

Influence of the Temperature History on Secondary Hydriding and Mechanical Properties of Zircaloy-4 Claddings - an Analysis of the QUENCH-LOCA Bundle Tests

J. Stuckert, M. Große, C. Rössger, M. Steinbrück, M. Walter

Paper ICONE22-30792

Institute for Applied Materials; Program NUKLEAR

www.kit.edu

Present Regulatory Limit for LOCA (international)

Oxidation limits

- Keep equivalent cladding reacted below 17% → ECR < 17%
- Keep oxidation temperature below 1200°C → PCT < 1200°C
- Keep hydriding below ? \rightarrow ECR = ECR(H)

Secondary hydriding:

Hydrogen peaks above and below burst openings

1981, JAERI*: first observation of cladding hydriding by steam ingress through the burst opening at 1100°C Rod No. Steam flow rate Temperature Duration 0.13 g/cm²min 1100°C 240 sec. 27 20 7 0.66 g/cm²min 1100°C 240 sec. 30 18 mdd. 16 2000 * (wt ¥. 14 Content, content _് 12 1500 2 10 ECK 3 Absorbed hydrogen Oxygen (8 6 1000 2 4 2 500 0 -110 -90 -70 - 45 -30 -15 15 30 45 Bottom Distance from rupture opening (mm) Тор Uetsuka et al., Journal of NUCLEAR SCIENCE and TECHNOLOGY, 18[9], pp. 705~717 (September 1981).

Iding hydriding by 2008, ANL: strong hydriding at 1200°C up to 4000 wppm

NUREG-6967 (Billone et al.): unirradeated pressurised sample OCL11 (Zry-2) ramped in steam from 300°C to 1204°C at 5 K/s, held at 1204°C for 300 s, cooled at 3 K/s to 800°C, and cooled from 800°C to RT

09.07.2014 J. Stuckert – QUENCH-LOCA July 7-11, 2014, Prague, Czech Republic 4 / 29

Objective for new LOCA bundle tests

- Higher burn-up: increased oxidation during normal operation and pertaining hydrogen uptake
- Secondary hydriding of cladding after burst
- Application of new cladding alloys
- Evidence of core coolability
- Contribution to modification of current LOCA embrittlement criteria (1200°C, 17% ECR) with consideration of cladding hydrogenation

Cross-section of the QUENCH-L1 bundle

enhancements for QUENCH-L1: 1) prototypical high heating rate; 2) prototypical cool-down phase

Progress and boundary conditions of the QUENCH-L1 test

maximal reached power: QUENCH-L1 (Ta-heaters, Ø 6 mm): 58.5 kW, QUENCH-L0 (W-heaters; Ø 6 mm): 43 kW

July 7-11, 2014, Prague, Czech Republic

Institute for Applied Materials

09.07.2014 J. Stuckert – QUENCH-LOCA

12 / 29

14 / 29

Burst-Parameters

LOCA-0 (transient ca. 220 s)

LOCA-1 (transient ca. 80 s)

Rod	Rod	Burst time,	Burst temperature,	
group	#	S	interpolated, °C	
Center	1	111.2	914	
	7	114.2	888	
	4	114.6	867	
	3	119.2	881	
	8	122.0	880	
	5	129.6 911		
	6	130.4	910	
	9	136.2	939	
	2	136.8	940	
Periphery	12	150.0	891	
	18	151.2	907	
	17	152.0	933	
	20	153.2	849 (Min)	
	14	153.4	898	
	16	155.0	894	
	19	159.6	929	
	13	162.5	880	
	11	167.2 948 (Max)		
	21	170.6	870	
	10	174.4	865	

Rod group	Rod #	Burst time, s	Burst temperature, interpolated, °C
Zentralstäbe	4	55.2	881
	6	55.2	837
	1	55.6	896 (Max)
	5	57.2	831
	2	57.2	859
	8	58.6	859
	3	59.0	845
	7	59.8	801 (Min)
	9	62.6	889
	15	64.4	886
	17	67.6	831
	11	67.6	783
Peripheriestäbe	14	68.6	881
	16	68.8	883
	18	72.6	808
	13	73.6	874
	20	76.0	832
	12	76.8	819
	21	80.6	867
	19	83.6	890
	10	87.6	870

09.07.2014 J. Stuckert – QUENCH-LOCA

16 / 29

Outer and inner cladding oxidation at 900 mm for LOCA-1, rod #1

inner and outer oxide layer thickness: **20 μm**

inner oxide: layer thickness: **20 μm**

09.07.2014 J. Stuckert – QUENCH-LOCA July 7-11, 2014, Prague, Czech Republic 18 / 29

July 7-11, 2014, Prague, Czech Republic

Institute for Applied Materia

Micro hardness (Vickers) of <u>hydrated single</u> samples: dependence on hydrogen content and temperature

rod #3; t_{burst}=119 s; T_{burst}=820°C; A_{burst}=40 mm²

23 / 29

Failure behavior during tensile tests at room temperature

QL0: 3 types

QL1: only stress concentration (excepted rod #1 brittle ruptured during handling)

94 98 3 6 5 32 () C 33 CD C 🔿 LO C D 30 CO 5 < **3** S 96 88 93 5 00 92 5 00 rod #9 rod #6 rod #4

С_н = 730 wppm

09.07.2014

(outer rods with $C_{H} > 1500 \text{ wppm})$ $C_{H} > 1000 \text{ wppm})$

rods)

July 7-11, 2014, Prague, Czech Republic

J. Stuckert – QUENCH-LOCA

Tensile tests for inner rods

Results of tensile tests

QL0

rod 10=500 mm *10=250 mm	ultimate tensile strength [MPa]	fracture stress [MPa]	elongation at fracture [%]	gation acture rupture based on: %]	
01*	254	254	0.38	hydrogen embrittlement	
02	408	408	0.99	hydrogen embrittlement	
04*	276	276	0.40	hydrogen embrittlement	
05*	274	274	0.37	hydrogen embrittlement	
06	148	148	0.16	stress concentration	
07*	222	222	0.29	hydrogen embrittlement	
09	518	433	8.10	necking	
10	512	507	10.12	necking	
11	509	391	11.67	necking	
12	502	499	6.44	stress concentration	
13	504	504	9.18	stress concentration	
14	430	430	1.97	stress concentration	
15	505	450	11.70	necking	
16	512	389	10.95	necking	
17	501	497	3.83	failure at stuck pellet	
18	513	458	10.19	necking	
19	489	368	11.80	necking	
20	452	447	2.20	stress concentration	
21	506	498	8.11	stress concentration	

rod 10=1000 mm *10 = 250 mm	ultimate tensile strength [MPa]	fracture stress [MPa]	elongation at fracture (graded) [%]	rupture based on:
04*	416	414	0.75 (0.68)	stress concentration
06*	499	481	1.70 (1.68)	stress concentration
07*	436	425	1.03 (0.81)	stress concentration
09	307	307	0.59 (0.09)	stress concentration
12	464	464	5.50 (5.27)	stress concentration
13	518	515	5.13 (5.03)	stress concentration
14	471	471	3.96 (3.80)	stress concentration
16	462	456	4.31 (4.10)	stress concentration
17*	333	327	0.33 (0.33)	stress concentration
18*	270	263	0.19 (0.19)	stress concentration
20*	367	356	1.13 (1.06)	stress concentration

QL1

09.07.2014 J. Stuckert – QUENCH-LOCA

26 / 29

Summary

- > Two out-of-pile bundle tests, QUENCH-L0 and QUENCH-L1, with the same bundle geometry and the same cladding material (Zircaloy-4) were performed under LOCA conditions to investigate the phenomenon of the so-called cladding secondary hydriding. The tests differed in (1) heat-up rate during the first transient (max 2.5 K/s for QL0 and max 7.5 K/s for QL1); (2) absence (QL0) and presence (QL1) of a cooldown phase before quenching.
- > The cladding burst occurred at temperatures between 1123 and 1223 K for QL0 and between 1073 and 1173 K for QL1 (i.e. in both cases the burst temperatures were inside the temperature region corresponding the $\alpha \rightarrow \alpha + \beta \rightarrow \beta$ phase transition of the Zircaloy-4 alloy).

Summary (cont.)

- Post-burst duration of inner cladding oxidation at high temperatures was shorter in case of the more prototypical test QL1. Correspondingly, the amount of hydrogen absorbed by claddings close to their burst openings was lower for the QL1 (less than 1700 wppm) than for QL0 (less than 2600 wppm).
- Tensile tests at room temperature with claddings of both bundles showed that claddings with hydrogen contents *less than 1500 wppm* ruptured inside the burst opening due to *stress concentration*, whereas claddings with hydrogen contents <u>more than 1500 wppm</u> fractured <u>along the</u> <u>hydrogen bands</u>.

Acknowledgment

The QUENCH-LOCA experiments are supported and partly sponsored by VGB PowerTech e.V., Essen, Germany, European technical association for power and heat generation.

The authors would like to thank Mr. J. Moch, Dr. H. Leiste, Mrs. J. Laier and Mrs. U. Peters for intensive work during test preparation and post-test investigations

Thank you for your attention

https://www.iam.kit.edu/wpt/loca/ http://www.iam.kit.edu/wpt/471.php http://quench.forschung.kit.edu/

09.07.2014 J. Stuckert – QUENCH-LOCA July 7-11, 2014, Prague, Czech Republic

