Polymers with Customizable Optical and Rheological Properties based on an Epoxy Acrylate based Host-Guest System

Uwe Gleißner, Jost Hobmaier, Thomas Hanemann
Laboratory for Materials Processing
Department of Microsystems Engineering - IMTEK
University of Freiburg
Planar Optronic Systems

Collaborative Research Center

- Polymer-based sensor network
- Large-area foils
- No electronic components
- Measurement of
 - Temperature
 - Strain
- Sub-projects
 - Suitable materials
 - Construction of fiber optics
 - Light sources
 - Spectrometers / detectors

polymer foil
[http://www.planos.uni-hannover.de]
Planar Optronic Systems

Why polymers?

- Modifiable to application
- Good processability
 - Hot embossing
 - NIL
 - Inkjet-printing
 - ...
- Large-scale systems possible
- Thin layers = economic

polymer foil

[http://www.planos.uni-hannover.de]
Planar Optronic Systems

Tailored polymers

- Adjusting viscosity
- Polymerization by UV-light
- Adjusting refractive indices
- Low optical damping
- Continuous operating temperature
Planar Optronic Systems

Tailoring viscosity

- Comonomer content
- Different shaping / molding processes
 - Inkjet printing
 \(\approx 10 \text{ mPa}\cdot\text{s (@ 70 °C)} \)
 - Offset printing
 \(\approx 200 \text{ mPa}\cdot\text{s (@ RT)} \)
 - Spin coating
 \(\approx 100 \text{ mPa}\cdot\text{s – 1000 mPa}\cdot\text{s (@ RT)} \)

Dimatix DMP 2831 [www.electronic-data.com]

Heidelberg Speedmaster SM 52 [www.heidelberg.com]
Planar Optronic Systems

Adjustment of refractive indices

- Comonomer / dopant
- Waveguides
 - Core
 - Cladding
- Coupling structures

Computed 3D model of printed waveguide (Wolfer et al, Procedia Technology, 2013)
Planar Optronic Systems

Materials

- **Main monomer**
 - Epoxy Methacrylate 97-053 (RAHN)

- **Comonomer**
 - Benzyl methacrylate

- **Dopant**
 - Phenanthrene

- **UV initiator**
 - Phosphine oxide

- **Thermal initiator**
 - Lauroyl peroxide
Planar Optronic Systems

Radical polymerization

\[
\text{Init}\quad +\quad \text{H}_2\text{C} \quad \text{COR} \quad \rightarrow \quad \text{IniH}_2\text{C} \quad \text{COR} \quad \text{H}_2\text{C} \quad \text{COR} \quad \rightarrow \quad \text{h}^{n}
\]
Mixture preparation

- Materials are mixed
 - up to 30,000 rpm
 - ambient conditions
- Ultrasonic bath

- Viscosity measurement
 - Cone and plate rheometer

IKA T10 basic
[http://static.coleparmer.com]

Bohlin Rheometer CVO 50
[http://mb.uni-paderborn.de/]
Planar Optronic Systems

Sample preparation

- For refractive index
 - Casting mold (silicon)
 - Glass plates
 - Fluorine ethylene propylene (FEP) foil

- Oxygen inhibition
Planar Optronic Systems

Sample preparation

- For refractive index
 - Casting mold (silicon)
 - Glass plates
 - Fluorine ethylene propylene (FEP) foil
- Oxygen inhibition

mold assembly
Planar Optronic Systems

Sample preparation

- For refractive index
 - Casting mold (silicon)
 - Glass plates
 - Fluorine ethylene propylene (FEP) foil
- Oxygen inhibition

- Polymerization
 - Wavelength 405 nm

Hönle UV-Spot 100
[www.hoenle.de]
Planar Optronic Systems

Sample preparation

- For refractive index
 - Casting mold (silicon)
 - Glass plates
 - Fluorine ethylene propylene (FEP) foil

- Oxygen inhibition

- Polymerization
 - Wavelength 405 nm
Planar Optronic Systems

Sample characterization

- Refractive indices
 - Abbe-refractometer
 - Multi-wavelength

- Optical damping
 - UV-Vis spectroscopy

- Differential scanning calorimetry (DSC)
 - Glass transition temperature

ATAGO DR-M2/1550
[www.atagorus.ru]

Varian Cary 50 UV-Vis
[www.speciation.net]
Planar Optronic Systems

Viscosity of Epoxy Methacrylate 97-053 + BMA

- Temperature dependency
- Newtonian behavior

![Graph showing temperature dependency and Newtonian behavior of Epoxy Methacrylate 97-053 + BMA.](image)
Planar Optronic Systems

Viscosity of Epoxy Methacrylate 97-053 + BMA

- Dependence on BMA
- Dependence on phenanthrene

![Graph showing viscosity dependence on BMA and phenanthrene](image-url)
Planar Optronic Systems

Refractive index

- Polymerized samples
- Phenanthrene increases refractive index
 - 0 wt%: 1.568 – 1.570
 - 5 wt%: 1.575 – 1.577
 - 10 wt%: 1.585 – 1.586
- BMA has low influence
Planar Optronic Systems

Data combined

- Viscosity
 - Refractive index
- Refractive index
 - Viscosity
- Easy lookup

Epoxy Methacrylate 97-053 + BMA
Planar Optronic Systems

Abbe number

- Polymerized samples
- Phenanthrene decreases Abbe number
- BMA has low influence
Planar Optronic Systems

Optical damping of Epoxy Methacrylate (EM) + BMA

- Independent on BMA
- Dependent on phenanthrene
Planar Optronic Systems

Printed “waveguide”

- Ink-jet
 - width appr. 180 μm
 - height appr. 40 μm

Image of inkjet-printed waveguide taken by confocal microscopy

[Wolfer et al., Procedia Technology, 2014]
Spincoated waveguide

- width appr. 10 μm
- height appr. 5 μm
- monomode

Output facet of a fabricated single-mode inverted rib waveguide

[Gleissner et al., Eurosensors Conference, 2015]
Planar Optronic Systems

Self writing waveguide

- Laser writing through monomer
- Between two fibers
- Low loss connection

Schematic of the different process steps of the self-written waveguide formation

[Günther et al., Optics Letters, 2015]
Planar Optronic Systems

Summary

- Viscosity adjustable in a wide range
 - $1.5 \text{ Pa}\cdot\text{s} > \eta > 8 \text{ mPa}\cdot\text{s} (@ 20 \, ^\circ\text{C})$
 - Suitable for different shaping methods
 - Range can be extended
Planar Optronic Systems

Summary

- Viscosity adjustable in a wide range
 - $1.5 \text{ Pa}\cdot\text{s} > \eta > 8 \text{ mPa}\cdot\text{s} (@ 20 \degree\text{C})$
 - Suitable for different shaping methods
 - Range can be extended

- Refractive index tunable
 - $1.570 < n < 1.585 (@ 20 \degree\text{C}, 589 \text{ nm})$
 - Independent of viscosity
Planar Optronic Systems

Summary

- Viscosity adjustable in a wide range
 - $1.5 \text{ Pa}\cdot\text{s} > \eta > 8 \text{ mPa}\cdot\text{s (@ 20 °C)}$
 - Suitable for different shaping methods
 - Range can be extended

- Refractive index tunable
 - $1.570 < n < 1.585 (@ 20 °C, 589 \text{ nm})$
 - Independent of viscosity

- Dispersion
 - Abbe numbers: 29 to 38

- Optical damping
 - As low as 0.15 dB/mm @600 nm
The PlanOS science team (alphabetical order):

- Meriem Akin
- Florian Bär
- Konrad Bethmann
- Tobias Birr
- Patrick Bollgrün
- Christian Kelb
- Ann-Katrin Kniggendorf
- Michael Köhring
- Jan Gerrit Korvink
- Wolfgang Kowalsky
- Dario Mager
- Uwe Morgner
- Claas Müller
- Gregor Osterwinter
- Torsten Otto
- Ludger Overmeyer
- Malwina Pajestka

- Thomas Hanemann
- Meike Hofmann
- Christian Kelb
- Ann-Katrin Kniggendorf
- Wolfgang Kowalsky
- Wolfgang Kowalsky
- Uwe Morgner
- Gregor Osterwinter
- Malwina Pajestka

- Welm Pätzold
- Ann Britt Petermann
- Elke Pichler
- Oswald Prucker
- Torsten Rabe
- Maik Rahlves
- Holger Reinecke
- Carsten Reinhardt
- Eduard Reithmeier
- Mahir Rezem
- Lutz Rissing
- Detlef Ristau
- Bernhard Roth
- Raimund Rother
- Jürgen Rühe

- Laszlo Sajti
- Wolfgang Schade
- Thomas Schmidt
- Anne-Katrin Schuler
- Andreas Schwenke
- Stanislav Shermann
- Yixiao Wang
- Nan Wang
- Ulrike Willer
- Tim Wolfer
- Merve Wollweber
- Marc Wurz
- Yanfen Xiao
- Hans Zappe
- Urs Zywietz

Funded by German Research Foundation (Deutsche Forschungsgemeinschaft)