
LIMTECH Alliance HEMCP:Helmholtz Energy Materials Characterization Platform

Direct energy conversion of heat to electricity using AMTEC

N. Díez de los Ríos, A. Onea, S. Scherrer, A. Weisenburger and W. Hering

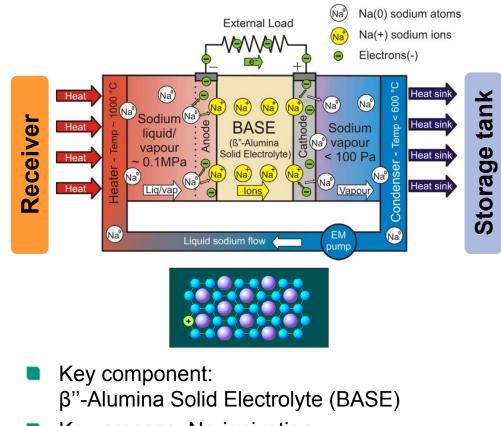
IYCE 2015, Pisa

Karlsruhe Institute of Technology (KIT) – Institute for Neutron Physics and Reactor Technology (INR)

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Contents


- 1. Introduction: Alkali-Metal Thermal-to-Electric converter (AMTEC)
- 2. Overview of AMTEC systems
- 3. AMTEC TEst FAcility (ATEFA) & Test cell
- 4. Scoping tests of PEEK in liquid sodium environment
- 5. Summary and outlook

AMTEC – direct heat to electricity conversion

Alkali Metal Thermal to Electric Converter

• Key process: Na-ionization ΔP across BASE $\rightarrow \Delta$ (sodium activity)

Na→ Na⁺ + e⁻

Main advantages

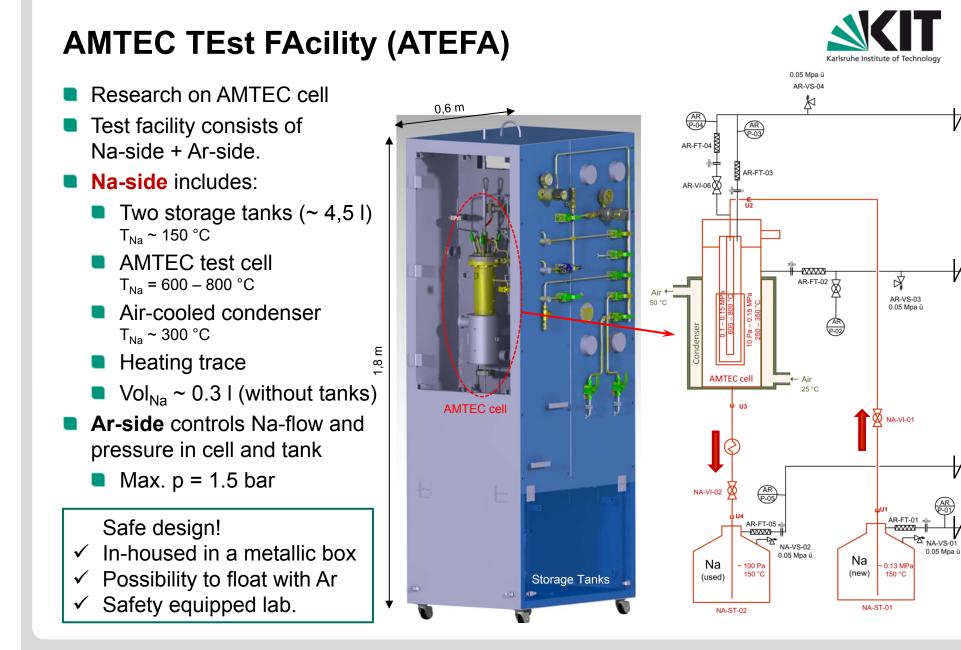
- High theoretical efficiency (40 %)
- Flexible regarding the heat source
- Suitable for modular design
- No moving components

Issues

- Real efficiency of 20 %
 - Heat losses (10 15 %)
 - Electrical losses (12 15 %)
- Power degradation over time
 - Degradation of BASE
 - Electrode sintering (grain growth)

3

Overview of AMTEC systems


Year	Author	AMTEC cell characteristics	Comments / Electrical properties
1969	Kummer & Weber	single tube, liquid anode	Developed Sodium Heat Engine (SHE)
1986	Hunt	single tube, liquid anode	Pout = 8 W (0.4 – 0.5 W/cm²); T ~ 800 °C; η = 19 %; t _{op} = 1500 h
1989 - 1993	Heinzel et al. (KIT - INR)	single tube, liquid anode	Pout = 112 W (1.8 W/cm²); 910 °C; t _{op} = few hours
1992 - 1998	Air Force Philips Laboratory	multitube, vapor anode	Series connected AMTEC for advanced radioisotope power system to fulfill the mission of Pluto Express. Pout = 4.3 W (0.12 W/cm²); 750 °C; η ~ 12 %; t _{op} = 600 h
2006	Hunt & Rasmussen	Small scale, multitube, vapor anode	Pout = 0.5 W (0.7 – 0.8 W/cm²); 740 °C; η ~ 13 %; t _{op} = 5 years

Heinzel et al. 1992

Figure 2 Series II, PX-2 AMTEC Cell Sievers et al. 1997

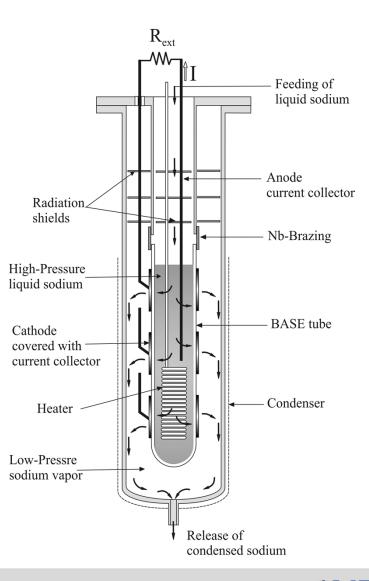
27.07.2015

5

Institute for Neutron Physics and Reactor Technology

AMTEC test cell

- Single BASE tube (D=3cm, L=22cm, wall thickness 1mm)
- Na-liquid anode
- Sputtered cathodes (~ 5 µm thickness)
- BASE-Nb-Steel brazing
- 21 thermocouples → ΔT measurement in axial, radial, circumferential direction
- Pressure sensors in Argon atmosphere
- Electronic load \rightarrow IV curve measurements

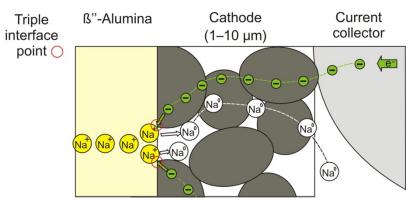

Tests*

- BASE (thickness, chemical stability, homogeneity, ionic conductivity)
- Electrode composition (Mo, TiN, TiC)
- Electrode and current collector structure
- Ceramic-metal brazing

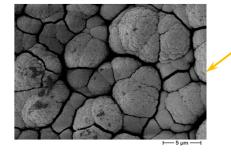
*together with other institutes in KIT

27.07.2015

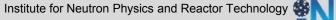
6



Institute for Neutron Physics and Reactor Technology


AMTEC test cell

- Electrode current collector structure
 - Magnetron-Sputtered porous cathode (~ 5 µm grain size)
 - Transport in cathode
 - Recombination of Na ions at triple interface points
 - Porosity vs. current density
 - Tickness vs. electrical resistance
 - Current collector
 - Metallic grid, metallic foam, knitted wire...



Transport process in the cathode

Molybdenum cathode (h~ 5 µm)

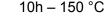
■ Sintering of electrode decreases cell performance with time → refractory materials or ceramics (Mo, TiN, TiC)

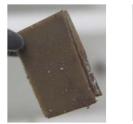
Scoping tests of PEEK in liquid sodium

- Polyether ether ketone (PEEK) is a polymer with excellent mechanical and chemical resistance properties at high temperatures.
- Liquid / vapor sodium is a challenge for sealing materials in valves and instrumentation
- Little information about chemical test of polymers liquid sodium
- Seven PEEK samples of ~1cm² were introduced in a sodium bath at different temperatures inside a glove box with argon atmosphere
- Chemical and mechanical analysis of the samples foreseen

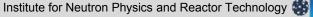
Temp.	Duration	Remark
100 °C	15 min.	No changes
120 °C	10 h	No changes
150 °C	10 h	Appearance of black spots
200 °C	1h	Sample completely darkened and apparent changes in mechanical properties


Oberview of the performed PEEK chemical test




0 sec. - 120 °C 10h - 120 °C

0 sec. – 150 °C 10ł


5 min. – 200 °C

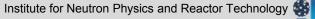
C 10h – 200 °C

VICTREX-PEEK-450G[™] samples before / after chemical test in liquid sodium

27.07.2015

8

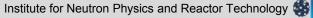
Summary and outlook



- AMTEC test cell and test facility have been designed and are under construction
- Tests in sputtering and brazing started
- Scoping test of PEEK in liquid sodium

- Experimental infrastructure (ATEFA facility, AMTEC prototype) to be set into operation by September 2015
- Experimental campaign focused on:
 - Open issues (BASE analysis, electrodes)
 - Performance evaluation
 - Technology improvement
- Further analysis of the PEEK samples

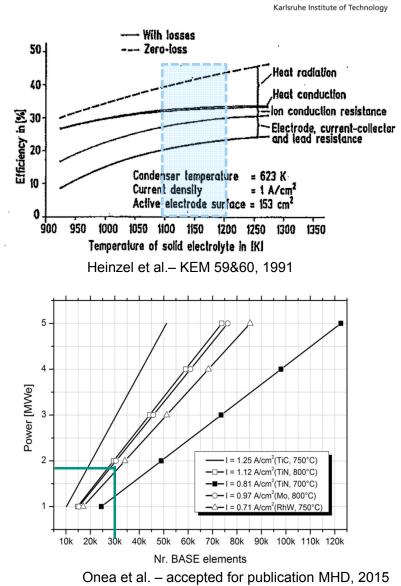
ATEFA facility


LIMTECH Alliance and HEMCP: Helmholtz Energy Materials Characterization Platform

Thank you for your attention

Contact: nerea.diez@kit.edu

Funding: LIMTECH (Liquid Metal Technology) Alliance → HGF Alliance HEMCP (Helmholtz Energy Materials Characterization Platform)

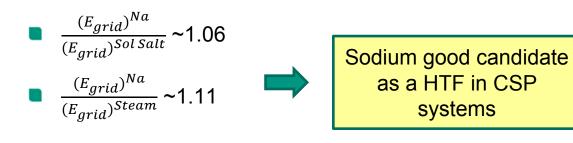


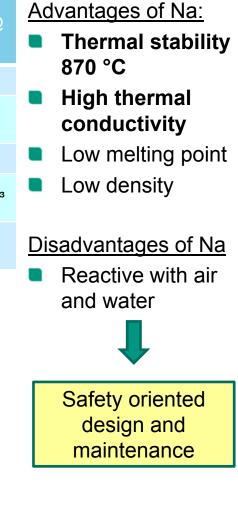
Challenges of AMTEC for CSP:

- Efficiency optimization
 - Heat losses (10 15 %)
 - Electrical losses (12 15 %)
- Constant performances for long time operation (~ 60000 h)
 - Degradation of BASE (formation of molten dendrites, internal crack formation, contamination through impurities, grain growth)
 - Electrode sintering (grain growth)
- Cyclic operation (fatigue)

11

- Costs: special materials for construction, safety design
- Present technology: ~2MWe with ~30k BASE elements at 750-800°C and 1 A/cm²




Liquid metals as HTF for CSP

					4	
Heat transfer fluid (HTF)	Therminol VP-1	Solar Salt (60% NaN03/ 40% KNO3)	Liquid metals (General)	Liquid Sodium	Steam@ 10bar	<u>A</u>
Stability	400 °C	~ 585 °C	800-2600 °C	873 °C	-	
Therm. Cond. 400 / 600 °C	0.0956 W/mK	≥ 0.58 W/mK	> 15 W/mK	60 W/mK	0.09 W/mK	
Melting Point	12 °C	228 °C	< 0-300 °C	97.7 °C	-	
Density 400 / 600 °C	696 kg/m³	1867 kg/m³	500 kg/m³ - - 10000 kg/m³	810 kg/m³	2.5 kg/m³	
Spec. heat 400 / 600 °C	~ 2,5 kJ/kgK	1,5 kJ/kgK	0,15 - 4,16 kJ/kgK	1,25 kJ/kgK	2.2 kJ/kgK	<u>D</u>
					1	

 Comparison of HTFs *: Na identified as the best HTF for CSP-TS

* Liu et al. SE 101, 220-231, 2014

Long time perspective Hybrid system CSP + Na + AMTEC

- Peak load section: DC AMTEC Solar Absorbe ~900 °C Base load section: AC ower Conversion System: Brayton lar Absorber 550-700 °C Netz A&CP CSP - AMTEC hybrid cycle (*Hering et al., E2C Maastricht, 2012) **Research in projects LIMTECH, HEMCP** AMTEC prototype
- Material characterization in Na
 → SOdium Loop for Test Materials and Corrosion (SOLTEC)
- High temperature thermal storage device

13

27.07.2015

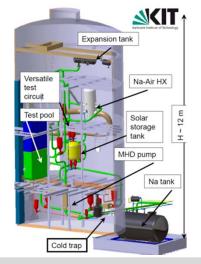
A&CP → integration of small prototype in Karlsruhe Sodium Laboratory (KASOLA)

HTF + storage fluid: Na

 $T_{receiver} \sim 550 - 700 \ ^{\circ}C$

Plant size: ~ 100 MWth

Increase PCS lifetime


AMTEC as topping system

Compensation of fluctuations in source

Increase system efficiency* ($\eta \sim 25$ %)

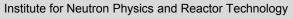
AMTEC excess energy reused in TS

Longer and more flexible operation

Institute for Neutron Physics and Reactor Technology

Different direct energy conversion systems

Energy Conversion System	T _{min} / T _{max} [°C]	η [%]	Comments
Thermoelectric converter (Seebeck effect)	100 / 900	< 20	Availability of good semiconductors that sustain high temperatures
Thermionic converter	T _{max} > 1500	< 20	High operating temperatures
Solar cell	30 / 60	15 - 30	High costs, "environmentally" expensive, contain toxic elements
Fuel cell	200 / 1000	35 – 60	Fuel storage, fuel generation and lifetime research needed. High costs.
AMTEC	200 / 1000	~ 20 (40)	Lifetime and efficiency under research


- All ECS are under development for being competent in the industry
- Issues like lifetime, efficiency, output power and costs need still to be treated

AMTEC - Advantages

- High theoretical efficiency (40%)
- Flexible regarding the heat source
- Suitable for modular design
- No moving parts
- Silent operation
- Flexible connection (to other heat-to-electric systems)

Application for solar energy conversion

