

VARIANCE REDUCTION IN HIGH RESOLUTION COUPLED MONTE CARLO - THERMA-HYDRAULICS CALCULATIONS

Aleksandar Ivanov – aleksandar.ivanov@kit.edu Victor Sanchez

Institut für Neutronenphysik und Reaktortechnik

KIT – Universität des Landes Baden-Württemberg und nationales Grossforschungszentrum in der Helmholtz-Gemeinschaft

www.kit.edu

Table of contents

Introduction

The GVR scheme

The uniform fission site method

Demonstration of the MCNP - SUBCHANFLOW coupling scheme

Conclusions

2 Aleksandar Ivanov: VARIANCE REDUCTION IN COUPLED MC-TH CALCULATIONS

Variance reduction

- Large power gradient between the core center and the periphery.
- Large statistical uncertainties in the low power regions.
- Detailed pin-level spacial estimate of the power profile must be supplied to the TH code.
- The MC statistical uncertainties are propagated to the TH solution.
- Might lead to convergence failure of the TH solution and of the entire coupled system.
- Adequate variance reduction techniques needed.

Convergence of the coupled calculation and stochastic noise (1/2)

$$\epsilon = \max_{\text{pin}, z} \left| \frac{T_{\text{fuel}, P(\text{pin}, z)}^{n+1} - T_{\text{fuel}, P(\text{pin}, z)}^{n}}{T_{\text{fuel}, P(\text{pin}, z)}^{n+1}} \right|$$

- Since the Fission heat deposition P(pin, z) of a certain pin in a volume V around a particular z ∈ ℝ is tallied by a Monte Carlo code, the associated variance is propagated to the hydraulic distributions.
- The new convergence parameter becomes

$$\epsilon = \max_{\text{pin}, z} \left| \frac{T_{\text{fuel}, P(\text{pin}, z)}^{n+1} - T_{\text{fuel}, P(\text{pin}, z)}^{n} + \delta_{T_{\text{fuel}, P(\text{pin}, z)}^{n+1}} - \delta_{T_{\text{fuel}, P(\text{pin}, z)}^{n}}}{T_{\text{fuel}, P(\text{pin}, z)}^{n+1} + \delta_{T_{\text{fuel}, P(\text{pin}, z)}^{n+1}}} \right|$$

4 Aleksandar Ivanov: VARIANCE REDUCTION IN COUPLED MC-TH CALCULATIONS

Convergence of the coupled calculation and stochastic noise (2/2)

- The convergence parameter ϵ is affected by the induced variance $\delta_{T_{\text{fuel},P(\text{pin},z)}}$.
- To stabilize the coupled calculation itself, the coupled scheme between MCNP and SUBCHANFLOW uses relaxation technique based on stochastic approximation.
- To reach the desired convergence without running extensive number of coupled iterations, one has to reduce the variance of the fission heat deposition.

The GVR scheme (1/2)

Figure : Weight Windows in MCNP .

6 Aleksandar Ivanov:

VARIANCE REDUCTION IN COUPLED MC-TH CALCULATIONS

The GVR scheme (2/2)

In MCNP both W_S and W_U are integer multiples C_S and C_U of the lower bound W_L. The basic idea of GVR is to obtain uniform non-analog particle density. The analog particle density in a particular volume V is given by

$$n_k = rac{\phi_k}{V} pprox m_k \overline{w}_k.$$

*m_kw
_k* is the product of the non-analog particle density times the average weight. If we set

$$\overline{W}_k \propto \phi_k$$
,

then the non-analog particle density will be approximately constant. The lower bound of the weight window in this case is

$$W_{low} = \left(rac{eta+1}{2}
ight)rac{\phi_k}{\mathop{Max}\limits_k\phi_k}.$$

7 Aleksandar Ivanov: VARIANCE REDUCTION IN COUPLED MC-TH CALCULATIONS

The uniform fission site method

- In essence, the surplus of neutrons in the high power regions is used to improve the statistics of the low power regions.
- The number of neutrons per fission is modified to

$$N_{f}^{\text{mod}} = \lambda(\mathbf{r}) \times w \frac{\nu \Sigma_{f}}{\Sigma_{t} k_{eff}},$$
$$\lambda(\mathbf{r})^{-1} = \frac{s_{k}}{\langle s_{k} \rangle}.$$

- *s_k* is the fraction of the fission source in a mesh element *k*. To accumulate *s_k* special source mesh was implemented.
- To keep the Monte Carlo transport unbiased the starting weight of the particles has to be reduced by λ (r).

Demonstration of the MCNP -SUBCHANFLOW coupling scheme

- Demonstrated on the international NEA PWR UOX-MOX benchmark.
- Pin-by-pin resolution Monte Carlo simulation of real core loading with local thermal hydraulic feedback.
- Local temperature and density computed by the in-house code SUBCHANFLOW.
- In each Monte Carlo run 1×10^9 particles were simulated on 240 processor cores.

The uniform fission site method Numerical test

Table : Performance summary of the variance reduction techniques. 750 active cycles with 1×10^6 histories per cycle on quarter core model.

Calculation	Eigenvalue k _{eff}	FOM	run time (min)
Reference	1.15100 (2)	29.09	204
GVR	1.15096 (3)	33.15	596
UFS	1.15100 (3)	36.80	211

The uniform fission site method

Pin power relative error distribution for the first axial level

Reference simulation

UFS simulation

Figure : Relative error distribution in % for the bottom core slice (left) and the core mid-plane (right). Quarter assembly size mesh elements used for the UFS mesh.

11 Aleksandar Ivanov: VARIANCE REDUCTION IN COUPLED MC-TH CALCULATIONS

Demonstration of the MCNP - SUBCHANFLOW coupling scheme (2/3)

Figure : Convergence ϵ as a function of the coupled iteration [*N*] and two dimensional pin power distribution.

Demonstration of the MCNP - SUBCHANFLOW coupling scheme (3/3)

Figure : Core averaged fuel Doppler temperature and power distributions plotted as functions of the core height.

Comparison with the benchmark data

Table : Assembly power relative difference between SKETCH - INS2G and MCNP given in %.

	1	2	3	4	5	6	7	8
Α	-3.59	-3.92	-2.95	-1.48	-0.13	1.94	3.61	3.45
В	-3.91	-3.36	-2.27	-1.32	-0.73	1.19	2.58	3.81
С	-2.93	-2.26	-2.14	-1.08	-0.42	0.47	3.45	3.73
D	-1.51	-1.37	-1.09	0.14	-0.74	0.27	1.24	2.41
Ε	-0.27	-0.86	-0.51	-0.79	-0.31	1.01	1.49	
F	1.71	1.06	0.39	0.22	0.98	-1.51	-0.01	
G	3.53	2.49	3.40	1.19	1.49	0.05		
Н	3.39	3.79	3.65	2.36				

14 Aleksandar Ivanov:

Gruppe - Reaktorphysik und Dynamik Institut für Neutronenphysik und Reaktortechnik

VARIANCE REDUCTION IN COUPLED MC-TH CALCULATIONS

Comparisson with the benchmark data

Table : Assembly power relative difference between *PARCS2G* and *MCNP* given in %.

	1	2	3	4	5	6	7	8
Α	-1.99	-2.27	-1.37	-0.66	0.34	0.61	1.37	2.01
В	-2.26	-2.01	-0.90	-0.15	0.01	1.09	0.50	1.97
С	-1.35	-0.89	-0.74	-0.18	0.06	0.52	1.55	2.71
D	-0.69	-0.20	-0.19	0.71	-0.04	0.19	-0.13	1.35
Ε	0.20	-0.12	-0.02	-0.08	0.29	-0.12	0.00	
F	0.37	0.96	0.44	0.14	-0.15	-1.13	0.13	
G	1.29	0.41	1.48	-0.18	-0.01	0.19		
Н	1.95	1.95	2.63	1.30				

15 Aleksandar Ivanov:

Gruppe - Reaktorphysik und Dynamik Institut für Neutronenphysik und Reaktortechnik

VARIANCE REDUCTION IN COUPLED MC-TH CALCULATIONS

Comparisson with the benchmark data

Table : Assembly power relative difference between *PARCS8G* and *MCNP* given in %.

	1	2	3	4	5	6	7	8
Α	-0.65	-1.32	-0.52	-0.18	0.83	-0.17	0.80	1.55
В	-1.31	-1.05	-0.08	-0.18	0.27	1.19	-0.99	1.38
С	-0.50	-0.07	-0.04	0.26	0.43	-0.25	0.98	1.72
D	-0.21	-0.23	0.24	0.93	0.18	0.16	-1.59	1.24
Ε	0.69	0.14	0.35	0.14	0.70	-0.32	-0.06	
F	-0.41	1.06	-0.32	0.11	-0.35	-2.52	0.20	
G	0.72	-1.08	0.93	-1.64	-0.06	0.26		
Н	1.49	1.36	1.64	1.19				

16 Aleksandar Ivanov:

Gruppe - Reaktorphysik und Dynamik Institut für Neutronenphysik und Reaktortechnik

VARIANCE REDUCTION IN COUPLED MC-TH CALCULATIONS

- Optimized methods for reducing the variance were implemented.
- Combining the internal coupling MCNP SUBCHANFLOW and the newly implemented UFS method allowed running large scale problem with TH feedback.
- Successful Monte Carlo simulation of a realistic core problem on pin-by-pin scale taking into account the local feedback effects.
- Converged solution of the criticality calculation was obtained within 35 hours.

QUESTIONS ?

18 Aleksandar Ivanov: VARIANCE REDUCTION IN COUPLED MC-TH CALCULATIONS