



# First results of the bundle test QUENCH-L3 with optimized ZIRLO<sup>™</sup> claddings

J. Stuckert, M. Große, J. Moch, C. Rössger, M. Steinbrück, M. Walter

QWS-21, Karlsruhe 2015

Institute for Applied Materials; Program NUKLEAR



## **Cross-section of the QUENCH-L3 bundle**





- The use of *tungsten* heaters with smaller diameter (*4.6 mm*) instead tungsten heaters (QUENCH-L0) or tantalum heaters (QUENCH-L1) with diameter of 6 mm has allowed to reach a higher heat rate.
- 2) All rods are filled with Kr with p=55 bar at  $T_{pct}$ =800 K (similar to QUENCH-L1).



## **QUENCH-L3: test progress**







## Maximal cladding temperatures of internal rods in hottest region of QUENCH–L1 (Zry-4, reference test) and –L3 bundles (elevation 950 mm)





## **QUENCH-L3: radial temperature gradient** $\Delta T$ for rod #7 at hottest elevations 850 mm (7/12) and 950 mm (7/13) Karlsruhe Institute of Technology



![](_page_4_Picture_2.jpeg)

### Rod pressure evolution <u>during heating phase</u> for QUENCH-L1 (reference test with Zry-4) and QUENCH-L3: burst time indication

![](_page_5_Figure_1.jpeg)

27.10.2015 J. Stuckert – QUENCH-LOCA-3 QWS-21, Karlsruhe Institute for Applied Materials

Karlsruhe Institute of Technolog

# QUENCH-L3: Ballooning and burst of cladding tubes at elevation 950 mm (videoscope)

![](_page_6_Picture_1.jpeg)

![](_page_6_Picture_2.jpeg)

![](_page_6_Picture_3.jpeg)

## **Burst parameters**

#### LOCA-1

| Karlsruhe Institute of Technology |
|-----------------------------------|

| Rod<br>group | Rod<br># | Burst time,<br>s | Burst temperature,<br>interpolated, K |
|--------------|----------|------------------|---------------------------------------|
| Inner rods   | 1        | 55.6             | 1169 (Max)                            |
|              | 2        | 57.2             | 1132                                  |
|              | 3        | 59.0             | 1118                                  |
|              | 4        | 55.2             | 1154                                  |
|              | 5        | 57.2             | 1104                                  |
|              | 6        | 55.2             | 1110                                  |
|              | 7        | 59.8             | 1074 (Min)                            |
|              | 8        | 58.6             | 1132                                  |
|              | 9        | 62.6             | 1162                                  |
| Outer rods   | 10       | 87.6             | 1143                                  |
|              | 11       | 67.6             | 1056                                  |
|              | 12       | 76.8             | 1092                                  |
|              | 13       | 73.6             | 1147                                  |
|              | 14       | 68.6             | 1154                                  |
|              | 15       | 64.4             | 1159                                  |
|              | 16       | 68.8             | 1156                                  |
|              | 17       | 67.6             | 1104                                  |
|              | 18       | 72.6             | 1081                                  |
|              | 19       | 83.6             | 1163                                  |
|              | 20       | 76.0             | 1105                                  |
|              | 21       | 80.6             | 1140                                  |

| Rod<br>group | Rod<br># | Burst time,<br>s | Burst temperature,<br>interpolated, K |
|--------------|----------|------------------|---------------------------------------|
| Inner rods   | 1        | 47.8             | 1103                                  |
|              | 2        | 51.6             | 1140                                  |
|              | 3        | 53               | 1111                                  |
|              | 4        | 55               | 1108                                  |
|              | 5        | 52               | 1109                                  |
|              | 6        | 51.8             | 1112                                  |
|              | 7        | 53.6             | 1124                                  |
|              | 8        | 49.6             | 1107                                  |
|              | 9        | 53.2             | 1132                                  |
| Outer rods   | 10       | 68               | 1188 (Max)                            |
|              | 11       | 65.6             | 1126                                  |
|              | 12       | 65.8             | 1175                                  |
|              | 13       | 61.8             | 1138                                  |
|              | 14       | 59.4             | 1124                                  |
|              | 15       | 54.4             | 1105                                  |
|              | 16       | 62               | 1142                                  |
|              | 17       | 60               | 1094                                  |
|              | 18       | 63               | 1114                                  |
|              | 19       | 66.2             | 1073                                  |
|              | 20       | 64               | 1064 (Min)                            |
|              | 21       | 67.2             | 1073                                  |

LOCA-3

#### average burst T: 1117 ± 30 K = 844 ± 30 °C

![](_page_7_Picture_6.jpeg)

27.10.2015 J. Stuckert – QUENCH-LOCA-3

average burst T: 1126 ± 33 K = 853 ± 33 °C

QWS-21, Karlsruhe

![](_page_8_Figure_0.jpeg)

![](_page_9_Picture_0.jpeg)

## **QUENCH-L3: 12 outer rods**

![](_page_9_Picture_2.jpeg)

![](_page_9_Figure_3.jpeg)

small scattering of axial positions and dimensions of burst openings

![](_page_9_Picture_5.jpeg)

## Length and axial position of burst openings

![](_page_10_Figure_1.jpeg)

![](_page_10_Figure_2.jpeg)

![](_page_10_Picture_3.jpeg)

## **Circumferential position of burst openings**

![](_page_11_Picture_1.jpeg)

![](_page_11_Picture_2.jpeg)

#### burst openings oriented predominantly to bundle center due to pronounced radial temperature gradient

![](_page_11_Picture_4.jpeg)

## **QUENCH-L3: Circumferential strain (laser scanner)**

![](_page_12_Picture_1.jpeg)

![](_page_12_Figure_2.jpeg)

27.10.2015 J. Stuckert – QUENCH-LOCA-3

QWS-21, Karlsruhe

## QUENCH-L3: Circumferential strain (laser scanner) and burst position overview

![](_page_13_Picture_1.jpeg)

![](_page_13_Figure_2.jpeg)

![](_page_13_Picture_5.jpeg)

QWS-21, Karlsruhe

## **Cooling channel blockage** for QL-1 and QL-3 bundles

![](_page_14_Picture_1.jpeg)

![](_page_14_Figure_2.jpeg)

QWS-21, Karlsruhe

27.10.2015

J. Stuckert – QUENCH-LOCA-3

![](_page_14_Picture_5.jpeg)

# Comparison of oxidation degree for QL-1, -3, -3HT (eddy current measurements at outer clad surface)

![](_page_15_Picture_1.jpeg)

![](_page_15_Figure_2.jpeg)

![](_page_15_Picture_3.jpeg)

![](_page_15_Picture_5.jpeg)

## Test set-up for tensile tests with claddings from QUENCH-LOCA bundles

![](_page_16_Picture_1.jpeg)

![](_page_16_Picture_2.jpeg)

![](_page_16_Picture_3.jpeg)

QUENCH-L3: tensile tests at RT with inner rods, fractures at H-bands (1 rod), through opening and due to necking (7 rods)

![](_page_17_Picture_1.jpeg)

![](_page_17_Figure_2.jpeg)

![](_page_17_Picture_5.jpeg)

QUENCH-L3: tensile tests at RT with outer rods, fractures due to micro-cracks at the burst opening edges (6 rods) and necking (6 rods)

Karlsruhe Institute of Technology

![](_page_18_Figure_2.jpeg)

## Failure behaviour of QUENCH-LOCA claddings tested in tension

## QL3 (opt. ZIRLO™)

![](_page_19_Picture_2.jpeg)

![](_page_19_Picture_5.jpeg)

Karlsruhe Institute of Technology

### Tensile properties of opt. ZIRLO<sup>™</sup> claddings tested after QUENCH-L3

![](_page_20_Picture_1.jpeg)

elongation at ultimate tensile fracture sample failure behaviour stress [MPa] stress [MPa] fracture [%] rod #1 fracture after necking 516 384 8.4 373 9.0 fracture after necking rod #2 526 9.7 fracture after necking rod #3 515 379 fracture after necking rod #4 532 379 7.9 520 386 8.7 fracture after necking rod #5 5.8 rod #6 531 529 stress concentration at opening middle 4.7 H-band rod #7 521 521 rod #8 518 384 9.6 fracture after necking rod #9 9.1 fracture after necking 520 372 rod #10 14.2 fracture after necking 521 392 524 387 15.7 fracture after necking rod #11 10.9 rod #12 511 492 stress concentration at opening tips rod #13 520 517 12.2 stress concentration at opening tips 520 388 10.5 fracture after necking rod #14 rod #15 514 393 11.9 fracture after necking rod #16 509 459 8.6 stress concentration at opening tips 501 7.5 stress concentration at opening tips rod #17 498 10.2 stress concentration at opening tips rod #18 512 506 fracture after necking rod #19 523 391 13.7 14.0 fracture after necking rod #20 517 401 517 9.1 rod #21 503 stress concentration at opening tips

fracture of clads H-band: 1 clad, stress conc.: 7 clads, necking: 13 clads

![](_page_20_Picture_4.jpeg)

27.10.2015 J. Stuckert – QUENCH-LOCA-3

#### Summary

![](_page_21_Picture_1.jpeg)

- ➤ The QUENCH-LOCA-3 test with as-received opt. ZIRLO<sup>™</sup> claddings was performed according to a temperature/time-scenario typical for a LBLOCA in a German PWR with similar test parameters as the QUENCH-LOCA-1 test with fresh Zry-4 claddings: maximal heat-up rate 8 K/s, cooling phase lasted 120 s and terminated with 3.3 g/s/rod water flooding.
- Similar to QUENCH-LOCA-1, the maximum temperature of 1350 K was reached on the end of the heat-up phase at elevation 950 mm. Circumferential temperature gradient across a rod was up to 70 K on the burst onset.
- The maximum blockage ratio of cooling channel (21% at 918 mm) was slightly lower in comparison to QUENCH-L1 (25% at 946 mm). Due to moderate blockage a good bundle coolability was kept for both bundles.
- The cladding burst occurred at temperatures between 1064 and 1188 K (QUENCH-L1: 1074 and 1169 K). Average burst temperatures: 1126 K (853°C) for QUENCH-L1 and 1117 K (844°C) for QUENCH-L3.
- During quenching, following the high-temperature phase, no fragmentation of claddings was observed (residual strengths or ductility is sufficient).
- Influence of secondary hydrogenation on results of tensile tests at RT: only one cladding failed at hydrogen band; seven claddings failed due to stress concentration at edges of burst opening (similar to all QL1 clads with <1500 wppm hydrogen); thirteen clads failed after necking far away from burst opening.</p>

![](_page_21_Picture_8.jpeg)

![](_page_21_Picture_9.jpeg)

![](_page_22_Picture_0.jpeg)

## Acknowledgment

The QUENCH-LOCA experiments are supported and partly sponsored by the association of the German utilities (VGB). The unirradiated optimized ZIRLO<sup>™</sup> claddings and spacer material were provided by WESTINGHOUSE.

The authors would like to thank Mrs. J. Laier and Mrs. U. Peters for intensive work during test preparation and post-test investigations.

## Thank you for your attention

<u>https://www.iam.kit.edu/wpt/loca/</u> <u>http://www.iam.kit.edu/wpt/471.php</u> <u>http://quench.forschung.kit.edu/</u>

> IAM Institute for Applied Materials