

First results of the bundle test QUENCH-L4 with hydrogenated M5[®] claddings

J. Stuckert, M. Große, J. Moch, C. Rössger, M. Steinbrück

QWS20, Karlsruhe 2014

Institute for Applied Materials; Program NUKLEAR

KIT – University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz Association

www.kit.edu

QWS-20, Karlsruhe

Features of bundles QL2 (fresh M5[®]) and QL4 (pre-hydrogenated M5[®]):

- 1) The use of <u>tungsten</u> heaters with smaller diameter (<u>4.6 mm</u>) instead tungsten heaters (QUENCH-L0) with diameter of 6 mm has allowed to reach a **higher heat rate**.
- 2) All rods are filled with Kr with p=55 bar at Tpct=800 K.

QUENCH-L4: test progress. Comparison with QUENCH-L2 temperature.

Lower radial temperature gradient for the LOCA-4 bundle due to decreased heat lost through the heat insulation; as result – more homogeneous radial conditions for ballooning and burst processes

11.11.2014 J. Stuckert – QUENCH-LOCA-4 QWS-20, Karlsruhe

QUENCH-L4: Ballooning and burst of cladding tubes at elevations 930 - 950 mm (videoscope)

11.11.2014 J. Stuckert – QUENCH-LOCA-4 QWS-20, Karlsruhe

Institute for Applied Material

Length and axial position of burst openings

Institute for Applied Materials

Burst Parameters

LOCA-2

Rod group	Rod #	Burst time, s	Burst temperature, interpolated, K
Inner rods	1	50	1135
	2	53	1167
	3	53	1168
	4	52	1167
	5	53	1163
	6	50	1121
	7	53	1136
	8	48	1113
	9	53	1162
Outer rods	10	66	1125
	11	65	1145
	12	68	1195 (Max)
	13	67	1178
	14	66	1167
	15	58	1124
	16	64	1143
	17	62	1102
	18	65	1139
	19	67	1093
	20	63	1110
	21	66	1050 (Min)

neters		LOCA-4	
Rod group	Rod #	Burst time, s	Burst temperature, interpolated, K
Inner rods	1	48	1086
	2	55	1121
	3	50	1106
	4	50	
	5	48	1101
	6	50	1108
	7	48	1100
	8	53	1125
	9	52	1119
Outer rods	10	65	1072
	11	62	1067 (Min)
	12	64	1132
	13	63	1151 (Max)
	14	62	1149
	15	53	1074
	16	65	1137
	17	67	
	18	65	1137
	19	58	1082
	20	64	1096
	21	62	1077

average burst T: 1107 ± 27 K = 834 ± 27 °C

average burst T: 1138 ± 34 K = 865 ± 34 °C

11.11.2014 J. Stuckert – QUENCH-LOCA-4

QWS-20, Karlsruhe

Summary

- The QUENCH-LOCA-4 test with pre-hydrogenated M5[®] claddings (~100 wppm H) was performed according to a temperature/time-scenario typical for a LBLOCA in a German PWR with the same parameters as the QUENCH-LOCA-2 test with fresh M5[®] claddings: maximal heat-up rate 8 K/s, cooling phase lasted 120 s and terminated with 3.3 g/s/rod water flooding.
- Similar to QUENCH-LOCA-2, the maximum temperature of 1400 K was reached on the end of the heat-up phase at elevation 950 mm. Tangential temperature gradient across a rod was up to 30 K on the burst onset.
- Due to more close axial localisation of ballooned region the maximum blockage ratio of cooling channel (18% at 925 mm) was negligible higher in comparison to QUENCH-L2 (15% at 960 mm). Due to moderate blockage a good bundle coolability was kept for both bundles.
- The cladding burst occurred at temperatures between 1067 and 1151 K (QUENCH-L2: 1050 and 1195 K). The inner rod pressure relief to the system pressure during about 30 s (similar to QUENCH-L2).
- During quenching, following the high-temperature phase, no fragmentation of claddings was observed (residual strengths or ductility is sufficient).
- Influence of secondary hydrogenation: neutron radio- and tomography, metallographic investigations and tensile tests are in progress.

Acknowledgment

The QUENCH-LOCA experiments are supported and partly sponsored by the association of the German utilities (VGB). The unirradiated pre-hydrogenated M5[®] claddings and Zircaloy-4 spacer material was provided by AREVA.

The authors would like to thank Mrs. J. Laier and Mrs. U. Peters for intensive work during test preparation and post-test investigations.

Thank you for your attention

<u>https://www.iam.kit.edu/wpt/loca/</u> <u>http://www.iam.kit.edu/wpt/471.php</u> <u>http://quench.forschung.kit.edu/</u>

11.11.2014 J. Stuckert – QUENCH-LOCA-4 QWS-20, Karlsruhe

