

Results of the QUENCH-DEBRIS Test

J. Stuckert, M. Große, Y. Onel, C. Rössger, M. Steinbrück

ICAPP 2014, Paper 14150

Institute for Applied Materials; Program NUKLEAR

Objectives

• investigation of debris bed formation for bundle with completely oxidised Zry-4 claddings filled with segmented pellet simulators

• investigation of cooling of degraded bundle during the water reflood from bottom

08.04.2014 J. Stuckert – QUENCH-DEBRIS (Q-17), Paper 14150 2/23 ICAPP 2014, Charlotte

Formation of through going cracks in cladding quenched from high temperatures

/ http://bibliothek.fzk.de/zb/berichte/FZKA6013.pdf /

thicker than 200 µm

J. Stuckert – QUENCH-DEBRIS (Q-17), Paper 14150 3/23 08.04.2014

Melt capture between oxidised cladding and pellet

Karlsruhe Institute of Technolog

4/23

08.04.2014 J. Stuckert – QUENCH-DEBRIS (Q-17), Paper 14150 ICAPP 2014, Charlotte

Fuel pellet segmentation during operation

Cracking and relocation behavior of nuclear fuel pellets during rise to power

M. OGUMA. Nucl. Eng. and Des., 76 (1983), 35-4

ZrO₂ pellet simulator for QUENCH-DEBRIS: 8*3=24 segments

Test bundle preparation

Test scenario: el. power and TC readings at different elevations

- 1) pre-oxidation stage with 2 g/s steam and 2 g/s Ar. Complete oxidation of Zry-4 clads between 650 and 1150 mm
- 2) Test termination: reflood from bottom with water flow rate 10 g/s.

08.04.2014 J. Stuckert – QUENCH-DEBRIS (Q-17), Paper 14150

Integral criterion of bundle oxidation progression: hydrogen release during oxidation of Zry and Hf parts

the course of the experiment closely followed the pre-test prediction

Indication of debris relocation to GS#2 (reaction of thermocouples at the top of GS#2) after mechanical impact on the bundle top

78400

78000

78200

J. Stuckert – QUENCH-DEBRIS (Q-17), 08.04.2014 Paper 14150 ICAPP 2014, Charlotte

Quench phase: collapse water level and TC wetting

TC wetting at high elevation by 2-phase fluid

Quench phase: water level oscillations and evaporation rate

Withdrawn grid spacer #4 (1350 - 1390 mm) and remnant of cladding

remnant of Zry clad #8: significantly oxidised

Zry-4 GS #4 (highest elevation):

completely oxidised

08.04.2014 J. Stuckert – QUENCH-DEBRIS (Q-17), Paper 14150 ' ICAPP 2014, Charlotte

Endoscope observation of debris relocated under GS #3

sintered pellets at 950 mm

pellet segments at 920 mm between Zry and Hf claddings

blockage at elevation 910 mm

08.04.2014 J. Stuckert – QUENCH-DEBRIS (Q-17), Paper 14150 ICAPP 2014, Charlotte

Debris collected at the top of grid spacer #3 (1090 mm)

Axial distribution of oxide layers

Elevation, mm	ZrO2, µm	HfO2-clad, µm
150	10	200
390	40	140
450	40	125
550	700	140
650	1100	200
750	1100	180
850	1100	750
950	1100	1100
1050	1100	140
1330	300	0

Elevation, mm	HfO2- shroud,µm	HfO2-corner, μm
150	0	0
390	70	115
450	100	140
550	110	150
650	190	180
750	90	160
850	950	270
950	1200	1550
1100	80	70

Structure of claddings at 390 mm: local effects due to debris; T_{long}=1200 K

rod #1: outer ZrO_2 90 µm; inner ZrO_2 5 µm; inhibited heat removal due to debris \rightarrow higher T \rightarrow thicker ZrO_2

rod #6: outer ZrO₂ 25 μm; α-Zr(O) 50 μm; no debris → good heat removal

grid spacer #2: ZrO₂ 120 μm; inhibited heat removal due to debris

rod #12: outer HfO₂ 140 μ m, breakaway; α -Hf(O) 300 μ m

rod #17: outer HfO₂ 140 μ m, breakaway; α -Hf(O) 150 μ m

08.04.2014 J. Stuckert – QUENCH-DEBRIS (Q-17), Paper 14150 ICAPP 2014, Charlotte

Debris regions at elevation 450 mm

Structure of claddings at 550 mm: local effects due to debris; TFS 18/9 long=1400 K

rod #1 (similar to #2 - #6): outer ZrO₂ 220 μm; inner ZrO₂ 70 μm; through-going crack

rod #9 (similar to #7 and #8): completely oxidised

rod #10: outer HfO_2 120 $\mu m,$ breakaway $\alpha\text{-Hf}(O)$ remnant

rod #17: outer HfO₂ 160 μ m, breakaway α -Hf(O) remnant

08.04.2014 J. Stuckert – QUENCH-DEBRIS (Q-17), Paper 14150 ICAPP 2014, Charlotte

Structure of claddings at 850 mm: local effects due to debris; TIT D/12_{long}=1750 K

completely oxidised rod #1 (similar to other Zry rods)

Hf rod #10 (similar to rods <u>in zone without debris</u> #11, 12, 19 – 21): HfO₂ 450 μm; α-Hf(O) 460 μm; through-going cracks

X-ray tomography

Institute for Applied Materials

08.04.2014 J. Stuckert – QUENCH-DEBRIS (Q-17), Paper 14150

20 / 23

ICAPP 2014, Charlotte

X-ray tomography: debris formed before flooding above grid spacer GS2

Movie: debris between 392 mm (GS top) and 765 mm

08.04.2014 J. Stuckert – QUENCH-DEBRIS (Q-17), Paper 14150 ICAPP 2014, Charlotte

Summary

• The QUENCH-17 bundle test with 9 unheated internal rods (Zry-4 claddings) and 12 heated external rods (Hf claddings) was performed in two stages: 1) long pre-oxidation stage (78000 s) at T_{pct} =1750 K with complete oxidation of Zry-4 claddings between about 650 and 1150 mm, 2) reflood stage with slow flooding from bottom (10 g/s, or about 3 mm/s through the debris bed).

• Different kinds of Zry and Hf cladding oxidation were observed depend on temperature: breakaway of relative thin oxide layers at lower temperatures and regular thick oxide layers at higher temperatures. Despite complete oxidation of claddings their mechanical integrity was mostly not damaged.

• Mechanical impact on the end of pre-oxidation caused debris relocation to grid spacer at 350 mm. Some Zry-4 claddings were not significantly damaged. Ceramics debris collected at the top of grid spacers consist of separate pellet segments (eff. D ≈ 3 mm) and **relatively large linear cladding segments (> 10 mm)**.

• Steam production rate was strongly **oscillated** during propagation of flooding water through the debris collected above grid spacers at 350 mm.

• The **porosity** of debris bed is **significant**, no dense packing of debris particles was observed. **Large empty volumes** formed due to bending of rods. The maximum cooling channel **blockage** was about **85%**.

• Impact of heterogeneous debris bed on reflooding remains open question. Detailed analysis of the reflood is planned in the near future to examine the latter question.

Acknowledgment

The authors would like to thank Mrs. U. Peters, Mrs. U. Stegmaier and Mrs. J. Laier for intensive work during test preparation and post-test investigations

Thank you for your attention

http://www.iam.kit.edu/wpt/english/471.php/ http://quench.forschung.kit.edu/

