Metal-Isolator-Metal Varactor Based on Inkjet-Printed Tunable Ceramics

Mohammad Nikfalazar,

A. Friederich, C. Kohler, M. Sazegar, Y. Zheng, A. Wiens, J.R. Binder and R. Jakoby

10-12 March 2014

TECHNISCHE

Outline

- Introduction
- Inkjet Printing of BST
- Varactor Fabrication
- Prototype and Measurement Results
- Conclusion & Outlook

G_E**M**_i**C**

Introduction

GEMiC

- > Multi frequency functionality:
 - Tunable phase shifters
 - Tunable antennas
 - Tunable filters
- > A tunable component can reduce
 - Size
 - Complexity
 - power consumption

Antennas V	$\nabla \nabla \nabla$	$\bigtriangledown \bigtriangledown \bigtriangledown$
Phase Schifters	ØØØ	ØØØ
Feeding Lines		
	Transmitter/Rece	iver

Why BST Thick-Film?

Barium-Strontium-Titanate (BST)

Tunable Dielectric

- Permittivity changes by applying an electrostatic field
- Basic tunable component
 - Tunable Interdigital Capacitor (IDC)
 - Minimum gap 10µm

GEMiC

Left-hand Transmission Line Phase Shifter

Top view of the manufactured tunable phase shifter
The BST line is printed in the IDCs region.

Phase Shifter Measurement Results

Simulated and measured s-parameter of the phase shifter

The maximum insertion loss is 10dB at 12GHz

EuMA 2013, Nuremberg

Mr. IMP

Component Design Geometry Efficiency

nh IMP

Limitation of the technology

Tunable phase shifters by using BST thick-film Comp	Advantages	Disadvantages	
	Tuning Speed	High biasing voltage (max 200V)	
	Low power consumption	Low FOM	
	Compact Size	Frequency limitation	
	Compatible with planar structure	Delicate fabrication process	

Limitation of the technology

Limitation of the technology

Metal Isolator Metal Capacitors (MIM):

- Reduce biasing voltage
- Increase breaking voltage
- Increase maximum tunablity
- Improver Insertion Loss
- Decrease number of tunable units

- > MIM Varactor fabricated by selective printed BST film:
 - Top and bottom conductor layer fabricate by Photolithography process
 - BST layer Printed

TECHNISCHE UNIVERSITÄT DARMSTADT

.nh. IMP

GeMiC

➤The inkjet printing technology:

- Selective BST material printing
- Flexible fabrication process
- Simultaneous multi material printing option
- Single nozzle printhead with 100µm orifice diameter

➤The inkjet printing technology:

- Selective BST material printing
- Flexible fabrication process
- Simultaneous multi material printing option
- Single nozzle printhead with 100µm orifice diameter

Degradation of the platinum layers

 The increase in the number of defects in the platinum layer (200nm) on top of Al2O3 substrates (sintered 1h) at different sintering temperatures.

> Past preparation for low sintering BST thick-film:

C. Kohler "Effects of $ZnO-B_2O_3$ Addition on the Microstructure and Microwave Properties of Low-Temperature Sintered Barium Strontium Titanate (BST) Thick Films"

Mh.IMP

> 850°C sintered BST inkjet printed line characterization by IDC:

- Topography of an inkjet printed BST line, dried at $T = 50^{\circ}C$ and sintered at $T = 850^{\circ}C$
- Patterned CPW on top of the printed BST line. The minimum gap of the CPW is 10µm.
- CPW line has been measured by on-wafer probes

The characteristics of inkjet printed BST film:

Freq	10GHz	
Permittivity	133	
Tunability	23%(10V/µm)	
Loss Tangent	0.07	

photolithography process

Metal Isolator Metal Capacitors (MIM):

- MIM capacitor by using photolithography process
 - Minimum line wide 10um
 - Cr/Ni as a seed layer because of 850° sintering temperature chrome-nickel/gold (20nm/60nm) seed layer
- Bottom electrode edge angle influence:

AU

Alumina

BST

Electroplating by Positive Photoresist

AU

Alumina

BS

100.00 um

BST

Prototype of The MIM Varactor

Multilayer structure by Metal Isolator Metal (MIM) capacitor

(1.2um bottom layer)

- Alignment was done using a fiducial camera system and alignment markers which were applied together with the bottom electrodes
- GSG with 150µm pitch were used to contact the component

ոհ<u>.IMP</u>

Measurement Results

> Measurement result of Multilayer structure by Metal Isolator Metal (MIM) capacitor

The biasing voltage has been applied by bias-tee at the RF-port

Conclusion

- The realization and measurements of an inkjet-printed tunable MIM varactor
- The tuning voltage is significantly reduced
- The tunability of 37 % was reached at 20 V biasing voltage (maximum 75%)

Outlook

- The fabricated MIM capacitor demonstrates a simple and flexible preparation
- The quality factor of 8 is achieved at 10GHz which can be increased by reducing conductor and BST layers loss
- Future tunable microwave components based on inkjet printing

GEMIC

Mh. IMP

GeMiC

Thank you for your attention

Cooperation Partners

