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Gas-cooled reactors. History (1) 

 Gases as reactor coolants have been used since the earliest days of 

nuclear power ► 1947, Windscale Piles, UK (atmospheric air cooled, 

graphite mod., low pres. & temp., open cycle, large pumping power) 

 First generation gas-cooled power reactors ► 1953, Magnox 

reactors, UK (CO2 cooled, pressurized gas, higher temperatures 

enough for commercial electricity generation, closed cycle) 

 Second generation ► 1960s onwards, Advanced gas cooled reactors 

– AGRs (CO2 cooled, Tcool
out = 650oC, good quality superheated steam, 

high thermal efficiency – 42%) 

 Many CO2-cooled thermal reactors have been built and many are still 

operating ► > 1000 reactor-years of operation experience in UK alone 
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Problem with carbon dioxide that became apparent in AGRs: 

 At AGR temperatures (~600oC), CO2 dissociates into CO and O2 under the 

combined action of heat and radiation (radiolytic dissociation), 

 The free oxygen oxidizes the graphite and metallic structures, 

 CO2 dissociation can be mitigated using methane: 

  CO2 + CH4 → C + 2CO +2H2O, 

 The carbon gets deposited to “repair” the graphite, the CO builds up to a 

equilibrium concentration to limit further dissociation and water vapour is 

extracted by the coolant treatment system, 

 The rate of CO2 dissociation becomes unacceptable at higher temperatures. 

Gas-cooled reactors. History (2) 

E. Bubelis – Seminar "Coolants for fast neutron reactors", Paris 
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 Helium was adopted for high temperature thermal reactors (HTRs) to 

avoid the radiolytic dissociation problems associated with carbon 

dioxide. 

 HTRs operated are: Dragon (UK), AVR and THTR-300 (Germany), Peach 

Bottom and Fort St Vrain (US), HTR-10 (China), HTTR (Japan)  

► significant amount of operating experience of helium-cooled reactors 

has been accumulated; 

 Outlet temperatures of 750oC to 950oC  

► allows high-efficiency electricity generation and production of high-

quality process heat.  

Gas-cooled reactors. History (3) 
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 All power reactors in use today are “thermal” reactors (fission of U-235)  

 For nuclear fission to be considered sustainable, the utilization of natural 

uranium has to be improved considerably ► practical improvement (by a 

factor 60): breeding of Pu from U-238 and burning it in a “fast” reactor 

 “Fast” reactor cores are compact ► require a very effective coolant to 

transport heat: liquid metal (sodium, etc.) or an alternative gas coolant 

 Both carbon dioxide and helium have been proposed as gas-cooled fast 

reactor (GCFR) coolants  

 CO2 dissociation problem is less of an issue in GCFR because there is no 

graphite to oxidize, but there are still metallic components in the reactor ... 

Gas-cooled reactors. History (4) 
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 Commertial-scale helium-cooled HTR projects were pursued in Germany 

and the USA 

 German program ended in the 1990s, but activity continued in the USA 

 USA-Russia collaboration led to the development of gas turbine modular 

high-temperature reactor (GT-MHR) concept: has prismatic fuel element 

core; uses direct-cycle helium gas turbine 

 German reactors had alternative concept: pebble  

 bed reactors 

 After the pebble bed reactor development ceased  

 in Germany, the technology was further developed  

 in South Africa (PBMR) and in China (HTR-10 – exp.  

 plant and HTR-PM – commercial size plant) 

Current high-temperature reactors (1) 
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 Within Europe, HTR development continued  

in the form of ANTARES reactor from AREVA: 

  Based upon GT-MHR, indirect-cycle  

gas turbine using helium-nitrogen mixture  

as the working coolant, steam turbine makes  

use of waste heat from gas turbine exhaust 

 

 Japan developed high-temperature test reactor  

    (HTTR) which was contructed and is in operation 

 GTHTR-300 concept extends technology to 300MWth  

    plant driving a direct-cycle helium gas turbine 

Current high-temperature reactors (2) 
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 In all above designs the reactor cores are cooled by high-purity helium 

 Direct cycle concepts – the same high-purity helium is used to drive turbine 

 In-direct cycle concepts – there is freedom to use helium, other gases or gas 

mixtures, or water/steam 

 

Direct cycle plant problems: 

 Need to maintain high-purity helium precludes the use of submerged oil-

lubricated bearings in the turbo machinery ► use electromagnetic bearings; 

 Transport of graphite dust from the core to the turbomachinery, and 

transport of wear and erosion products from the turbine through the core. 

 In-direct cycle plants avoid many of these problems ► large int. HXs & circ. 

Current high-temperature reactors (3) 

 

 

He 
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Gen-IV advanced reactors (1) 

 Gen-IV initiative launched by USDOE in the early 2000s 

 Six systems were proposed for further development – 3 are fast reactors, 3 

are thermal or epithermal spectrum reactors 

 One fast reactor (GFR) and one thermal reactor (VHTR) require helium as the 

reactor core coolant (primary coolant) 

 VHTR is an extrapolation from the existing high-temperature reactor 

technology, aiming at core outlet temperatures of ~ 1000 oC 

 GFR system aims to capitalize on fast-reactor and high-temperature reactor 

experience 
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VHTR reactor system schematics 
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GFR reactor schematics 
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 Significant advantage of fast reactors in general is their ability to fission the 

long-lived radionuclides (MA – neptunium, americium & curium) 

 GFR is particularly effective owing to the larger proportion of high-energy 

neutrons present in its neutron spectum compared with SFR ↔ number of 

coolant atoms per unit volume is smaller in a gas-cooled core compared with a 

liquid sodium-cooled core (amount of moderation is smaller) 

 Helium offers the best performance in terms of high-temperature chemical 

stability and a high level of nuclear stability 

 Other gases have advantages in terms of higher density, need of lower 

pumping power and better natural convection performance 

Gen-IV advanced reactors (2) 
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EC financed gas-cooled reactor projects 

Within EU-sponsored Projects (from 2000 to 2013) several different  

 He-cooled GFR concepts were investigated in considerable detail: 

 

FP(5): 

  1.  80 MWth metallic clad, pin-type, sub-critical XADS 

    60 bar, helium temperatures 200-450 oC 

FP(6): 

  2.  50 MWth metallic clad, pin-type, critical ETDR 

    70 bar, helium temperatures 260-560 oC   
 3. 2400 MWth ceramic (SiC) clad, plate-type, critical GFR 

    70 bar, helium temperatures 480-850 oC  

FP(7): 

  4.  75 MWth metallic clad, pin-type, critical ALLEGRO  

    70 bar, helium temperatures 260-530 oC   
 5. 2400 MWth ceramic (SiC) clad, pin-type, critical GFR  

     70 bar, helium temperatures 400-800 oC  
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75 MWth ALLEGRO reactor 
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2400 MWth GFR reactor 
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Motivation for gas-cooled fast reactors (1) 

Fast reactors are important for the sustainability of nuclear power: 

  More efficient use of fuel, 

  Reduced volumes and radiotoxicity of high level waste. 

 

Sodium cooled fast reactors are the shortest route to FR deployment, 

but: 

  Sodium coolant has some undesirable features: chemical 

compatibility, positive void coefficient of reactivity, restricted 

core outlet temperature to avoid sodium boiling, etc. 
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Gas cooled fast reactors do not suffer from any of the above: 

  Chemically inert, void coefficient is small (but still positive), 

single phase coolant eliminates boiling, 

  Allows high temperature operation without the corrosion and 

coolant radio-toxicity problems associated with heavy liquid 

metal reactors (LBE or pure Pb), but … 

  Gaseous coolants have little thermal inertia ► rapid heat-up of 

the core following loss of forced circulation, due to the lack of 

thermal inertia of the core structure & very high power density. 

Motivation is: enhanced safety, low radio-toxicity and improved reactor 

performance. 

Motivation for gas-cooled fast reactors (2) 
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Carbon dioxide vs. Helium (1) 

Molecular weights: M ~44 kg/kmol for CO2 and ~ 4 kg/kmol for He. 

  For any working pressure a CO2 cooled core will require less pumping 

power than a He cooled core ► He gas at high pressure. 

Cp,CO2 = 1.15 kJ/kg/K and Cp,He = 5.195 kJ/kg/K. 

  He is a superior gas as regards the thermal conductivity. 

Gases: “Poor” heat transfer from surface to coolant.  

Solution: change Nu and heat transfer area. Nusselt number is changed 

by changing the geometry and/or by changing the amount of 

turbulence (rib roughened pins, metallic clad). The area is changed by 

changing the geometry or by extending the surfaces (fins). 
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 Of the two gases, He is chemically inert whereas CO2 can dissociate. 

 Generally, the damaging mechanism with dissociated CO2 is high 

temperature oxidation as opposed to traditional “wet” corrosion 

associated with water-cooled systems. 

 The oxidation rates in CO2-cooled reactors are generally lower 

than in water-cooled reactors, 

 Much experience exist in CO2-cooled thermal reactors on 

management and limitation of oxidation. 

Carbon dioxide vs. Helium (2) 
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 Whilst helium is an inert gas, there is still the possibility of chemical 

attack of the structural materials. 

 With most common structural metals, they are protected by a 

thin, self-repairing, oxide layer that forms naturally in an oxygen 

containing atmosphere. 

 In an inert atmosphere, if the oxide layer is damaged, there is no 

oxygen available to repair the layer. 

 Residual grit content in the primary gas (other gases, steam …) 

could lead to chemical interactions with internal components ► 

Needs continuous purification of the gas. 

Carbon dioxide vs. Helium (3) 
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 In a helium environment, an associated problem is tribology. 

 Surfaces which slide against each other, e.g., bearings, valves 

and valve seats, and screw threads can effectively weld 

themselves together (diffusion bonding). 

 This occurs through of the exchange of metal atoms, by 

diffusion, through the oxide-free surfaces under the action of 

contact pressure, heat and time. 

 This is a particular problem for safety systems, such as 

decay heat removal system valves. 

Carbon dioxide vs. Helium (4) 
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Specific motivations for helium usage  

 Water CO2 He Ar Na 

 
150 bar, 
300°C 

60 bar, 
500°C 

60 bar, 
500°C 

60 bar, 
500°C 

1 bar, 
500°C 

 kg/m3 725,53 40,86 3,7 37,29 857 

Cp J/kg/K 5476 1182 5190 525 1262 

 w/m/K 0,56 0,06 0,303 0,037 66,3 

 10
-5

 Pa.s 8,83 3,33 3,73 4,54 24.3 

1/Pp (normalized 

to water) 1 6.10
-5

 2,8.10
-5

 5.10
-6

 0.02 

HTC (normalized 

to water) 1 0.7 0.99 0.65 21. 

1/P N.C. 
(normalized to He) -- 5,5 1 2.8 -- 

 
Confirmation of He as a good gas coolant, the main drawback being its 

low capability regarding natural convection (this explains the discussions 

about safety systems based on heavy gas injections) 
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Gas coolants. Advantages 

The main safety advantages of gas coolants are: 

 

  No change in phase of the gas coolant (single phase behaviour); 

 

  Low reactivity insertion due to voiding of the coolant; 

 

  Optically transparent (simple in-service inspection of the primary 

system and internal vessel components) and electrically non-

conducting. 
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Gas coolants. Disadvantages (1) 

The main safety disadvantages of gas coolants are: 

 

  The low density creating the requirement for pressurization - 

increases the likelihood and severity of a LOCA. 

 

  Loss of pressure can induce positive reactivity insertions due 

to voiding, however the effect is relatively small. 

 

  Water/Steam ingress into primary circuit due to HX tube failure 

can induce significant positive reactivity insertions in addition 

to chemical attacks. 
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Gas coolants. Disadvantages (2) 

 The inability to form a pool, a problem when trying to ensure that the 

reactor core remains bathed in coolant within a breached primary 

cooling circuit; 

 Following a severe accident it is easier to manage the core 

debris if immersed in a pool of liquid coolant, both in terms of 

cooling and restriction of the release of the fission products into 

the containment building. 
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Gas coolants. Disadvantages (3) 

 The non-condensable nature of coolant, if it is lost from the reactor 

cooling circuit - a problem for pressure loading of the containment. 

 Low thermal inertia means that the reactor core will heat up rapidly 

if forced cooling or high coolant pressure is lost. 

 

 The low thermal inertia of the coolant is of particular significance in 

a fast reactor core. 

 The core itself possesses little thermal inertia, so the fuel 

temperatures rise rapidly following a loss of forced circulation of 

the coolant or the loss of the high coolant pressure. 
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Gas coolants. Disadvantages (4) 

 The compact core makes the “conduction cool-down” heat path 

insufficient to remove the decay heat, thus remaining within the 

fuel temperature limits. 

 Convective cooling is required, either by restoration of forced 

cooling (through a back-up cooling system or a dedicated forced 

convection decay heat removal system), or by natural convection 

(supported by the heavy gas (nitrogen) injection). 

 However, natural convection of gas is not efficient at low 

pressures due to the low gas density, especially for Helium. 
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GFR-2400: PLOCA (10 inch break, ~7 bar cont. backup 

pressure, 2 out of 3 DHRS loops, forced convection) 

 LB PLOCA transient can be 

accommodated by GFR reactor 

without safety concerns, if one uses 

2 DHRS loops in forced convection 

for decay heat removal.  
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GFR-2400: PLOCA (10 inch break, ~7 bar cont. backup 

pressure, 2 out of 3 DHRS loops, natural convection) 

 LB PLOCA transient cannot be 

accommodated by GFR reactor if one 

uses 2 DHRS loops in natural 

convection for decay heat removal. 

 Peak power pins will loose their leak 

tightness (Tclad > 1600°C) at t ~6 

min. 

 After t ~10 min mech. & struct. integ-

rity of peak power fuel pins cannot be 

ascertained (Tclad ~2000°C). 
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Conclusions 

 Gas-cooled reactors have been deployed on an industrial scale for over 

half a century, thus accumulating huge operational experience. 

 However, most of these reactors are CO2-cooled thermal reactors with 

moderate operating temperatures. 

 Helium fits the requirement for high operating temperatures well and is 

the coolant of choice for high-temperature thermal reactors (HTRs). 

 Chemical and nuclear stability of helium makes it a good candidate also 

for gas-cooled fast reactors. 

 VHTR and GFR are the two Gen-IV systems in which helium has been 

chosen as the reference gaseous coolant. 
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Additional slides 

E. Bubelis – Seminar "Coolants for fast neutron reactors", Paris 
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Helium demands for gas-cooled reactors (1) 

The precide helium demands for Gen-IV systems and nearer-term high 

temperature reactors are not known precisely. 

 

The main factors affecting the helium demand are: 

 Inventory of a single reactor unit, 

 the rate at which new systems are rolled out, and 

 the rate of helium leakage expected. 
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Helium demands for gas-cooled reactors (2) 

Inventory of a single reactor unit  

 

Estimation based on current designs for HTR’s: 

 PBMR, 400 MWth, direct cycle gas turbine – helium inventory 4 t. 

 HTR-PM, 250 MWth, indirect steam cycle – helium inventory 2.44 t. 

 

 ~1 t per 100 MW of thermal power, or ~25 t per GW of electricity, 

assuming the overall efficiency of ~ 40 %. 

 

 Only for UK - if all electricity would come from HTRs in the future, we 

would need 1250 t of Helium to fill them initially. 
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Helium demands for gas-cooled reactors (3) 

The rate at which new systems are rolled out 

 

The rate of roll-out of HTR systems is not certain. 

Order of magnitude can be obtained based on UK nuclear industry: 

 UK produces 20% of electricity (10 GW) through nuclear power; if 

this was to be replaced by HTRs we would need 250 t of helium for the 

initial charge of the reactors; 

 If all UK’s electricity would come from HTRs, the UK would need 

1250 t of helium for their initial charge.  

As the HTRs are being developed also for non-electricity use, the ultimate 

helium demand for HTRs should be even greater than stated above. 
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Helium demands for gas-cooled reactors (4) 

The rate of helium leakage 

Important also are leakages from gas cooled reactors: 

 The target leakage rate for Dragon reactor is 0.1 % of inventory per day. 

 If we take the Dragon limit of 0.1% of inventory per day – this means the 

total inventory is replaced every 1000 days (~ 3 years). For a 60 year reactor 

life, its inventory would be changed 20 times. 

 Hypothetically, satisfying the current UK electricity demand over 60 

years could require up to 20000 t of helium (2020 - 2080). 

 Demand for Helium in China: HTR-PM development is proceeding well 

and deployment is expected to be widespread. 


