

Increasing the Fuel Utilization in Gen-II BWR with Reduced-Moderation Square Lattice Fuel Assemblies

ICAPP2014-14145

Institute for Neutron Physics and Reactor Technology

Markus Schlenker & Victor Sanchez-Espinoza

Karlsruhe Institute of Technology, Institute for Neutron Physics and Reactor Technology

2014 International Congress on Advances in Nuclear Power Plants (ICAPP)

Westin Charlotte, North Carolina, U.S.A. April 6-9, 2014

Design

studies

Introduction

Dancoff

Karlsruhe Institute of Technology

Improve fuel utilization in light water reactors (LWR) by increasing the conversion ratio

Validation

studies

Conclusions

- Make multi-recycling more feasible
- Use advantages of boiling water reactor (BWR)
- Maintain inherent safe behavior
- Use proven plant design (Gen-II BWR: German KWU series 72)

conventional light water reactors (LWR) conv. LWR with full-MOX core high-conversion LWR (HCLWR) HCLWR with extremely tight lattice fast breeder reactors (FBR)

Solution approach

SCALE6.1 code package

Dancoff

factors

Design

studies

Introduction

000

- TRITON lattice physics sequence:
 - ENDF/B-VII multigroup crosssections in 238 energy groups

Validation

studies

Conclusions

- BONAMI/CENTRM/PMC for multigroup cross-section processing
- Manual definition of Dancoff factors
- NEWT deterministic 2-D S_N code
- Flexible mesh
- ORIGEN-S depletion code

Fig. 1. Flowchart for TRITON/NEWT depletion sequence.

M. D. DeHart, S. M. Bowman 2010, *Reactor Physics Methods and Analysis Capabilities in Scale*, Nuclear Technology, Vol. 174, May 2011

- KENO-VI Monte Carlo code
 - ENDF/B-VII cross-sections
 - continuous energy
 - multigroup (238 energy groups)
 - BONAMI/CENTRM/PMC for multigroup cross-section processing

Parametric design studies (TRITON / NEWT)

Parametrization:

Case	1	2	3	4	5	6	7	Ref
Lattice dimension	10x10	10x10	10x10	12x12	10x10	10x10	10x10	10x10-9
Pitch, cm	1.290	1.285	1.285	1.070	1.285	1.285	1.285	-
R _{rod} , cm	0.545	0.573	0.573	0.465	0.573	0.573	0.573	0.514
R _{fuel} , cm	0.470	0.494	0.494	0.401	0.494	0.494	0.494	0.452
Rod distance, cm	0.20	0.14*	0.14	0.14	0.14	0.14	0.14	-
moderator to fuel ratio (MFR)	1.842	1.543	1.543	1.695	1.543	1.543	1.543	2.477
Fuel volume [*] , cm ³ /cm	69.5	76.7	76.7	72.8	76.7	76.7	76.7	58.4
Av. enrichm., wt-%	5	5	6	5	5	5	6	4.4
Pu-Vector (see below)	1	1	1	1	2	3	3	1

*Minimum rod clearance in study

Fuel material compositions:

Pu-Vector	Pu238	Pu239	Pu240	Pu241	Pu242	Pu _{fiss}
1	2	56.5	26.1	8.6	6.8	65.1
2	4	48	31	7	10	55
3	4	38	33	12	13	50

Results for k_{eff} and CR (5% Pu_{fiss})

Case	1	2		4	5	6		Ref
Lattice dimension	10x10	10x10		12x12	10x10	10x10		10x10-9
R _{rod} , cm	0.545	0.573		0.465	0.573	0.573		0.514
moderator to fuel ratio (MFR)	1.842	1.543	1.543	1.695	1.543	1.543	1.543	2.477
Pu-Vector (see below)	1	1		1	2	3		1

- K_{eff} decrease slower due to higher CR
- Results not directly comparable due to differing achievable cycle length

Interpolating results to compare cases

Conclusions

- Apply linear reactivity model (Driscoll, 1990)
- Assume leakage of ~2.5 % in effective system
- Matching cycle length for matching k_{inf} at k=1.025

Interpolation suggest ~5.6% Pu_{fiss} for comparable cycle length

Design

studies

()()

()()

Introduction

000

Dancoff

factors

Validation

studies

Results – Fuel utilization

Validation

studies

Conclusions

Dancoff

factors

Design

studies

Introduction

000

Case	1	2	4*	5*	6*	Ref
Lattice dimension	10x10	10x10	12x12	10x10	10x10	10x10-9
Pitch, cm	1.290	1.285	1.070	1.285	1.285	-
R _{rod} , cm	0.545	0.573	0.465	0.573	0.573	0.514
Rod distance, cm	0.20	0.14	0.14	0.14	0.14	-
MFR	1.842	1.543	1.695	1.543	1.543	2.477
Av. enrichm., wt-%	5	5	5.3	5.6	5.6	4.4
Fresh Pu _{qual}	0.65	0.65	0.65	0.55	0.50	0.65

Cycle length, efpd	270	271	273	265	265	276
Cycle average CR	0.729	0.753	0.744	0.780	0.794	0.68
Pu-quality-change (discharge - fresh)	-0.08	-0.06	-0.06	-0.03	-0.03	-0.16

- Slightly better fuel utilization with thicker rods (smaller MFR!)
- Best fuel utilization with lowest fresh Pu-quality
- Degradation of Pu-vector significantly reduced

Results – Void reactivity coefficient

Case	1	2	3	4	5	6	7	Ref
Lattice dimension	10x10	10x10	10x10	12x12	10x10	10x10	10x10	10x10-9
moderator to fuel ratio (MFR)	1.842	1.543	1.543	1.695	1.543	1.543	1.543	2.477
Av. enrichm., wt-%	5	5	6	5	5	5	6	4.4
Pu-Vector	1	1	1	1	2	3	3	1

VC reduced but negative

Case	1	2	3	4	5	6	7
Approximate limiting av. enr. for negative VC, wt-%	~8.7	~7	7.7	~7	~6.7	~	<i>·</i> 6

User-defined Dancoff factors (C)

- Only needed for multi-group calculations
- Standard-approach:
 - Infinite lattice C in every unit cell
- BWR:
 - Quasi infinitive lattice in center → infinite lattice C ok
 - Very heteregeneous peripheral lattice → infinite lattice C not correct!
- C is void dependent

0 % void content

0.34

0.48

0.48

0.48

0.49

0.33

0.49

0.49

0.48

0.49

0.34

0.48

0.49

0.48

0.49

0.23

0.34

0.34

0.34

10

0.33

0.48

0.48

0.48

0.48

- C can be grouped (center, side, corner)
- e.g. in upper left quadrant of low moderated FA:

0.40

0.58

0.59

0.59

0.59

40 % void content

0.41

0.59

0.59

0.59

0.60

0.40

0.60

0.60

0.59

0.60

0.41

0.59

0.60

0.59

0.60

0.34

0.50

0.51

0.51

0.52

0.50

0.73

0.74

0.75

0.75

80 % void content

0.51

0.74

0.75

0.76

0.76

0.51

0.75

0.76

0.76

0.76

0.51

0.74

0.76

0.76

0.76

0.27

0.40

0.41

0.41

0.41

100 % void content										
0.38	0.57	0.59	0.58	0.59						
0.57	0.84	0.85	0.86	0.85						
0.58	0.85	0.87	0.87	0.87						
0.58	0.86	0.87	0.87	0.87						
0.59	0.86	0.87	0.87	0.87						

Influence of C on results (NEWT)

Overprediction by several 100 pcm without correct Dancoff factors

- Difference increases with void content
- Especially high disagreement for high void content

Conclusions

- Good agreement of NEWT and MG-KENO
- Difference of <1% between MG-KENO and CE-KENO</p>
- Bad agreement for void > 80%
- Potential sources for differences between MG-KENO and CE-KENO :
 - S(α , β) treatment in CE-KENO, Dancoff factors, Multi-group approximations

Design

studies

0000

Introduction

000

Dancoff

factors

 $\cap \cap$

Validation

studies

Reference to KENO validation*

Validation

studies

Conclusions

Design

studies

0000

Introduction

000

Dancoff

factors

 $\cap \cap$

Fig. 33. Detailed results for MCT systems, KENO-VI.*

"...the differences between the multigroup and continuous energy results are expected to be minimized with a pending S(α,β) update for the continuous energy cross sections that will be available with a subsequent release of Scale."* (Scale6.2)

*W. J. Marshall, B. T. Rearden 2011, *Criticality Safety Validation of Scale 6.1*, ORNL/TM-2011/450

 Considering of all approximations and KENO validation shows, 1% difference between MG-KENO and CE-KENO is reasonable
Prediction improvement with SCALE6.2 assessed in the future

Conclusions

Design

studies

OOOO

Introduction

000

Dancoff

factors

 $\cap \cap$

Design studies for low moderated FA:

Validation

studies

 $\cap \cap$

- Improvement of the conversion ratio: $0.68 \rightarrow 0.73$ to 0.79
- Slower degradation of plutonium quality: -0.16 → -0.03 to -0.08 → Second recycling more feasible
- Reduced but negative void reactivity coefficient

Conclusions

- Corrected Dancoff factors improve result significantly
- Validation of NEWT model with KENO shows reasonable agreement
- Potential sources for differences between MG-KENO and CE-KENO:
 - S(α,β) treatment in CE-KENO
 - Dancoff factors
 - Multi-group approximations
- High void content predictions disagree (KENO vs NEWT) and have to be investigated in the future

Core calculations are needed for more representative BWR conditions

Acknowledgements

- The authors gratefully acknowledge the technical advice of Prof. H.-D. Berger, Dr. M. Rost and all other involved colleagues of AREVA GmbH and want to thank for the financial support of AREVA GmbH for this work.
- This work is also supported by the Reactor Safety Research Program of the Karlsruhe Institute of Technology (KIT).