Performance Computing techniques
- HPMC will deliver:
 - <u>Reference solutions</u> for fuel assembly and cores simulations of <u>any kind of reactor types</u>
 - High-fidelity whole core solutions for <u>safety demonstration</u>

HPMC Main Simulation Tools:

- Monte Carlo Codes: SERPENT, MCNP
- TH Codes: SUBCHANFLOW, FLICA4
- Coupled MC/TH Code Versions:
 - Internal coupling:
 - KIT: MCNP/SUBCHANFLOW
 - External coupling:
 - DNC: MCNP/SUBCHANFLOW
 - KIT: PIRS System (Python based Coupling of MCNP/SERPENT and SUBCHANFLOW)

Selected results from HPMC:

High Fidelity MC/TH Coupling: PWR 3x3 FA Cluster

3D Online TH feedback during neutron history simulation

Weight window mesh and 2D power

3D Power distribution

MCNP/SUBCHANFLOW Simulations:

- Internal coupling
- Uniform convergence due to WW
- Stochastic implicit Euler method for convergence acceleration
- **On-the-fly** T-interpolation of XS
- Variance reduction with an iterative flux-based Weight Window (WW) technique
- Accelerated tallying with custom written Collision Density and Track – Length estimators
- Parallelization of MCNP and SCF
 with hybrid MPI/OpenMP
- Utilization of HPC Blue Gene/Q

Selected results from HPMC: Optimal Monte Carlo Depletion Integration

- Current MC-depletion methods e.g. predictor-corrector are numerical unstable.
- New Stochastic Implicit Euler
 (SIE) method proposed to
 overcame it.
- The SIE-based scheme was implemented in Serpent: PWR FA burn-up calculation demonstrated that MC depletion with SIE is stable for any time step length.

Spatial distribution of Xe-135 in a **conventional predictorcorrector based MC-burnup** calculation of a PWR-FA with 10.0 MWd/kgU step.

Spatial distribution of Xe-135 in a **SIE-based MC-burnup** calculation of a PWR-FA with 10.0 MWd/kgU step (same statistics in all calculations).

THINS (Thermal-Hydraulics of Innovative Nuclear Systems) 01.02.2010 - 31.01.2014

✓ Systems: GEN-IV + ADS
✓ Phenomena: Cross-cutting TH

- THINS main objectives:
 - Generation of data base for development and validation of new models and codes;
 - Development of new physical models and modeling approaches for accurate description of crosscutting thermal-hydraulic phenomena;
 - Improvement of numerical engineering **tools** for the design analysis of INS;
 - Optimum usage of available European resources in experimental facilities, numerical tools and expertise

THINS Methodology

Contour 2

2.6 2.5

2.3 2.2 2.1

2.0 1.8 1.7 1.6

Selected results from THINS: Simulation of LBE cooled rod bundle heat transfer

KALLA experimental facility (KIT)

Numerical simulation: ANSYS CFX, Mesh number: 22 millions Turbulence model: Omega Reynolds stress model

19 rod bundle: D=8.2 mm, P=11.5 mm L=1.3 m, 3 spacers

Heat transfer in innovative fuel designs

CFD results: Local Nusselt numbers

Selected results from THINS: *Simulation of PHENIX natural convection test*

Comparison of measured data with numerical results

Scheme of PHENIX primary system

Numerical simulation CATHARE coupled with TRIO-U

Advance simulation of passive cooling mechanism Vilnius, 14-16

8th European conference on Euratom research and training in reactor systems

14-16 October 2013, Vilnius, Lithuania

- Conclusions
 - The philosophy of the European Simulation platform has been demonstrated trough the **novel and flexible coupling** of Multi-physics and Multi-scale domains.

Co-organised by

SCIENCE RESEARCH

- The advancement of numerical simulation for nuclear fission reactors is a great challenge that is preferably tackled on EU level.
- The European scientific community is working together towards the development of Advanced Numerical Simulation tools needed to assess the safety of current and future reactor designs.

8th European conference on Euratom research and training in reactor systems

14-16 October 2013, Vilnius, Lithuania

- Outlook
 - Extend the NURESIM platform capabilities to GEN-IV reactors.

Co-organised by

uropean

- Demonstrate the reference capabilities of the coupled Monte Carlo/TH codes against experiments.
- Application of the lessons learnt within THINS project. Thermal-hydraulics is recognized as a key scientific subject in the development of innovative reactor systems.
- Synergy effects between NURESAFE, HPMC and THINS to be concreted in follow up projects

THINS Workshop: January 20-22, 2014 20-22 January 2014 - Modena, Italy

Website: www.thins2014.unimore.it

International workshop on Thermal Hydraulics of Innovative Nuclear Systems

DUCATIO SCIENCE

RESEARCH

FII2013 IT

8th European conference on Euratom research and training in reactor systems

Co-organised by

14-16 October 2013, Vilnius, Lithuania

EU2013.LT

European Commission EDUCATION SCIENCE RESEARCH

THANKS FOR YOUR ATTENTION

