

International role of nuclear fission energy generation - status and perspectives

Content

- Present status of nuclear electricity generation observations worldwide and in Europe
- Boundary conditions for NPP deployment-Large reactors (LR)/ vs. small medium sized reactors (SMR)
 - Economic considerations
- Safety concept of a NPP
 - General safety approach
 - Design safety
 - Severe accident safety & measures
 - LR under development
 - SMR technologies
- Generation –IV -Transmutation
- Some concluding remarks

Present status –Some facts

- NPP worldwide currently operating (3/2014, www.iaea.org/pirs/):
 - 435 nuclear power plants commercially operated
 - 372 GWe net capacity
 - 72 reactors under construction
 - 240 research reactors in (56 countries), 180 nuclear powered civil ships
- Net electricity production 2370 TWh (2013)
- ⇒ ≈11% of global electricity production (almost constant since 2006)

Present status -Some facts

Karkruhe Institute of Technology

Plant Location-currently-new builts

- 72 new builts of which
- → 60 PWR's
- → 68 GW_{el}

Middle E

Reactor types-installed power

- focus on large scale units ~1GWe light water reactor (LWR)-types
- mainly pressurized water reactors (PWR)

Present status -Some facts

- Age distribution
 - Mean reactor age ~30y
 - Most reactors belong to Gen-II systems

- Nearly all current reactors operating are of LR-type
 - Installed mean power >1GWe
 - NPP operated as grid base load backbone

Present status- Germany

After march 11th 2011 Fukushima

- 9 NPP operating (12,068GW_{el})
- 8 shut-down
- 16 in decomissioning phase

NPP electricity facts

- 97TWh_{el} produced
- → load factor (LF=) 92%
- Share in energy mix ~16%
- Difficult boundary conditions
 - Priority access of renewable energy sources (RES)
 - nuclear fuel tax
 - Regulatory contraints ("stress test",licensing, ….)

Present status- Germany

Current German electricty share

- RES share 24.9%
- Installed capacity RES
- 35,9GW Photovoltaics (PV)
- 33,8GW Windpower
- Delivered RES energy
 - 30TWh PV (LF=9.5%)
 - 53TWh Wind (LF=18%)

- Successful "Energiewende" demands
 - transformation of grid AND
 - provision of mature, reliable storage technologies

- NPP deployment strongly dependent on national arguments
 - Grid /electricity independence > autarchy (resources, availability,...)
 - Strategy of economic and
 - social development
 - technological basis

& Waste Management: +3/+6%)

- industrialization goals
- acceptance, perception
- maturity, safety performance, infrastructures
- Additional considerations: bridging technology long term option

General facts

Cost share of electric power plants

© M. Ricotti, Polytec. Milan

Positive and negative effects in NPP erection

POSITIVE

Agence pour l'énergie nucléaire **Nuclear Energy Agency Electricity Cost Sensitivity** to Fuel Price Volatility + 75 % **GAS-FIRED PLANT NUCLEAR PLANT** ThD / 7 May 2007 NUCLEAR POWER: GLOBAL STATUS AND PROSPECTS 16

NEGATIVE

- Sensitivity to the Cost of Money
- construction delays/regulatory burdens
- capital intensive investment = exposure to market risk

- High capital investments
- Long construction schedule

- High financial exposure
- Long Pay Back Time
- High investment risk

Consequences

© Booz & Company, 2009

- Long-term investment strategy
- stable energy polictics environment
- societal economic stability AND acceptance
- Especially for private operators in liberalized markets based on competition

Large reactors or Small Modular Reactors (SMR) ?

Arguments for SMR

- flexible power generation wider user/application range
- replacement of fossil fired units
- enhanced safety margin by inherent and/or passive safety features;
- better affordability freedom in upgrading
- Cogeneration & non electric applications (desalination-process heat),
- Hybrid energy systems composed of nuclear with RES.

But deployment & technology of SMR is not

technology

simply a scale reduction

sum of the modules

LEVELIZED UNIT ELECTRICITY COST = LUEC

- Calculated as "Lifetime levelized cost"
- Sum of cost items:
 - Investment cost including capital remuneration
 - Fuel cycle (front-end and back-end)
 - Operation & Maintenance (O&M)
 - Decontamination and Decommissioning (D&D)

Major aspects for nuclear reactor deployment

Currently deployment of Gen III –reactors

Are they essentially new compared to running Gen-II types? -No

Evolutions of the operating Gen 2 plants

Why?

- Low industrial risk:
 - Include feedback of experience of the global fleet
 - Designed on well proven physics principles
 - No technological leap necessary
- Performance vs. sustainability = Gen 2

Major aspects for nuclear reactor deployment

- Hardened design objectives for
 - **nuclear safety** (Severe accident integrated in design; limited radiological consequences, Core damage frequency <10⁻⁶ /y, more robust defence in depth approach -diversity, specific measures for each DiD level, integration of external events and hazards in safety concepts)

and

- public acceptability (No area submitted to off-plant emergency planning, Low environmental impact in normal operation and design basis
 often Charmabul (1996). NavyYarla (2004) and Enterphises
- after Chernobyl (1986), NewYork (2001) and Fukushima
- Hardened economic design objectives (competition with other sources)
 - profitability of project (availability>90% along life-time, short refuelling- outages, long cycles, reducedinvestment ⇒large size, design simplification, construction duration)
 - Investment protection (lifetime 60-80 years, low rate of difficult-to-repair failures, low core melt frequency < 10⁻⁵, proven technology → no leaps)
- Gen-III reactors are not Gen 4 !!!
 - No design requirement(s) for sustainability (saving U₂₃₅ resources)
 - No burning of minor actinides

Requirements quite well established & documented

Numerous standards posed in documents by

- utilities,
- national TSO,
- Regional within the EU and
- worldwide collaborations
- and through IAEA

and continuously updated.

Safety concepts of NPP's-General

Karlsruhe Institute of Technology

Major protection goals for NPP to be matched by design

- Confinement of radionuclide inventory
- Coolability at any time irrespective of origin and source
- Control of reactivity
- → Defence in Depth (DiD) approach → assignment of safety levels

lev.	cond.	aim	measures	consequences
1	normal	prevention of anormal operation or failures	Conservative design, high quality contruction, qualified personnel	No measures
2	operational failure	condition control, detection/ identification of reason	Control, limitation/ protection measures and survey functions	After short time restart
3 🕠	Design basis accident (DBA)	control of DBA within design (e.g. multiple failures of safety functions)	Engineering safety charact. and implementation of controlled accident measures	Planned restart anticipated (after inspection, repair,qualification)
4	Severe accident (BDBA)	Control of critical plant states incl. prevention of propagation	Complementing measures and accident management	Re-start not required
5	Post severe accidents	Mitigation of radiolog. consequences	Off- plant emergency measures	No plant re-start assumed

Safety approach- Risk informed safety philosophy

Design basis safety: Gen II and Gen- III Reactors

NPP: Complex System with Multi-physic and Multi-scale Phenomena

Main challenges for risk informed safe design:

- Neutronic, thermal hydraulic, mechanical design ALL ARE COUPLED
- Passive safety systems for ECC and decay heat removal
- Control of severe accidents (core-catcher, passive containment cooling, PAR)

Enlarged computational capabilities and ressources allow for

- more detailled local analyses in the reactor design
- improved design safety of new plants (Gen III)
- retrofitting of running plants (Gen II)

Recipe to solve the sophisticated problem envolve:

- Multi-scale problems
- Multi-physics problems
- Multi-scale and multi-physics
- including transients
- A very challenging problem with numerous feedbacks!

TH- problem – "classic route"

- Fast running real time capability
 - reactor operation
 - principle design

TH- multi-scale –problems –CFD Flow in reactor pressure vessel (RPV) micro → macro scale

- Down comer and lower plenum:
- Computing effort 2 weeks CPU time (12 processes parallel) for 1800s transient
- Development chain
 - Δp obtained from standalone full detail model (3 Mio cells / column)
 - Implementation of Δp coefficient in the coarser RPV model (5000 cells / column)

perforated

walls

Outlet

Inlet

rel. Pressure

5.901e+003

7 152e+00

TH -multi-scale -problems RPV→Primary loop (VVER-1000)

- RPV
- Heat exchanger
- Primary loops:
 - Steam generators and pumps
 - Pipes
 - Valves

© M. Böttcher, INR

- TH Validation essential corner-stone → IAEA –Benchmarks
- **Example:**
- OECD/NEA Benchmark: Pump Trip exercise
 - Void fraction
 - Pressure drop
 - Critical power

Fuel assembly (FA)

© Perez-Manes PhD Thesis 2013

Advanced methodologies for the analysis of PWR and BWR Transients

- Coupled thermal-hydraulics and neutronics
- High-fidelity / multi-physics developments: from FA to pin-based solutions
 - Direct prediction of local safety parameters at cell level
 - Reduction of conservatism

Actual Trend: Multiphysics and multiscale problems

"Two routes"

■ Fuel Assembly level simulations
→ conservative safety parameters

1

Pin level simulations

local safety parameters, but costly

2

economic AND save designs demand high spatial resolution on core level

Actual Trend Multi-/scale -physics

1

- local FA or even pin data
- Mesh super-position at FA level with pin-power- reconstruction
- Demanding High Performance Computing (HPC) and parallelization

Actual Trend:

Multiphysics and multiscale problems

1-2

Next steps underway → tracking each neutron → Monte Carlo methods

AMM=Accident management measures

Standard NPP Safety Systems- Gen II

Control

PRHR HX (passive residual heat

- Control rods
- **Borated water**

Purely passive and safety related Emergency core cooling systems (ECCS)

Core make-up-tanks (borated water)

Accumulators (water replacement)

Evolutionary Safety Systems- Gen III

- Several severe accident strategies
- In-vessel retention

ex-vessel by means of "core catcher"

© Westinghouse, AP1000,2012

© AREVA-NP,2011

Beyond design basis -safety -Severe accidents

Subject of international cooperations and networks
Goal: reliable physics description → predictive tool development

Corium-concrete interaction

Beyond design basis –safety –Severe accidents

reflodding hydrogen induced clad rupture

QUENCH prog. @KIT

Behavior of core melt in lower plenum

LIVE prog. @KIT

Hydrogen distribution in large containments

hydrogen safety @KIT

ex-vessel Molten Core Concrete interaction

- behavior in reactor pit
- direct containment heating DISCO prog. @KIT

- scale demonstration
- concrete sensititvity MOCKA prog. @KIT

Large Gen-III Reactors currently deployed (PWR)

Large Gen-III Reactors currently deployed (PWR)

☐ AES (Russia)

- 4 SG, 4 Pumps, 1070MWe, Horizontal HEX,
- Passive safety features, Core catcher, soda injection system
- ■BUL, RUS
- ATMEA (MHI-AREVA)
- ■3 loop, 1150MWe,
- ■3-safety trains
- ■2 stage accumulator,
- heavy airplane crash design
- 100% MOX fuelling possible,
- ■24m fuel cycle
- interests but no built

Large Gen-III Reactors currently deployed (BWR)

- PCCS (passive containment cooling system)
- GDCS, (gravity based core cooling system).
- Core catcher
- in licensing

ABWR (Hitachi-GE)

- ■1350MWe, high operation flexibility
- ■high core safety CDR <10⁻⁷/y
- short erection time 37m, full MOX capability
- JAP.TAIWAN

- 4 passive safety trains (nat. circulation)
- ■1500MWe, CDŘ CDR <10-8/y
- licensed in US, no current projects

Kerena (AREVA)

- all passive safety sytem, compact, 1250MWeflexible operation, designed for severe acc.
- Airplane crash resistant, no current projects

Nuclear Waste

Nuclear is a generation contract !!!! → requiring accetance & stability

- Capital investment
- Long living fission products
- Waste management strategies in all aspects

Why and what masses to expect ? → Fuel and activated material

Nuclear Waste

Reprocessing, conditioning and transport mandatory

Options for subsequent treatment of radionuclides

- Disposal (geological w/o access, deep underground /near soil ,.....)
- Transmutation

What is transmutation?

transfer of radionuclides by neutron induced fission or neutron capture in another element

Nuclear Waste -Transmutation

How to minimize radiologic burdens ? Fuel cycle required

Final repository required but substantially smaller!

Nuclear Waste -Transmutation

What type of fast neutron spectrum reactors? –Two options

dependent on further nuclear utilization option !!!

International contributions to Generation IV

Strategic aims:

- development of new NPP by 2030 in internat. cooperation
- multifunctionality (electricity, desalination, hydrogen, heat)

Technologic aims

- better economics
- improved sustainability
- increased safety
- enlarged proliferation resistance

Status

- continuous worldwide cooperation
- 6 dedicated concepts
- elaboration of standards

+China, Russia since 2006!

Gernmany? –through EU

Generation IV Forum: selection of six nuclear systems

Service Servic

Very High Temperature Reactor

Supercritical Water-cooled Reactor

Summary and perspective

- fission energy fission substantial part of worldwide energy production.
- mostly generated by Gen –II NPP systems
- fission pursued worldwide in numerous industrial countries
- current deployment focused on large scale LWR
- Substantial scientific progress in last decade with respect to safety
 - interesting multi-physics and multi-scale phenomena
 - accurate description of transient processes in plants
 - internationalisation of research and development by collaboration, agreements and bi-lateral contracts
 - current deployment focused on large scale LWR
- nuclear energy production is a generation contract!
- nuclear waste management is an essential part of nuclear evolution
- transmutation in reactors is a credible option to minimize burden on future generations (both: fuel, repository demands)
- irrespective of societal decision on use of nuclear fission energy research, development and education must be of vital interest to assure credible assessement capability.