

50

3), North-Holland.

Wirsing, M. (1990): Algebraic Specification. In J. van Leeuwen (ed.),

Handbook of Theoretical Computer
Science

, Elsevier Science Publ.

Wood, K. R. (1993): A Practical Approach to Software Engineering Using Z and The Refinement Calculus. In

Proceedings of the First ACM SIGSOFT Symposium on the Foundations of Software Engineerin

g, Los
Angeles, CA, December 7-10, 1993,

ACM Software Engineering Notes

, vol 18(5).

Woodcock, J. C. P. and Larsen, P. G. (eds.) (1993): FME´93: Industrial-Strength Formal Methods,

Proceedings
of the First International Symposium of Formal Methods Europe

, Odense, Denmark, April 19-23, 1993,
Lecture Notes in Computer Science, no 670, Springer-Verlag, Berlin.

Wordsworth, J. B. (1992):

Software Development with Z

, Addison-Wesley.

Yourdon, E. (1989):

Modern Structured Analysis

, Prentice-Hall, Englewood Cliffs.

Zave, P. (1982): An Operational Approach to Requirements Specification for Embedded Systems,

IEEE
Transactions on Software Engineering

, 3(8).

Zave, P. (1991): An Insider´s Evaluation of PAISLey,

IEEE Transactions on Software Engineering

, 17(3).

49

of Human-Computer Studies

 (

IJHCS

), special issue, in press.

Schreiber, A. TH., Wielinga, B. J., Akkermans, H., Van De Velde, W. and de Hoog, R. (1994): CommonKADS.
A Comprehensive Methodology for KBS Development,

IEEE Expert

, 9(6).

Schreiber, A. TH., Wielinga, B. J., and Breuker, J. (eds.) (1993):

KADS. A Principled Approach to Knowledge-
Based System Development

, Academic Press, London.

Schreiber, A. Th., Wielinga, B. J. and Jansweijer, W. (1995): The KACTUS View on the ‘ O’ Word. In

Proceedings of the Dutch National Conference on AI (NAIC-95)

, Rotterdam.

Schwarz, J. T., Dewar, R., Dubinski, E. and Schonberg, E. (1986):

Programming with Sets: An Introduction to
SETL

, Springer-Verlag, Berlin.

Semmens, L. T., France, R. B., and Docker, T. W. G. (1992): Integrating Structured Analysis and Formal
Specification Techniques,

The Computer Journal,

 35(6).

Sernadas, A., Sernadas, C. and Costa, J.F. (1992):

Object Specification Logic

. Research Report INESC/DMIST,
University of Lisbon. To appear in

Journal of Logic and Computation

.

Sheppard, D. (1995):

An Introduction to Formal Specification with Z and VDM

, McGraw-Hill, London.

Spee, J. W. and in ‘t Veld, L. (1994): The Semantics of K

BS

SF: A Language For KBS Design,

Knowledge
Acquisition

, vol 6.

Spivey, J. M. (1988):

Understanding Z. A Specification Language and Its Formal Semantics

, Cambridge
University Press, Cambridge.

Spivey, J. M. (1992):

The Z Notation. A Reference Manual

, 2nd ed., Prentice Hall, New York.

Spruit, P., A., Wieringa, R., J., and Meyer, J.-J., C. (1993): Dynamic Database Logic: the First-order Case. In V.
W. Lipeck et al. (eds.),

Modelling Database Dynamics

, Springer-Verlag, Berlin.

Spruit, P., A., Wieringa, R. , J., and Meyer, J.-J., C. (1995): Axiomatization, Declarative Semantics and
Operational Semantics of Passive and Active Updates in Logic Databases,

Journal of Logic Computation

,
5(1).

Stepney, S., Barden, R. and Cooper, D. (eds.) (1992):

Object Orientation in Z

, Springer-Verlag, Berlin.

Treur, J. (1992):

Interaction Types and Chemistry of Generic Task Models

. In M. Linster et al. (eds.),

Proceedings
of the European Knowledge Acquisition Workshop (EKAW-91)

, GMD Studien, no 211.

Treur, J. (1994): Temporal Semantics of Meta-Level Architectures for Dynamic Control of Reasoning. In L.
Fribourg et al. (eds.),

Logic Program Synthesis and Transformation - Meta Programming in Logic,
Proceedings of the 4th International Workshops, LOPSTER-94 and META-94

, Pisa, Italy, June 20-21,
1994, Lecture Notes in Computer Science, no 883, Springer Verlag-Berlin.

Treur, J. and Wetter, Th. (eds.) (1993):

Formal Specification of Complex Reasoning Systems

, Ellis Horwood,
New York.

Turner, J., G. and McCluskey, T., L. (1994):

The Construction of Formal Specifications

, McGraw-Hill, London,
1994.

in ‘t Veld, L., Jonker, W. and Spee, J. W. (1993): The Specification of Complex Reasoning Tasks in KBSSF. In
J. Treur and Th. Wetter (eds.):

Formal Specification of Complex Reasoning Systems

, Ellis Horwood, New
York.

Voss, H. and Voss, A. (1993): Reuse-Oriented Knowledge Engineering with MoMo. In

Proceedings of the 5th
International Conference on Software Engineering and Knowledge Engineering (SEKE93)

, San Fransisco
Bay, June 14-18.

Wielinga, B. J. and Schreiber, A. Th. (1994): Conceptual Modeling Of Large Reusable Knowledge Bases. In K.
von Luck et al. (eds.),

Management and Processing of Complex Data Structures

, Lecture Notes in
Computer Science, no 777, Springer-Verlag, Berlin.

Wielinga, B. J. Schreiber, A. Th. and Breuker, J. A. (1992): KADS: A Modelling Approach to Knowledge
Engineering,

Knowledge Acquisition

, 4(1).

Wieringa, R. J. (1991a): A Formalization Of Objects Using Equational Dynamic Logic. In

Proceedings of the 2nd
International Conference on Deductive and Object-Oriented Databases (DOOD-91)

, Munich, Germany,
December 16-18, 1991, C. Delobel et al. (eds.), Springer-Verlag, Berlin.

Wieringa, R. J. (1991b): Steps towards a method for the formal modeling of dynamic objects,

Data and
Knowledge Engineering,

vol 6.

Wieringa, R. J. and van de Riet, R. P. (1990): Algebraic Specification of Object Dynamics in Knowledge Based
Domains. In R. A. Meersman et al. (eds.),

Artificial Intelligence, Databases and Information Systems

 (DS-

48

Russia, July 13-20.

Karbach, W. and Voß, A. (1993): MODEL-K for Prototyping and Strategic Reasoning at the Knowledge Level.
In .-M. David et al. (eds.):

Second Generation Expert Systems

, Springer-Verlag, Berlin.

Kifer, M., Lausen, G. and Wu, J. (1993):

Logical Foundations of Object-Oriented and Frame-Based Languages

.
In Technical Report 93/06, Department of Computer Science, SUNY at Stony Brook, NY. To appear in

Journal of the ACM

.

Kozen, D. (1990): Logics of Programs. In J. v. Leeuwen (ed.),

Handbook of Theoretical Computer Science

,
Elsevier Science Publ., B. V., Amsterdam.

Krause, P., Fox, J., O`Neill, M. and Glowinski, A. (1993): Can We Formally Specify a Medical decision Support
Systems,

IEEE Expert

, vol 8(3).

van Langevelde, I., Philipsen, A. and Treur, J. (1992): Formal Specification of Compositional Architectures. In

Proceedings of the 10th European Conference on Artificial Intelligence (ECAI-92)

, Vienna, Austria,
August 3-7, 1992. An extended version is available as research report, no IR-282, Vrije Universiteit
Amsterdam, Faculteit der Wiskunde en Informatica.

van Langevelde, I., Philipsen, A. and Treur, J. (1993): A Compositional Architecture for Simple Design Formally
Specified in DESIRE. In J. Treur and Th. Wetter (eds.):

Formal Specification of Complex Reasoning
Systems

, Ellis Horwood, New York.

Larsen, P. G., van Katwijk, J., Plat, N., Pronk, K. and Toetenel, H. (1991): SVDM: An Integrated Combination
of SA and VDM. In

Proceedings of the Methods Integration Conference

, Leeds, UK.

Larsen, P. G., Plat, N. and Toetenel, H. (1993): A Formal Semantics of Data Flow Diagrams,

Formal Aspects of
Computing

, vol 3.

Lassen, P. B. and Larsen, P. G. (1991): An Executable Subset of Meta-IV with Loose Specification. In

Proceedings of the VDM´91 Formal Software Development Methods, Noordwijkerhout

, The Netherlands,
Oktober 1991, Springer-Verlag, Berlin.

Linster, M. (1992):

Knowledge Acquisition Based on Explicit Methods of Problem Solving

, PhD dissertation,
University of Kaiserslautern.

Marcus, S. (ed.) (1988):

Automating Knowledge Acquisition for Experts Systems

, Kluwer Academic Publisher,
Boston.

Mc Dermott, J. (1982): R1: A Rule-Based Configurer of Computer Systems,

Artificial Intelligence

, 19.

Milnes, B. G. (1992):

A Specification of the Soar Cognitive Architecture in Z

, research report CMU-CS-92-169,
School of Computer Science, Carnegie Mellon University, Pittsburg, PA.

Nakagawa, A. T., Sakakihara, T. and Futatsugi, K. (1993): Algebraic Specification of Reasoning Systems. In J.
Treur and Th. Wetter (eds.):

Formal Specification of Complex Reasoning Systems

, Ellis Horwood, New
York.

Newell, A. (1982): The Knowledge Level,

Artificial Intelligence

, vol 18.

Oberweis, A., Scherrer, G., Stucky, W. (1994): INCOME/STAR: Methodology and Tools for the Development
of Distributed Information Systems,

Information Systems

, 19(8).

Pierret-Golbreich, C. and Talon, X. (submitted 1995): An Algebraic Specification of the Dynamic Behaviour of
Knowledge-Based Systems,

The Knowledge Engineering Review

.

Plotkin, G. D. (1981):

A Structural Approach to Operational Semantics

, technical report, no DAIMI FN-19,
Aaarhus University, Denmark.

Przymusinski, T. C. (1988): On the Declarative Semantics of Deductive Databases and Logic Programs. In J.
Minker (ed.),

Foundations of Deductive Databases and Logic Programming

, Morgan Kaufmann
Publisher, Los Altos, CA.

Randell, G. P. (1990):

Translating Data Flow Diagrams into Z (and Vice Versa)

. Technical Report 90019,
Procurement Executive, Ministry of Defence, RSRE, Malvern, Worcestershire, UK.

Ross, D. T. (1977):

Structured Analysis (SA): a Language for Communicating Ideas

, IEEE Transactions on
Software Engineering, 3(1).

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W. (1991):

Object-Oriented Modelling and
Design

, Prentice Hall, Englewood Cliffs, New Jersey.

Ryan, P. and C. Sennett, C. (1993):

Formal Methods in Systems Engineering

, Springer Verlag, Berlin.

Schreiber, A. Th. (1992):

Pragmatics of the Knowledge Level

, PhD dissertation, University of Amsterdam.

Schreiber, A. Th. and Birmingham, B. (eds.) (1995): special issue on the

VT Sisyphus Task, International Journal

47

KADS Models of Expertise,

The Knowledge Engineering Review

, 9(2).

Fensel, D. and Neubert, S. (1994): Integration Of Semiformal and Formal Methods For Specification of
Knowledge-Based Systems. In B. Wolfinger (ed.),

Innovation bei Rechen- und Kommunikationssystemen

,
Informatik Aktuell, Springer-Verlag, Berlin.

France, R. B. and Docker, T. W. G. (1989): Formal Specifications Using Structured System Analysis. In

Proceedings of the 2nd European Software Engineering Conference ESEC´89

, Warwick, September 11-
15, Lecture Notes in Computer Science, no 387, Springer-Verlag, Berlin.

Fuchs, N. E. (1992): Specifications Are (Preferably) Executable,

Software Engineering Journal

, 7.

Futatsugi, K., Goguen, J. A., Jouannaud, J.-P. and Meseguer, J. (1985): Principles of OBJ2. In

Proceedings of the
12th ACM Symposium on Principles of Programming Languages

, New Orleans.

Gaudel, M.-C. (1984):

A First Introduction to PLUSS

, technical report, LRI, Universite Paris Sud, Orsay.

Gaudel, M.-C. (1990): Algebraic Specifications. In J. McDermied (ed.),

Software Engineer’s Reference

,
Butterworths.

Gaudel, M.-C. (1994): Formal Specification Techniques. In

Proceedings of the 16th International Conference on
Software Engineering (ICSE-94)

, May 16-21, Sorrento, Italy.

Gavrila, I. and Treur, J. (1993): A Formal Model for the Dynamics of Compositional Reasoning Systems. In

Proceedings of the 11th European Conference on Artificial Intelligence (ECAI-94)

, Amsterdam, The
Netherlands, August 8-12. 1994. An extended version is available as research report, no IR-323, Faculteit
der Wiskunde en Informatica, Vrije Univeriteit Amsterdam.

Geelen,P., Ruttkay, Z. and Treur, J. (1991):

Logical Analysis and Specification of an Office Assignment Task

,
research report, no IR-283, Vrije Universiteit Amsterdam, Faculteit der Wiskunde en Informatica.

Gerrard, C. P., Coleman, D. and Gallimore, M. (1990): Formal Specification and Design Time Testing,

 IEEE
Transactions on Software Engineering

, 16(1).

Groenboom, R. and Renardel de Lavalette, G., R. (1994): Reasoning about Dynamic Features in Specification
Languages. In D.J. Andrews et al. (eds.),

Semantics of Specification Languages

, Springer Verlag, Berlin.

Groenboom, R. and Renardel de Lavalette, G., R. (1995): A Formalisation for Evolving Algebra. In

Proceedings
of Accolade 95, Dutch Graduate School in Logic

, Amsterdam.

Gurevich, Y. (1993):

Evolving Algebras. A Tutorial Introduction

. In E. G. Rozenberg et al. (eds.), Current Trends
in Theoretical Computer Science, World Scientific.

Gurevich, Y. (1994): Evolving Algebras 1993: Lipari Guide. In E.B. Börger (ed.),

Specification and Validation
Methods

, Oxford University Press.

Harel, D. (1984): Dynamic Logic. In D. Gabby et al. (eds.),

Handook of Philosophical Logic

, vol. II,

Extensions
of Classical Logic

, Publishing Company, Dordrecht (NL).

van Harmelen, F. and J. Balder, J. (1992): (ML)

2

: A Formal Language for KADS Conceptual Models,

Knowledge
Acquisition

, 4(1).

van Harmelen, F. and Fensel, D. (1995): Formal Methods in Knowledge Engineering,

The Knowledge
Engineering Review

, 10(4).

Hasselbring, W. (1994): Prototyping Parallel Algorithms in a Set-Oriented Language, Verlag Dr. Kovac,
Hamburg, Germany.

Hayes, I. J. (1992): VDM and Z. A Comperative Case Study,

Formal Aspects of Computing

, 4(1).

Hayes, I. J. and Jones, C. B. (1989): Specifications Are Not (Necessarily) Executable,

Software Engineering
Journal

, 4(6).

Hayes, I. J., Jones, C. B. and Nicholls, J. E. (1994): Understanding the Difference Between VDM and Z,

ACM
Sigsoft Software Engineering Notes

, 19(3).

He, X. (1995): PZ Nets - A Formal Method Integrating Petri Nets with Z. In

Proceedings of the 7th International
Conference on Software Engineering and Knowledge Engineering

 (

SEKE-95

), Rockville, Maryland, June
22-24.

Huggins, J. K. (1993):

Evolving Algebra Interpreter

, Manuscript University of Michican.

Jones, C. B. (1990):

Systematic Software Development Using VDM

, 2nd ed., Prentice Hall.

Jungclaus, R. (1993):

Modeling of Dynamic Object Systems - A Logic-based Approach

, Vieweg Verlag.

Kappel, A. M. (1993): Executable Specifcations based on Dynamic Algebras. In

Proceedings of the 4th
International Conference on Logic Programming and Automated Reasoning (LPAR-93)

, St. Petersburg,

46

Brazier, F. M. T. and Treur, J. (1994): User Centered Knowledge-Based System Design: A Formal Modelling
Approach. In Steels, L. et al. (eds.)

A Future for Knowledge Acquisition, 8th European Knowledge
Acquisition Workshop, EKAW-94,

 Lecture Notes in Artificial Intelligence, no 867, Springer-Verlag.

Brazier, F. M. T., Treur, J., Wijngaards, N. J. E. and Willems, M. (1995b): Formal Specification of Hierarchically
(De)Composed Tasks. In

Proceedings of the 9th Banff Knowledge Acquisition For Knowledge-Based
Systems Workshops (KAW-95)

, Banff, Alberta, Canada, February 26 - March 3.

Breuker, J. A. and van de Velde, W. (eds.) (1994):

The CommonKADS Library For Expertise Modelling

, IOS
Press, Amsterdam.

Bonner, A. J. and Kifer, M. (1993): Transaction Logic Programming. In

Proceedings of the 10th International
Conference on Logic Programming (ICLP)

, Budapest, Hungary, June 21-24.

Bourdeau, R. H. and Cheng B. H. C. (1995): A Formal Semantics for Object Model Diagrams,

IEEE Transactions
on Software Engineering,

 21(10).

Brodie, M. L. (1984): On the development of data models. In Brodie et al. (eds.),

On Conceptual Modeling

,
Springer-Verlag, Berlin.

Brodie, M. L. and Ridjanovic, D. (1984). On the design and specification of database transactions. In Brodie et
al. (eds.),

On Conceptual Modeling

, Springer-Verlag, Berlin.

Brooking, A. G. (1986): The Analysis Phase in Development of Knowledge-Based Systems. In W. A. Gale (ed.),

AI and Statistic

, Addison-Wesley Publishing Company, Reading, Massachusetts.

Chandrasekaran, B. (1986): Generic Tasks in Knowledge-Based Reasoning: High-Level Building Blocks for
Expert System Design,

IEEE Expert

, 1(3).

Clancey, W. J. (1987): From Guiden to Neomycin and Heracles in Twenty Short Lessons. In A. van Lamsweerde,
ed.,

Current Issues in Expert Systems,

 Academic Press.

Coad, P. and Yourdon, E. (1991):

Object-Oriented Analysis

, 2nd ed., Yourdon Press, Englewood Cliffs.

Craigen, D., Gerhart, S. and Ralston, T. (1993):

An International Survey of Industrial Applications of Formal
Methods

, vol 1 and 2, U.S. Department of Commerce, National Institute of Standards and Technology,
Gaithersburg, report NISTGCR 93/626. ftp nemo.ncsl.nist.gov, pub/ahis/formal_methods. A short version
is appeared as Gerhart, S. , Craigen, D. and Ralston,T. (1993): Observations on Industrial Practice Using
Formal Methods. In

Proceedings of the 15th International Conference on Software Engineering (ICSE-
93)

, May 17-21, Baltimore, Maryland.

Doberkat, E.-E. (1994):

Generating an Algebraic Specification from an ER-Model

, STW Memo, no ISSN 0933-
7725, Fachbereich Informatik, Univerity of Dortmund, Germany.

Doberkat, E.-E. and Fox, D. (1989):

Software Prototyping mit SETL

, Leitfäden und Monographien der
Informatik, Teubner-Verlag, Stuttgart.

Dorfman, M. (1990): System and Software Requierements Engineering. In R. H. Thayer and M. Dorfman (eds.):

System and Software Requierements Engineering

, IEEE Computer Society Press, Los Alamitos,
California.

Ehrig, H. and B. Mahr, B. (eds.) (1985): Fundamentals of Algebraic Specifications 1, Springer-Verlag, Berlin.

Ehrig, H. and B. Mahr, B. (eds.) (1990): Fundamentals of Algebraic Specifications 2, Springer-Verlag, Berlin.

Elmstr∅ m, R., Lassen, P. B. and Larsen, P. G. (1994): The IFAD VDM-SL Toolbox: A Practical Approach to
Formal Specifications. In ACM SIGPLAN Notices.

Elmstr∅ m, R., Lintulampi, R. and Pezze, M. (1993): Giving Semantics to SA/RT by Means of High Level Timed
Petri Nets, Real-Time Systems, vol 5, no 2-3.

Feijs, L. M. G. and Jonkers,H. B. M. (1992): Formal Specification and Design, Cambridge Tracts in Theoretical
Computer Science, no 35.

Feijs, L.M.G. , Jonkers, H.B.M., Koymans, C.P.J. and Renardel de Lavalette, G.R. (1989): Formal definition of
the design language COLD-K (Preliminary version)}, ESPRIT document METEOR/t7/PRLE/7, April
1987 (Final version: August 1989).

Fensel, D. (1995): The Knowledge Acquisition and Representation Language KARL, Kluwer Academic Publ.,
Boston.

Fensel, D., Angele, J., Landes, D. and Studer, R. (1993): Giving Structured Analysis Techniques A Formal And
Operational Semantics With KARL. In H. Züllighoven et al. (eds.), Requirements Engineering ´93:
Prototyping, Teubner Verlag, Stuttgart.

Fensel, D. and van Harmelen, F. (1994): A Comparison of Languages which Operationalize and Formalize

45

Acknowledgements
I would like to thank Ernst-Erich Doberkat, Pascal van Eck, Joeri Engelfriet, Marie-
Claude Gaudel, Rix Groenboom, Yuri Gurevich, Frank van Harmelen, Thorsten
Hartmann, Gerard R. Renardel de Lavalette, Paul Krause, Andreas Oberweis, Claus
Pahl, Joachim Posegga, Gunter Saake, Remco Straatman, Rudi Studer, Jan Treur, Niek
Wijngaards, Mark Willems, and two anonymous reviewers for very helpful comments
on drafts of the paper.

References
Aben, M. (1995): Formal Methods in Knowledge Engineering, PhD dissertation, University of Amsterdam.

Alford, M. (1990): SREM at the Age of Eight; the Distributed Computing Design System. In R. H. Thayer et al.
(eds.), System and Software Requirements Engineering, IEEE Computer Society Press, Washington.

Andrews, D. and Ince, D. (1991): Practical Formal Methods with VDM, Mc Graw Hill.

Andersen, M., Elmstr∅ m, R., Lassen, P. B. and Larsen, P. G. (1992): Making Specifications Executable—Using
IPTES Meta-IV, Microprocessing and Microprogramming, vol 35.

Angele, J. (1993): Operationalisierung des Modells der Expertise mit KARL, Infix, St. Augustin.

Angele, J., Fensel, D., Landes, D., Neubert, S. and Studer, R. (1993): Model-based and Incremental Knowledge
Engineering: The MIKE Approach. In J. Cuena (ed.), Knowledge Oriented Software Design, IFIP
Transactions A-27, Elsevier Science Publisher B.V., Amsterdam.

Angele, J., Fensel, D. and R. Studer, R. (1994): The Model of Expertise in KARL. In Proceedings of the 2nd
World Congress on Expert Systems, Lisbon/Estoril, Portugal, January 10-14.

Baeten, J. C. M. (1990): Applications of Process Algebra, Cambridge Tracts in Theoretical Computer Science,
no 17, Cambridge University Press, Cambridge.

Baeten, J. C. M. and Weijland, W. P. (1990): Process Algebra, Cambridge Tracts in Theoretical Computer
Science, no 18, Cambridge University Press, Cambridge.

Balzer, R. and Goldman, N. (1979): Principles of Good Software Specification and their Implications for
Specification Language. In Proceedings of Reliable Software (SRS), Boston, Massachusetts.

Balzer, R. M., Goldman, N. M. and Wile, D. S. (1982): Operational Specifications as the Basis for Rapid
Prototyping, ACM SIGSOFT Software Engineering Notes, 7(5), December 1982.

Bauer, F. L., Ehler, H., Horsch, A., Möller, B., Partsch, H., Paukner, O. and Pepper, P. (1987): The Munich
Project CIP, vol II: The Program Transformation System CIP-S, Lecture Notes on Computer Science
(LNCS), no 292, Springer-Verlag, Berlin.

Beckert, B. and Posegga, J. (1995): leanEA: A Poor Man’s Evolving Algebra Compiler, research report,
University of Karlsruhe, Fakultaet fuer Informatik.

Bell, T. E., Bixler, D. C. and Dyer, M. E. (1977): An Extendable Approach to Computer-Aided Software
Requirements Engineering, IEEE Transactions on Software Engineering, 3(1).

Berry, D. C. (1987): The Problem of Implicit Knowledge, Expert Systems, 4(3).

Bicarregui, J. C., Fitzgerald, J. S., Lindsay, P. A., Moore, R., and Ritchie, B. (1994): Proof in VDM: A
Practitioner´s Guide, Springer Verlag, Berlin.

Bidoit, M. (1989): PLUSS, un langage pour le developpement de specifications algebriques modulaires, These
d’Etat, University Paris Sud, Orsay.

Bidoit, M., Kreowski, H.-J., Lescane, P., Orejas, F. and Sannella, D. (eds.) (1991): Algebraic System Specification
and Development, Lecture Notes in Computer Science, no 501, Springer-Verlag, Berlin.

Bjorner, D., Hoare, C. A. R. and Langmaack, H. (eds.) (1990): VDM´90. VDM and Z - Formal Methods in
Software Development, Lecture Notes in Computer Science, no 428, Springer-Verlag, Berlin.

E. Börger, Gurevich, Y. and Rosenzweig, D. (1994): The Bakery Algorithm: Yet Another Specification and
Verification. In E.B. Börger (ed.), Specification and Validation Methods, Oxford University Press.

Brazier, F. M. T., Keplicz, B. D., Jennings, N. R. and Treur, J. (1995a): Formal Specifications of Multi-Agent
Systems: A Real-World Case. In Proceedings of the 1st International Conference on Multi-Agent Systems
(ICMAS-95), San Fransisco, CA, June 12-14.

44

but also heuristic knowledge to achieve the functionality in an efficient manner. Often, this
heuristic knowledge exists only implicitly as human expertise. Large parts of this expertise
are based on tacit knowledge (Berry, 1987). Knowledge acquisition is a modelling activity
which tries to come up with an explicit model of this knowledge. There is a high need for
tools which support this modelling process by evaluating these models. Prototyping is a very
useful tool for this purpose. The development of formally correct specifications and
implementations is of less concern during this activity. An exception is the work of Aben
(1995) who provides a formal calculus based on a pre- and post-condition notions for
inference actions.

A further difference, which probably stems from the same reason, is that knowledge
specification languages make much more use of semiformal specification techniques than
comparable techniques in software engineering. Actually, most of the knowledge
specification languages were developed to formally refine semiformal specification
techniques like the KADS model of expertise. Therefore, these languages provide strong
support during the conceptual modelling process, and formal specifications are structured
using different modelling primitives and knowledge types stemming from semiformal
techniques. The understandability of formal specifications is improved and the process of
writing formal specifications is simplified. On the one hand, the use of semiformal
specification techniques can also be found in software engineering, especially by
specification languages which are designed for the early phase during software development
(called requirements engineering) or as a result of the current trend of object-oriented
specification techniques. On the other hand, the use of modelling primitives at a high
conceptual level for kbs is not just a question of emphasis but it is enabled by introducing
assumptions about the type of system which can be meaningfully specified with such a
language. Specification languages for kbs are special-purpose languages which provide
support at a higher level by restricting their scope of applicability.30

Finally, a difference between knowledge specification languages and specification languages
in Software Engineering lies in the fact that most of the latter aim for a declarative
specification of the functionality of a system. They try to abstract from how this functionality
is achieved. As already mentioned, in knowledge-based system development part of the
“how” is regarded as essential expertise which must be specified. Therefore, an inference
layer in (ML)2 or KARL specifies the significant inferences of a problem-solving process and
the task layer supplements these definitions with a control flow which should ensure an
effective and efficient computation of a solution. They specify in an abstract manner (i.e., by
defining control over functionally specified substeps) how a solution is achieved instead of
only describing what the solution is. This circumstance has serious implications for semantics
and proof calculi of these languages as both have to include functional and non-functional
(i.e., dynamic) aspects. This character of knowledge specification languages also relates them
to approaches which are provided for the design phase of software systems as the procedural
constructs in VDM or the algorithmic description style of evolving algebras.

29. Early approaches in software engineering also provided executable specification languages without trying to
support formalization, e.g., RSL (cf. Bell et al., 1977; Alford, 1990), Gist (cf. Balzer et al., 1982) or PAISLey
(Zave, 1982 & 1991).
30. The same can also be seen in the domain of specification languages for information systems which use the
restricted class of software artefacts as strong bias in providing language primitives at a higher conceptual level.

43

Technically these knowledge roles are modelled by variables of dynamic logic (Harel, 1984).
A state in dynamic logic is characterized by the value assignments of each dynamic variable.
A richer characterization of a state—compared to dynamic logic—is provided by the
algebraic approaches evolving algebras and COLD which characterize a state by an algebra.
Dynamic logic provides a flat list of dynamic variables to represent a state whereas an algebra
with its internal structure provides a much richer data structure to express a state. The static
characterization of a state by invariants as provided by VDM-SL and Z becomes very useful
when one wants to specify conditions for the correctness of the reasoning process. Still, these
invariants in VDM and Z cannot use the history of the reasoning process for defining
constraints on legal states.

With regard to the last criterion one can distinguish non-constructive and constructive means
to specify control over state transitions. A non-constructive specification of control defines
constraints for legal control flows. That is, they exclude possible control flows but do not
define actual ones. Examples for such a specification can be found in the domain of
information system specifications, e.g., dynamic equational logic (DEL) and TROLL
(Jungclaus, 1993). Constructive specifications of control flow define directly the actual
control flow of a system and apply a variant of the closed-world assumption. That is, each
control flow which is not defined is not possible. Such definitions of control can in principle
be used to simulate the behavior of a system. In general, there is no clear cut line between
both approaches as constructive definitions of control could allow non-determinism which
again leads to several possibilities for the actual control. Again, two variants can be
distinguished for the constructive definition of control: a language like (ML)2 defines the
control flow globally by a procedural language. Approaches such as DESIRE and evolving
algebras define the control flow locally by rules. Each rule defines a precondition and an
operation which could be executed if the precondition was evaluated to true. The overall
control flow is defined by a set of rules and a rule interpreter. TSL combines both types of
constructive definition of control flow in order to allow the procedural definition of control as
well as strategic reasoning over different alternatives for control. This corresponds to
DESIRE which aims not only at the specification of control but also at the specification of
strategic reasoning over control.

4 Conclusion

Software engineering provides an impressive arsenal of formal specification languages and
techniques to verify these specifications. Refinement or reification calculi stress the
development of correct implementations from formal specifications. The situation in
knowledge engineering is quite different. Early specification languages for kbs such as
OMOS (Linster, 1992) or MODEL-K (Karbach & Voss, 1993) did not at all aim at
formalization, but provided executable languages to support knowledge acquisition by
prototyping. Meanwhile, a number of languages with a solid formal semantics have been
developed, but still none of them provides proof calculi which support the verification of
formally specified properties of specifications. Two reasons could be responsible for this.
First, software engineering started developing formal specification methods 25 years ago.29

The development of formal specification methods for kbs is a more recent phenomenon.
Second, knowledge specification languages should not only specify the functionality of kbs

42

Terminological Knowledge: Most of the languages provide constants, sorts/types, functions,
predicates/relations, and some mathematical toolkit as a means to specify the static aspects of
a system. We classify such languages as poor. Rich languages provide additional syntactical
sugar on top of these mathematical primitives. In particular, specification languages for
information systems (originally for databases) provide a rich variety of appropriate modelling
primitives for expressing static system aspects: values, objects, classes, attributes with
domain and range restrictions, set-valued attributes, is-a relationships with attribute
inheritance, aggregation, grouping etc. (see Brodie, 1984; Brodie & Ridjanovic, 1984;
Wieringa, 1991b; Jungclaus, 1993; Kifer et al.,1993). In the case of KARL it was the
application of these ideas which provide modelling primitives at a high conceptual level. This
enables a smooth transformation from semiformal specification languages like CML
(Schreiber et al., 1993) for the domain layer of the KADS model of expertise to formal
specifications of these models (Fensel & Neubert, 1994).

Generic Inferences and Object-Meta Level Relationship: Whereas the requirement for
generic specifications do not have discrimination power between the languages this is quite
different for the object/meta-level relationships. No specification language from SE and even
not all of the specification languages from KE provide such a relationship where predicates
from one logical language are used as terms by a second logical language. Such a relationship
is appropriate to express the control of the reasoning process of the object-level language by a
meta-level language.

Notion of Dynamics: The notion of dynamics implies the characterisation of states and state
transitions. Table 3 shows a broad variation of syntactical representations of a state. The
KADS-oriented languages KARL and (ML)2 represent a state by the contents of knowledge
roles. In KARL only the current state is stored as contents of a knowledge role whereas in
(ML)2 the history of local states is stored in a knowledge role. The representation of the
history is only locally available for each role. That is, the global history of the reasoning
process is not represented as past states of different roles are not related in any ordering.

KBSSF poor yes no a fixed set of dynamic
variables containing
sets of formulas

constructive
procedural

(ML)2 poor yes yes a fixed set of dynamic
variables containing
lists of ground facts

constructive
procedural

TFL poor yes no no constructive by rules
and procedural

SE

ADT poor yes no no ---

DEL/CMSL rich yes no attribute values of
objects

non-constructive by
constraints

Ealgebras poor yes no algebra constructive by rules

MLCM/COLD rich yes no algebra constructive
procedural

VDM poor yes no a record of dynamic
variables + invariants

constructive
procedural

Z poor yes no state schemas ---

Table 3. Could a language appropriately specify the different aspects of a conceptual model of a kbs

Language
(1) Terminological
knowledge

(2) Generic
inferences

(3) Object/
meta level

(4) Notion of states (5) Control

41

approaches allows the specification of the internal dynamics of the systems whereas more
traditional approaches aim on a pure functional specification.

Each of the approaches in KE that have been mentioned combines both types of description
(i.e., functional and non-functional specifications). They specify control over functionally
specified substeps. None of them provide a pure functional specification of the entire system.
This reflects the fact that human expertise required for kbs is mostly given in an operational
manner. Expertise is provided as knowing how to do things (Berry, 1987; Schreiber &
Birmingham (eds.), 1995). Normally, experts do not have an explicit and declarative
description of the functionality of their knowledge. As a consequence, the relationship
between pure functional specifications and specifications making commitments on the
algorithmic realization of the functionality is the reverse in knowledge engineering as
compared to software engineering. For example, in VDM a functional specification of an
operation by a pair of pre- and post-conditions is the starting point which becomes refined
(reified) during design. In knowledge engineering, the functionality of a kbs is always
specified in an operational manner by a procedure which realises the desired functionality.28

It would therefore require an abstraction step to derive a pure functional specification from it.
Future work will probably try to develop such reverse abstraction calculi and to integrate a
pure functional description level of the overall system into the knowledge specification
languages.

3.2 Knowledge Level Specifications?

A conceptual model underlying a language provides a strong bias on how things become
expressed in it. It improves the understandability of a formal specification by linking it to the
informal specification. We selected five features of conceptual models for specifying kbs to
compare the differences of the approaches at a conceptual level.

• (1) We ask whether there are rich modelling primitives to express terminological
knowledge (mostly suited at a domain layer in KADS model of expertise).

• (2) we ask for the generic specification of inferences and for the (3) object-meta
distinction between the domain and the inference layers.

• The two remaining criteria concern the representation of dynamics: (4) the representation
of a state, and (5) the definition of control over the execution of these elementary
transitions.

The characterization of the languages according to these criteria is provided by table 3.

28. Only its substeps, which are regarded to be atomic at the level of specification, are described purely
functionally.

Table 3. Could a language appropriately specify the different aspects of a conceptual model of a kbs

Language
(1) Terminological
knowledge

(2) Generic
inferences

(3) Object/
meta level

(4) Notion of states (5) Control

KE

DESIRE poor yes yes termination states of
modules and the truth
values of their atoms

constructive by rules

KARL rich yes limited a fixed set of dynamic
variables containing
sets of grounds facts

constructive
procedural

40

3.1 Purpose of the Specification Language

Five main (not necessarily independent) criteria can be used to characterize the purpose of a
specification language:

• First one can distinguish functional specification from specification which express the
dynamics of the system which achieves a desired functionality.

• Secondly one can distinguish specification languages which aim at a mainly
mathematical definition from specifications which use a specific conceptual model to
specify a program.

• Thirdly one can ask whether a specification approach includes the notion of proof
obligations which enforce the internal correctness of specifications.

• Fourthly one can ask whether a specification approach provides a refinement (also called
reification) calculus which enforces the correct implementation of a specified system (i.e.,
which supports the transformation from specifications to implementations).

• Finally one can ask whether specification approaches aim at prototyping as a means to
evaluate specifications.

The characterization of the languages according to these criteria is provided by table 2.

Interesting to note is the uniformity of the KE languages according to the first four criteria.
Only the fifth criterion does not deliver a clear picture for these languages. In the SE domain
a broader variation of properties can be found but it should be noted that more recent

27. A third aspect for the comparison which will not be discussed is the formal semantics which is used by the
languages. In particular, the semantics of a state and state transitions are interesting in this context. Languages
such as PDDL (Spruit et al., 1995), DDL (Spruit et al., 1993), and Transaction Logic (Bonner & Kifer, 1993),
which were developed for specifying database updates have very interesting features compared with knowledge
specification languages. They provide a complex notion for a state (which is described by a database) and
powerful transitions between states (database updates) and their control. They thus resemble most of the needs
which are required to express the dynamic reasoning process of knowledge-based systems.

a. There exist algebraic approaches which include a notion of proof obligations.
b. There are rich practice and theory of refining evolving algebras but no explicit calculus.
c. Originally, a conceptual model had not been provided but recent development have defined derivates
which are coupled with a conceptual model.
d. Wood (1993) discusses the use of refinement calculi for Z.

Table 2. Purpose of the languages

Language (1) Specification type
(2) Coupled with a
conceptual model

(3) Proof
obligations

(4) Refinement
calculus

(5) Prototyping

KE

DESIRE dynamics yes no no yes

KARL dynamics yes no no yes

KBSSF dynamics yes no no yes

(ML)2 dynamics yes no no no

TFL dynamics yes no no no

SE

ADT functional no no/yesa yes partial

DEL/CMSL dynamics yes no no no

Ealgebras dynamics no no no (yes)b yes

MLCM/COLD dynamics yes no no no

VDM functional & dynamics no (yes)c yes yes partial

Z functional no (yes)c yes nod no

39

correspond to so-called terminators in Structured Analysis.25 But in Structured Analysis there
is no instrument which corresponds to views which read knowledge from a domain layer.
Thus, KARL inference structures correspond to dataflow diagrams, but extend them by the
mapping rules in view bodies. These views deliver knowledge for the inference process and
enable the generic, i.e., domain-independent, specification of the inference process and
therefore its reuse in different domains.

Domain Layer. This distinction between dataflow diagrams and inference structures
necessarily leads to the third issue. Is the domain layer identical to the data model in
Structured Analysis? The KARL formulation of a specification of a small lending-library
system which used Structured Analysis ended up with an empty domain layer (see Fensel et
al., 1993). The terminology, i.e. the syntactical structure of the dataflows, is defined by the
class and predicate definitions of the roles of the inference layer. That is, the data dictionary
in Structured Analysis corresponds to the terminological definitions of the domain layer.
Taking a closer look at the purpose of a domain layer in KADS, it becomes obvious that the
domain layer does not have a direct counterpart in Structured Analysis. The domain layer of
a knowledge-based system is used to model the domain-specific knowledge which is
necessary to solve the task:

“Domain knowledge can be viewed as a declarative theory of the domain. In fact,
adding a simple deductive capability would enable a system in theory (but, given the
limitations of theorem-proving techniques, not in practice) to solve all problems
solvable by the theory.“ (Wielinga et al., 1992)26

Summary. The comparison of KARL with Structured Analysis shows significant distinctions
between the approaches: first, the inference and task layers specify the problem-solving
process in a domain-independent manner. Second, the domain layer contains a large amount
of domain-specific knowledge required by the knowledge-based system to solve the given
tasks and has no direct counterpart in Structured Analysis. Third, the inference layer and task
layer add knowledge to achieve efficiency of the problem-solving process. Efficiency of the
problem-solving process (i.e, the behavior of the system) is not regarded as a main issue in
Structured Analysis as it should provide only a functional specification of the system. The
specification of algorithms and data structures for its efficient computation is regarded as an
issue during design and implementation of the system.

3 Mutualities and Distinctions

In this paper we discussed and compared specification languages from knowledge and
software engineering. This section summarizes the comparison of the different languages by
introducing criteria which concern two different aspects of these languages: their purpose and
the possibility of expressing a conceptual model like the KADS model of expertise.27 We do
not aim at a neutral comparison, instead we take the needs which arise when specifying kbs as
a gold standard.

25. That is why these names were chosen in KARL.
26. I do not completely agree with this point of view as the inference and task layers usually introduce
nonmonotonic effects which extend the scope of the declaratively specified domain theory.

38

techniques.23 Therefore, we will compare the conceptual model of a standard technique of
software engineering based on semiformal specification techniques with the KADS model of
expertise, which is used as a conceptual model by most knowledge specification languages.
We have chosen to discuss approaches based on Structured Analysis (Ross, 1977; Yourdan,
1989) as it is widely used in software engineering and as it is also the point of reference for
most of the above mentioned approaches, which combine semiformal and formal
techniques.24 Structured Analysis is a method which contains several informal instruments
for software specifications: a data dictionary and entity-relationship diagrams are used to
describe the static system aspects, i.e., the structure and domains of the data used. Dataflow
diagrams describe the functional behavior of a system. The whole system is decomposed into
individual processes, and their interactions are represented by sharing data. Dataflow
diagrams consist primarily of processes, stores, and the dataflows between them. They can be
hierarchically refined to allow a representation with different grain sizes. Process-
specification techniques allow the description of the behavior of elementary processes which
are not refined further by other dataflow diagrams. As dataflow diagrams should not be used
to define the control flow between processes, a separate instrument for representing the
control flow between the processes is added. Fensel et al. (1993) define a formal and
operational semantics for the modelling primitives of Structured Analysis by means of KARL
to get a better insight into the different conceptual models. In the following, we will present
the main results of this case study (compare also Schreiber et al., 1993).

Task Layer. The task layer of KARL and the state-transition diagrams of structured analysis
correspond roughly because both are means of specifying the control flow of a system.

Inference Layer. Schreiber et al. (1993) compares structured analysis and KADS and points
out a significant distinction between dataflow diagrams with process specifications on the one
hand and an inference layer on the other hand:

“A first difference between the functional description in KADS and in conventional
software engineering is that the data elements in inference structures do not refer
directly to elements of the data model ...” (Schreiber et al., 1993)

The input data, intermediate data, and output data of a problem-solving process in KADS are
presented by roles. Roles connect an inference layer with a domain layer. As already
discussed, KARL contains three different types of roles.

• Views: A view reads knowledge and data from the domain layer which serve as input for
an inference action.

• Terminators: A terminator writes results of the problem-solving process back to the
output-data part of the domain layer.

• Stores: An intermediate role of an inference layer collects output from inference actions
and provides input for other inference actions. Such a store has no connection with the
domain layer. It is an instrument for modelling the dataflow dependencies between
inference actions.

When comparing these three types of roles with dataflow diagrams, the difference becomes
obvious. Stores in KARL correspond to stores in Structured Analysis. Terminators roughly

23. See Semmens et al. (1992) for a comparison of some approaches on combing semiformal and formal
methods in SE.
24. A comparison of the KADS model of expertise and the object-oriented modelling technique OMT
(Rumbaugh et al., 1991) from SE is provided by Schreiber et al. (1993).

37

Modification (MLCM) are described by Groenboom & Renardel de Lavalette (1995). MLCM
(Groenboom & Renardel de Lavalette, 1994) has been developed to provide a partial
formalisation and axiomatisation of the dynamic part of the Common Object-oriented
Language for Design, COLD (Feijs et al., 1989; Feijs & Jonkers, 1992).22 States are
described by an algebra containing sorts, predicates, and functions. MLCM provides three
atomic program statements to express state changes:

• NEW c (creating a new object and letting the constant c refer to it);
• f(t1,...,tr) := t (changing the value of the function f on the arguments t1,...,tr to the value of

t); and
• p(t1,...,tr) :↔ A (changing the value of predicate p on the arguments t1,...,tr to the truth

value of A).

These atomic programs can be used to build up complex programs by the usual operators of
dynamic logic: test operator for formulas (?), sequence (;), nondeterministic choice (∪),
iteration (*), and the modal operators [.] and <.>. Therefore, state transitions are described in
a procedural manner as in dynamic logic. The difference with dynamic logic lies in the fact
that a state is not represented by value assignments of program variables but by an algebra. A
subset of these primitives can express control where required for the formalization of
ealgebras.

2.4 Semiformal Approaches

“It seems sound to conjecture that this kind of specifications (i.e., formal specifications)
will not be put to practical use as they are: the mathematical background is still too
visible.“ (Gaudel, 1990)

A difference when comparing formal specification languages originating from software
engineering with knowledge specification languages is that the latter are generally subject to
a stronger conceptual model of the system to be described. Each of them distinguishes
different types of knowledge and captures the object-meta relationships between them (i.e.,
one type of knowledge controls the use of another type of knowledge). Thus, knowledge
specification languages are much closer to the conceptual and informal or semiformal
descriptions of expertise than general purpose languages from software engineering. ADT,
VDM and Z define a rigorous syntactic and (several years later) semantical framework to
describe systems mathematically but have been developed without an eye on semiformal
specification techniques. Therefore, there is neither a smooth transition from semiformal to
formal specifications nor is there any conceptual model like the model of expertise which
underlies a specification. In fact, a system is specified as a structured description of a partial
function, which is a very low (i.e., abstract) description.

On the other hand, as a result of the effort required to put formal techniques into practice,
several authors have developed combinations with semiformal specification techniques like
structured analysis (see Yourdan, 1989) or object-oriented analysis (see Coad & Yourdan,
1991). Approaches for VDM are provided by Elmstr∅ m et al. (1993), Larsen et al. (1991) and
Larsen et al. (1993); Randell (1990), Stepney et al. (1992) and He (1995) provide this for Z;
and France & Docker (1989), Doberkat (1994) and Bourdeau & Cheng (1995) for algebraic

22. COLD is a wide-spectrum specification language which enables the specification of static and dynamic
aspects, and was developed at PHILIPS Research, The Netherlands. See also http://www.cs.rug.nl/~rix/
cold.html.

36

action can define the modification of a function at several locations in parallel. The inference
action generate which is represented by transition rule (4) derives all hypotheses in parallel
which can explain the given finding. finding is an external function providing input from an
user.

2.3.1 Operationalization and Formalization of Evolving Algebras

Ealgebras describe algorithms in an operational manner which easily provides prototyping as
a means for evaluating such specifications. Interpreters for ealgebras enabling executable
specifications are described by Huggins (1993), Kappel (1993), and Beckert & Posegga
(1995). Again, the usual problems of executing nondeterministic specifications appears and
as an ealgebra could include arbitrary (non-computable) external functions executability
cannot always guaranteed.

Ealgebras provide an “informal” specification style as in the usual style of writing and
proving theorems in mathematics. No typing with attached type checking or axiomatic
semantics with attached proof calculus are defined. A formal definition of syntax and
semantics and a partial axiomatization of ealgebras based on the Modal Logic of Creation and

Figure 24 Specifying the diagnostic example with evolving algebras

Domain layer

diseases= {healthy, influenza, pneumonia}
symptoms = {no-fever, low-fever, high-fever}
caused-by(healthy,no-fever) = true;
caused-by(healthy,low-fever) = false; caused-by(healthy,high-fever) = false;
caused-by(influenza,low-fever) = true;
caused-by(influenza,no-fever) = false; caused-by(influenza,high-fever) = false;
caused-by(pneumonia,low-fever) = true; caused-by(pneumonia,high-fever) = true;
caused-by(pneumonia,no-fever) = false;
probability(healthy) = 0.5; probability(influenza) = 0.1; probability(pneumonia) = 0.05;

Mapping domain and inference layers

(1) Var X1, X2 range over diseases, symptoms
if mode = init1 ∧ caused-by(X1, X2)
then causality(X1, X2) := true, mode := init2

(2) if mode = init2 then hypotheses := diseases, mode := init3

(3) Var X1, X2 range over diseases
if mode = init3 ∧ probability(X1) > probability(X2)
then preference(X1,X2) = true, mode := hypothesis-generation

Inference and task layer

(4) Var X ranges over hypotheses
if mode = hypothesis-generation ∧ causality(finding,X)
then hypothesis(X) := true ∧ mode := hypothesis-selection

(5) choose X1 in hypotheses satisfying hypothesis(X1) ∧ ¬∃ X2 (hypothesis(X2) ∧ preference(X1,X2))
if mode = hypothesis-selection then diagnosis(X1) := true ∧ mode := stop

endchoose

35

to Gurevich (1994) for the precise definition of sequential ealgebras and their extension to
nondeterminism, parallelism, distributed algorithms (i.e., multi-agent systems), and real-time
algorithms. The two basic description mechanisms of ealgebras are states and state
transitions.

Algebras are used to model states. One state is modelled by one static algebra. A set of states
(i.e., possible worlds) is provided by a set of similar algebras (i.e., with the same signature).
In the simplest case, a signature ϒ is a finite collection of function names with given arity (0-
ary function names model constants). This common signature of these algebras defines the
invariant of all regarded states. A static algebra of a signature ϒ is a nonempty set S together
with interpretations on S of function names in ϒ. Such a static algebra defines one possible
world (i.e., possible state). Possible worlds differ in the interpretation of the function names
ofthe signature.

Transitions between states can be expressed by function updates of the form

f(t1,...,tr) := t

The two static algebras which model the states before and after the function update are
identical apart from the interpretation of the function f for the argument (t1,...,tr) which is
interpreted by t in the successor state.21 In the sequential case all terms t1,...,tr,t have to be
ground. These updates can be enriched by guards which express preconditions for their
application. A guarded update is a rule

if b0 then u0
elseif b1 then u1
...
endif

where the bi are the preconditions (the guards) and ui are the updates.

A program in evolving algebra is a set of such guarded updates. A state transition is achieved
by executing all guarded updates in parallel. If two updates contradict, no update is effected.

Evolving algebras should be useable for specifying arbitrary algorithms. Therefore they do
not incorporate any conceptual modelling bias as languages do which restrict themselves to a
specific type of software. However specifications in ealgebras can be structured and
hierarchically levelled specifications can be written. External functions can be used to hide
details (see Börger et al. (1994) for an example) or to represent the interaction with the
environment of the system. The generality of ealgebras shows up by their use to specify
programming languages like C, PROLOG, and VHDL, to validate implementations of
programming languages such as PROLOG and Occam, and to validate distributed
communication protocols, etc.

Figure 24 provides the specification of our running diagnostic example as an ealgebra. The
domain knowledge is expressed by the initial state. The mappings from the domain to the
inference layers as well as each inference action are represented by guarded updates. The
sequence of the two inference actions which is defined at the task layer is encoded into the
guards of these updates. The parallel version of ealgebras is required because an inference

21. Function updates can also be used to express the creation of new objects by introducing a function U with
values {true, false} and interpreting U(a) = true as existence of the object a (see Gurevich, 1993).

34

of the precondition schema preS for a schema S in Z. From a methodological point of view
two arguments can be made. First, the explicit distinction of pre- and post-conditions
provides a better formulation of the proof obligation at a conceptual level. Second, this
distinction can be used as a guideline during the process of writing the specification: “there is
also a pragmatic point: in reading many industrial (informal) specifications, I have observed
that people are actually not so bad at describing what function is to be performed; what they
so often forget is to record the assumptions” (Hayes et al., 1994). An introduction to proofs in
VDM is provided by Bicarregui et al. (1994) who define an axiomatization, inference rules,
and informal proof guidelines for VDM-SL.

Language constructs to express control over the execution of substeps are introduced in
VDM-SL to support stepwise development of implementations from formal specifications.
That is, they are provided for the design activity: Data reification supports the transition from
abstract to concrete data types and procedural control constructs as sequence, alternative,
and loops are provided to decompose the specifications of operations. Such an explicit
definition defines an operation in an algorithmic style whereas an implicit definition of
operations by a pair of pre- and postconditions does not refer to how the functionality of such
an operation is achieved.

Executability

VDM-SL and its predecessor languages have been designed as formal specification
languages. More recent approaches to VDM developed interpreters for subsets of the
language (cf. Lassen & Larsen, 1991; Andersen, 1992; Elmstr∅ m et al., 1994). Since the full
VDM-SL language is not executable in general, these interpreters have to exclude language
features like infinite sets, execution of type binding, purely implicitly defined functions and
operations. A further problem for the operationalization effort is caused by loose
specification. In the non-deterministic (or underdeterminedness) case, all states must be
regarded simultaneously; or the interpreter must choose a state and the operationalization is
thus incomplete. In both cases, prototyping (i.e., evaluation by testing) becomes a very
complicated matter. The outcomes either depend on arbitrary choices of the interpreter or all
possible outcomes have to be evaluated by the software engineer. Actually, Hayes & Jones
(1989) use these problems with the execution of non-deterministic specifications as the main
argument against executable specifications.

2.3 Representing a State by an Algebra: Evolving Algebras

In the following, we discuss approaches which use an algebra to characterize the state of a
program and the execution of a program by changes of this algebra.

Evolving Algebras (ealgebras) (Gurevich, 1993 & 1994) provide a means for defining an
operational semantics for algorithms.20 As with Turing machines, ealgebras aim at defining a
mathematical framework for describing and simulating arbitrary algorithms. However, this
should be achieved without encoding such an algorithm at the very low level of abstraction
which Turing machines require.

In the following we briefly introduce the definitions of sequential (deterministic) ealgebras.
In the example, we have to use parallelism which will be discussed then. We refer the reader

20. See E. Börger: Annotated Bibliography on Evolving Algebras, available via ftp apollo.di.unipi.it, pub/
Papers/borger and http://www.eecs.umich.edu/ealgebras.

33

2.2.2 VDM-SL

VDM-SL19 (Jones, 1990; Andrews & Ince, 1991) describes a system by means of a data
model, which defines its possible states, together with a set of operations, which express the
required behavior of a system. Each operation is defined as a relation between input and
output values of various defined types. Preconditions, post-conditions, and invariants are
means for specifying these data models and operations. VDM provides a number of proof
obligations which can be used to show the mathematical self-consistency of a specification.
Subsequently, we sketch only some significant points of VDM.

The VDM Modules

The general schema of the specification of a module is given in Figure 23. As the module
concept of VDM is rather straightforward, we will not discuss the parts which are concerned
with the relationships of the module with its environment (parameters, import from, instantiation,

exports), but focus on the internal part introduced by definitions. Here, the most interesting parts
in our context are state and operations. It should be mentioned that functions can also be defined
in an implicit manner as we will introduce for operations in the following. In both cases,
proof obligations arise which must ensure that an implicitly specified function is satisfiable.

The module concept allows specifications to be structured as with the use of schemas in Z.
However, VDM does not provide an analogue of Z’s schema calculus.

States, Dynamics, and Proof Obligations in VDM

A state is described by an identifier, typed state variables which describe parts of the state,
invariants, and initial values for the state variables. A first proof obligation is to prove that the
initial values satisfy the state invariants and the types of the state variables.

The definition of an operation includes the state variables which are accessible by it. One can
distinguish between read-only and write/read access. In addition, a definition of the operation
must be provided which describes the functionality of an operation by a pair of pre- and
postconditions. These implicit definitions of operations provide an abstraction mechanism as
they describe a whole class of possible implementations. Pre-conditions represent
assumptions which can be made by an implementation and post-conditions define obligations
which must be met by it.

The proof obligations of VDM requires the proof that the post-condition can be fulfilled if the
precondition is satisfied. From a logical point of view this proof corresponds to the derivation

19. See also The VDM Bibliography, http://www.ifad.dk/pub/docs/vdm.html.

module VDM-module
parameters
import from
instantiation
exports
definitions

types
values
state
functions
operations

end VDM-module

Fig. 23 The module in VDM-SL

32

Executability

Z is a formalization language which does not aim at operationalization. However, the
languages SETL (cf. Schwarz et al., 1986; Doberkat & Fox, 1989) and PROSET (Hasselbring,
1994), which are executable specification languages based on set theory, are close to Z. They
provide additional control constructs and are restricted to finite set theory. Actually, Z has
been used to define the formal semantics of SETL and a subset of PROSET.18

18. The features of PROSET which caused difficulties for the specification in Z result from the combination of
data persistency with parallelity and exception handling (personal communication with E.-E. Doberkat).

ΞMapped-Hypotheses
ΞMapped-Preference
diagnosis! : X
x : X

diagnosis! ∈ hypotheses ∧
¬ x (x ∈ hypotheses ∧ (diagnosis!,x) ∈ preference)

preference : disease × disease
D1,D2 : disease

(D1,D2) ∈ preference
⇔ probability(D1) < probability(D2)

∆Mapped-Hypotheses
ΞMapped-Causality
finding? : X2
x : X1

x ∈ {hypotheses’} ⇔ (x,finding?) ∈ causality

hypotheses : P(X)

Fig. 22 A simple diagnostic example in Z.

disease ::= healthy | influenza | pneumonia
symptom ::= no-fever | low-fever | high-fever

caused-by : disease × symptom

caused-by(healthy,no-fever) ∧ caused-by(influenza, low-fever) ∧ caused-by(pneumonia, low-fever) ∧

Generate

Hypotheses[X]

Causality[X1,X2]

causality : X1 × X2

Domain Layer

Inference Layer

Select

Preference[X]

preference : X × X

Mapping Domain Layer - Inference Layer

Mapped-Causality == Causality[disease, symptom]

probability : disease → R
probability(healthy) = 0.5 ∧ probability(influenza) = 0.1 ∧ probability(pneumonia) = 0.05

caused-by(pneumonia, high-fever)

Mapped-Hypotheses == Hypotheses[disease]

Mapped-Preference

Task Layer: task == Generate; Select

31

from S1 to the state S3.

Proof Obligations and Theorems

Schema preconditions together with the precondition calculus can be used to derive and to
express the preconditions of an operation schema. That is, it describes all states upon which
the operation can be successfully carried out. An example is given in Figure 21 for the
operation schema Push by the schema PrePush which expresses the preconditions of Push. A
Z specification consists not only of definitions of types, states, and operations. Theorems are
introduced into Z specifications to show that initial states are legal, to derive preconditions
for operation schemas or to show that the specification enjoys certain properties. For
example, a proof obligation of the stack example given in Figure 21 is to show that the initial
state of the stack resulting from the operation Init satisfies the state invariant (defined in
Figure 20). A specification of states and operators leads to a number of proof obligations
which must be fulfilled in order to complete a specification in Z.

Specifying A Diagnostic KBS With Z

In Figure 22, we give a specification of our running example in Z. We use axiomatics to
define the domain layer as it does not change during the reasoning process. Generic state
schemas are used to model knowledge roles. The use of state schemas to model knowledge
roles is quite natural for dynamic knowledge roles (i.e., stores in KARL) which represent the
state of the reasoning process. Static knowledge roles (i.e., views in KARL) which provide
access to domain knowledge could also be modelled by axiomatics as they model static
relationships. The reason for modelling them by states lies in the fact that Z provides generic
schemas but no generic axiomatics. Operation schemas are used to model inference actions.
Their schemas have to include the schemas which represents their knowledge roles. Only the
internal knowledge roles Causality, Hypothesis, and Preference have to be modelled by
schemas. Findings are modelled by the input variable finding of Generate and diagnoses are
modelled by the output variable diagnosis of Select. The mapping from the generic
terminology of the inference layer onto the domain layer is achieved by instantiating the
formal generic parameters of the schemas, that model knowledge roles, with actual ones.

We could also define the control at the task layer by a simple sequence of the two operation
schemas Generate and Select. In general, Z does not provide appropriate means for
expressing procedural control over the execution of operation schemas. It is possible to model
sequence and choice (by means of if-then-else) but no loops (or recursion) constructs are
provided.

∆Stack-state
i? : N

stack’ = <<i?>, stack>

Stack-state
i? : N

|stack| < stack-max

Push Pop

∆Stack-state

stack’ = tail stack

Top

ΞStack-state
o! : N

o’ = head stack

Fig. 21 Operation schemas of a simple stack in Z.

PrePush

Stack-state’

stack’ = <>

Init

30

Generic Schemas

It is possible to have generic schemas where formal parameters X1,...,Xn can be used in type
definitions. When the generic schema is used later on, the formal parameters become
instantiated by types T1,...,Tn:

SI == S[T1,...,Tn]

The definition of the state space of a generic stack is therefore

Stack-state[X] = [stack : sequence X | 0 ≤ |stack| ≤ stack-max]

Schema Inclusion

The schema calculus provides operators for combing schemas. The above instantiation of a
generic schema already provides an example. Further operators are discussed during the
following. A schema S1 = [D1|P1] can use another schema S2 = [D2|P2] as part of its
definition by inclusion:

S == [D1,S2 | P1] = [D1 ∪ D2 | P1 ∧ P2]

Schema decorations provide means to specify operation schemas.

• S’ == [D| P]’ with D = X1 : T1,..., Xn : Tn is defined by replacing each variable Xi in D and
P by Xi’. S denotes the state before executing an operation and S’ denotes the state after
executing an operation. The operation schema which describes the operation has to
include both schemas.

• S? == [D| P]? with D = X1 : T1,..., Xn : Tn is defined by replacing each variable Xi in D
and P by Xi?. S? denotes an input signature of an operation schema which includes S?.

• S! == [D| P]! with D = X1 : T1,..., Xn : Tn is defined by replacing each variable Xi in D and
P by Xi!. S! denotes an output signature of an operation schema which includes S!.

The schema notation ∆ and Ξ are short-cuts for the inclusion of state schemas by an operation
schema.

• ∆S = [S,S’ |]. An operation schema which changes the state described by the schema S
has to include the schema ∆S (instead of S,S’).

• ΞS = [S,S’ | X1 = X1’,..., Xn = Xn’] with S = [X1 : T1,..., Xn : Tn | P]. An operation schema
which does not change the state described by the schema S has to include the schema ΞS
(instead of [S,S’ | X1 = X1’,..., Xn = Xn’]).

Figure 21 defines four operations Init, Push, Pop, and Top for our stack example (see
Sheppard, 1995). Init initializes the stack with the empty sequence, Push gets the input i from
type N, forms a sequence from it and concatenates it with the stack. Pop removes the head
item from the stack. Push and Pop cause a state change. Top returns a copy of the head of the
stack as output but does not change the state of the stack.

Schema Composition

Finally, schema composition can be used to express the sequence of two operation schemas
(which should not be mixed with the built in data type sequence). The basic idea behind
schema composition is that the schema expression:

P == Q ; R

defines a new schema P such that if Q can bring about a state change from S1 to S2 and R can
bring about a state change from S2 to S3 then the schema P can bring about a state change

29

(1992) and Hayes et al. (1994). As both specification languages fall in the same general class
(called model-oriented as distinct to algebraic approaches which are called property-
oriented), we will discuss one of them in more detail (we have chosen Z) and point out only
some differences for the other. The application of Z for specifying kbs are described by
Milnes (1992) and Krause et al. (1993).16

2.2.1 Z17

Z (Spivey, 1988 & 1992) describes the data, their interrelationship, and the functional
behavior of a system using sets, relations, and functions. Z is based on typed set theory. Static
and dynamic aspects of a system are uniformly described by so-called schemas. Complex
specifications can be built up by combining several of these schemas.

A Z specification consists of a sequence of definitions and theorems. Definitions can be
categorized as: types, axiomatics, or schemas. Types can be elementary sets, functions,
relations, sets of sets etc. The mathematical toolkit of Z provides a library of predefined
types, functions, and relations. Further types can be introduced by defining new basic types or
by combining already given types. Axiomatics can be used to define global variables together
with their type and invariants. Significant for Z are schemas which can either be used to
characterize the state space and invariant relationships on states of a system or operations
which change these states. The former are called state schemas and the latter are called
operation schemas. In the following, we discuss some aspects of the schema calculus of Z
which seem to be relevant in our context. We will use the specification of a stack as
illustration for the schema calculus of Z. Later on we will show how it can be used to model a
kbs for our simple diagnostic task.

Schemas

The general form of a schema is given in Figure 19. S is the name of the schema, D defines

the signature, and the predicate P defines invariant relations. The signature D consists of a list
of typed variables X1 : T1,..., Xn : Tn and P is a formula which defines relationships which
must hold between the values of the variables. An example of a state schema is given in
Figure 20. It defines the state space of a stack of natural numbers. The global variable stack-
max is defined by an axiomatic which defines an upper-limit of twenty for the population of
the stack. Sequence is a built-in type constructor of Z.

16. See van Harmelen & Fensel (1995) for further examples.
17. See also http://www.comlab.ox.ac.uk/archive/z.html.

D

P

S

Fig. 19 The general form of a schema in Z

Linear notation: S = [D | P]

stack : sequence N

0 ≤ |stack| ≤ stack-max

Stack-state

Fig. 20 The state space of a simple stack in Z.

stack-max : N

stack-max = 20

28

defines a declarative semantics for KARL) and the operational semantics of the task layer in
KARL (see Angele (1993), who defines an operational semantics for KARL).

A uniform approach for the algebraic specification of static and dynamic aspects of a kbs is
provided by the knowledge specification language TFL (Pierret-Golbreich & Talon, 1995)
which adapts the algebraic specification language PLUSS (cf. Gaudel, 1984; Bidoit, 1989)
for this purpose. ADT’s are applied to specify domain and inference knowledge and loose
semantics is applied. As in KBSSF parameterization is applied to connect the generic modules
expressing inference knowledge with modules specifying the domain knowledge. Procedural
control is specified by so-called process modules which incorporate the control expressions
as operations into the framework of ADT’s. The test operator for formulas (?), sequence (;),
nondeterministic choice (∪), and iteration (*) are specified as functions and axioms are used
to specify these operators further. In addition to this procedural definition of control,
primitives for strategic knowledge are provided. A focus can be used to privilege a subset of
all processes and to choose between data- and goal-driven control. A strategy can be used to
activate or to combine foci or substrategies. The recursive definition of strategies enables
multiple meta-levels as in DESIRE for defining strategic reasoning. Figure 18 provides an
example for the algebraic definition of control by picturing the axioms used in TFL to specify
the choice operator.15 TFL does not provide the notion of a state. Compared to KBSSF it has
the advantage of integrating the control aspect into the algebraic setting which prevents it
from the paradigm shift between the static and dynamic part of a specification in KBSSF.

2.2 The Vienna Development Method and Z

The Vienna Development Method VDM (cf. Jones, 1990; Andrews & Ince, 1991) is a method
for the formal specification and development of software systems. It consists of a
specification language called VDM-SL, rules for data and operation refinement, and a proof
theory for conducting properties of the specifications and the correctness of refinement steps.
Z (cf. Spivey, 1988; Spivey, 1992; Wordsworth, 1992) is a formal specification language for
specifying software systems. Spivey (1992) defines a standard for Z. A definition of its
mathematical semantics is provided by Spivey (1988). Both approaches have been used for a
large variety of different problems over more than a decade. Meanwhile a series of joint
workshops has been organized (e.g. Bjorner et al., 1990). A common introduction to VDM
and Z is given by Sheppard (1995), a comparison of both languages is provided by Hayes

15. Actually, this is the way in which (concurrent) processes and their dynamic interaction are specified in
process algebra (Baeten & Weijland, 1990; Baeten, 1990).

 ∪ : process × process → process
 δ : process
 ; : process × process → process
 * : process → process

(p ∪ q) ∪ r = p ∪ (q ∪ r)
p ∪ q = q ∪ p
p ∪ p = p
p ∪ δ = p
(p ∪ q); r = (p;r) ∪ (q;r)
r; (p ∪ q) = (r;p) ∪ (r;q)
p*; q = q ∪ p; p*; q

Fig. 18 Algebraic specification of the choice operator in TFL.

27

Kozen, 1990). Dynamic logic defines Kripke structures providing a set of possible worlds and
interprets programs as a binary relation between possible worlds. Given the signature of our
example in Figure 17, increment(p) is the only available program. The modal operators [.]
and <.> can be used to define constraints which characterize the behavior of this program.
The following constraint enforces that the age of the person p in the possible world after the
execution of the program must be incremented by one compared to the value in the possible
world before the program execution.

age(p) = n → [increment(p)] age(p) = n + 1

States are introduced in ADT by regarding each possible interpretation of an ADT as a
possible world (i.e., a state). Notice, that one state corresponds to one model of the algebra.
Transitions between states are binary relationships over these interpretations and dynamic
logic is used to characterize these transitions further. Control is defined in a non-constructive
manner by constraints used to restrict all possible state transitions.

2.1.3 Algebraic Approaches in Knowledge Engineering

Algebraic specification methods are also used for specifying kbs. Algebraic specification
methods were mainly designed for functional specification and not for the specification of the
dynamic (reasoning) behavior of a system. Therefore, we will focus our attention on this
problematic aspect.

Nakagawa et al. (1993) presents the algebraic specification of a kbs for simple scheduling
tasks with OBJ (Futatsugi et al., 1985; Gerrard et al., 1990). The main problem with this
formalization is the representation of the dynamic reasoning behavior of the system which is
implicitly encoded in the axioms and their term structure and realized by the term rewriting
technique of OBJ.

The knowledge specification language KBSSF (in`t Veld,1993; Spee & in`t Veld,1994),
which was developed as part of the ESPRIT project VITAL, uses algebraic specification
techniques for specifying the domain and inference layers of a model of expertise. The
domain layer and every inference action are specified by modules defined by ADT’s. The
logical language for formulating axioms is order-sorted first-order logic. The connection
between modules specifying domain knowledge and modules specifying generic inference
knowledge is achieved by parameterization. A procedural language on top of the algebraic
specification is used to express control over the dynamic reasoning process. Sequence,
alternative, and iteration of module executions can be expressed. Spee & in`t Veld (1994)
define a formal semantics for the entire language for the case where the logical language used
in the algebraic specifications is restricted to Horn logic. Atomic programs are the execution
of a module specified by an ADT. The usual minimal Herbrand model semantics is applied as
semantics for the modules. The execution of a module delivers its minimal Herbrand model
as output. The entire semantics is defined in terms of transitions between configuration in a
Plotkin style (Plotkin, 1981). A configuration is characterized by the current values of the
program variables (i.e, stores) which are changed by the execution of a module and a stack of
further control statements which describe the part of the program which has not been
executed. A transition executes the next statement in the stack of further control statements.
As a result the current values of program variables are changed and the stack is updated.
Besides some minor details, this semantics of KBSSF is identical to a combination of the
declarative semantics of domain and inference layers in KARL (see Fensel (1995), who

26

2.1.2 Specifying the Dynamics of a Software Artefact with Algebraic Techniques

In the following, we discuss dynamic equational logic (Wieringa, 1991a) as an example of
approaches to representing states and state changes in an algebraic framework. Dynamic
equational logic is used to define a formal semantics for the Conceptual Model Specification
Language (CMSL) which is an object-oriented specification language for information
systems (see Wieringa & van de Riet, 1990).

Wieringa (1991a) examines the usefulness of algebraic specification techniques (i.e., order-
sorted equational abstract data types) for the specification of object-oriented databases. An
abstract data type can be used to specify an object. Methods can be specified by operations
(i.e., functions). A significant problem in this context occurs from the fact that an object has a
state which can change over time. ADTs have neither a notion of state nor an explicit
representation of state transitions. Wieringa (1991a) introduces the following interpretation
and extension of ADT to capture the notion of states and state transitions. Figure 17 gives an
example of a simple abstract data type. There are many possible functions that can be used as

interpretations of the attribute age declared in the object specification, for instance, age(p) =
20 and age(p) = 30. Each such interpretation is a possible world and represents one possible
state of the object.

State transitions are modelled by a specific sort events and operations which have this sort as
co-domain. These operations are interpreted as programs in dynamic logic (Harel, 1984;

Fig. 16 An algebraic specification for the inference action generate diagnosses.

IA-spec GENERATE
import FINDINGS, CAUSALITY;
functions

generate : hypotheses → boolean;
variables

X : hypotheses; Y : findings; Z : boolean;
axioms

generate(X) = Z
↔ causality(X,Y) = Z ;

end-IA-spec

VIEW-spec FINDINGS(domain layer)
parameter domain layer;

sorts findings;
functions finding : findings;

end-VIEW-spec

VIEW-spec CAUSALITY (domain layer)
parameter domain layer;

sorts hypotheses, findings, boolean;
functions

causality : hypotheses × findings
→ boolean;

end-VIEW-spec

STORE-spec HYPOTHESIS
import GENERATE;
functions

current-hypotheses : hypotheses → boolean;
variables X : hypotheses;
axioms

current-hypotheses(X) = generate(X);
end-STORE-spec

Fig. 17 A simple ADT.

spec PERSON-OBJECT
sorts persons, natural numbers, events;
constants p : persons;
attribute

age : persons → natural numbers;
events

increment : persons → events;
endspec

25

are assumed to be non-equal. Loose semantics implies that a specification and its axiom set
describes a set of possible implementations (each valid model corresponds to an
implementation). That is, a specification abstracts from details which are fixed later on
during the implementation. An implementation must only fulfil the equalities which are
explicitly specified by the axioms. This freedom is lost when applying initial or terminal
semantics. For example, when a specification defines a set, an implementation can realize this
set by a list with according list operators. Neither how this list is organized nor the fact that a
list is used to implement the set are of any interest when specifying the set. The only
requirement is that the implementation provides all the necessary functionality which is
specified. In this way a specification thus defines a whole class of implementations which
behave identically for all specified aspects and which may behave differently for aspects
which are not determined by the specification.

Based on the initial semantics, term rewriting techniques can be used to execute algebraic
specifications. That is, formal specification can be evaluated by testing. Execution is
simulated by deriving equalities of terms. More complex proofs require theorem proving
techniques for logics with equality. An example of an operational algebraic specification
language based on term rewriting is OBJ (Futatsugi et al., 1985; Gerrard et al., 1990).14

14. See Bidoit et al. (eds.) (1991) for a survey of further approaches.

Fig. 15 An algebraic specification of the domain layer.

spec DOMAIN
import BOOLEAN;
sorts

symptom, disease, real, boolean;
functions

no-fever, low-fever, high-fever : symptom;
healthy, influenza, pneumonia : disease;
0.5,0.1,0.05 : real;
actual symptom : symptom → boolean;
caused-by : disease × symptom → boolean;
probability : disease → real;
prefer : disease × disease→ boolean;
> : real × real → boolean;

variables X1, X2 : disease; Y1, Y2 : real; Z : boolean;
axioms

actual-symptom(low-fever) = true;
actual-symptom(no-fever) = false; actual-symptom(high-fever) = false;
caused-by(healthy,no-fever) = true;
caused-by(healthy,low-fever) = false; caused-by(healthy,high-fever) = false;
caused-by(influenza,low-fever) = true;
caused-by(influenza,no-fever) = false; caused-by(influenza,high-fever) = false;
caused-by(pneumonia,low-fever) = true; caused-by(pneumonia,high-fever) = true;
caused-by(pneumonia,no-fever) = false;
probability(healthy) = 0.5;
probability(influenza) = 0.1;
probability(pneumonia) = 0.05;
prefer(X1,X2) = Z ↔ probability(X1) = Y1 ∧ probability(X2) = Y2 ∧ (Y1 > Y2) = Z;

endspec

24

defining the semantics of programming languages. The large number of algebraic
specification languages forces us to focus on the essence of algebraic specification techniques
without discussing specific realisations in detail. First, we discuss algebraic methods for
specifying the functionality of a system. Then, we discuss an example for approaches which
specify the dynamic behavior of software systems. Finally, we discuss specification
languages in knowledge engineering which rely on algebraic techniques.

2.1.1 Algebraic Specification Techniques for Functional Specifications: Abstract Data
Types

Detailed introductions to algebraic specification methods are provided by Ehrig & Mahr
(1985), Ehrig & Mahr (1990), and Wirsing (1990). The essence of algebraic approaches is the
use of a many-sorted (or order-sorted) algebra to specify the data structure and the
functionality of a program. Elementary data types are modelled by sets, each datum is
modelled by an element of such a set, and functions (i.e., operators) on these sets model the
functionality of the software artefact. The properties of the functions (0-ary functions model
constants) are further described by a set of atoms in a logic language including equality. An
abstract data type (ADT) is an isomorphism class of many-sorted algebras. An algebraic
data type is the definition of an abstract data type by means of a signature (sorts and
functions) and some axioms (logical formulas) that the algebraic isomorphism class must
fulfil. An algebraic specification is a description of one or more such abstract data types by
algebraic data types. Figure 15 gives the domain layer of our running example in terms of an
algebraic specification.

Algebraic techniques provide several techniques to structure complex specifications like
constraints, structuring operators, parameterization, and modularisation (see Ehrig & Mahr,
1990). An abstract data type could be used to define a module, which exports some of its
functions and sorts and hides internal details of their definitions. It can use other abstract data
types by importing them. Parameterization is an interesting feature in the context of kbs as it
enables the generic specification of inference actions. The connection to a domain layer can
be achieved by binding generic parameters to actual ones (compare section 2.1.3). Figure 16
sketches the inference action generate, its views and its output store. The signature and
axioms of views and (if available) input stores are imported. The output store HYPOTHESIS
imports the abstract data type GENERATE which defines the inference action generate. The
connection to the domain layer can be achieved by binding the generic parameter domain
layer to an actual domain layer (e.g., as given in Figure 15).

Roughly, three different types of semantics can be distinguished: Initial semantics, terminal
semantics, and loose semantics (cf. Wirsing, 1990). In the initial semantics, only the terms
that can be proven to be equal from the given axioms are identified. In the terminal semantics
only those terms are different whose inequality can be proven from the axioms. The loose
semantics regards all models of the axioms as semantics besides models which contain junk,
i.e. terms which cannot be denoted by ground terms. Initial and terminal semantics are special
models of the set of models under the loose semantics.

An initial semantics leads to a unique (up to isomorphism) algebra for an abstract data type
similar to the minimal model semantics in logic programming. The so-called quotient model
is analogous to the Herbrand model of a logic program. It consists of all possible closed terms
of the specification, modulo provable equality. Otherwise, the initial semantics (as the closed-
world assumption) has as a consequence that all non-provable equalities given a set of axioms

23

DESIRE provides an interpreter which can be used to execute specifications. Otherwise, the
operationalization is naturally incomplete as first-order logic is provided as a specification
language for the local specification of the modules. A further problem for the
operationalization is the non-determinism provided by the any-parameter and the case where
several control rules apply. An interpreter can realise a random choice but the outcome of
testing depends on these selections and does not cover all possible cases. That is, the specified
kbs can have consequences which are not given by executing one trace of its specification.

2 Specification Languages in Software Engineering

In this section we discuss specification methods used in software engineering. The main
problem for such a discussion and comparison with work in knowledge engineering is caused
by the overwhelming amount of work which is extant in this area. The development of
formal, executable, or semiformal specification languages has almost twenty-five years of
tradition in SE and has led to a multitude of languages which are impossible to keep track
of.12 A scientific evaluation of some commercial applications for formal specification
techniques is provided by Craigen et al. (1993).13

As a consequence of the large number of approaches, we can only provide a very restricted
selection of them. First, we discuss the broad and well established field of algebraic
specification techniques (Bidoit et al., 1991), which provide means for a functional
specification of a system. Secondly, we discuss the Vienna Development Method - Standard
Language (VDM-SL) (Jones, 1990) and Z (Spivey, 1992), which describe a system in terms
of states and operations working on these states. Both languages are the result of long running
(and still ongoing) research projects with a multitude of commercial applications (Woodcock
& Larsen, 1993). Thirdly, we discuss Evolving Algebras (Gurevich, 1993 & 1994). This
more recent approach aims at closing the gap between computation methods and specification
methods. The dynamic behavior of software systems is described by an algebra which
becomes modified during the execution of an algorithm. We conclude the section with a
comparison to semiformal specification techniques like Structured Analysis (see Yourdan,
1989).

2.1 Algebraic Specifications

Algebraic specification methods have a twenty year history and have become one of the
major areas of research in theoretical computer science. An overview and bibliography of
different approaches to algebraic specification of software systems can be found in Bidoit et
al. (1991). Besides their use for specifying software systems they can also be used for

11. In the case of DESIRE, this type of semantics will be necessary when the language for specifying the
control gets extended. At this moment, only the current termination status of a component can be asked by the
control rules. Future extension of DESIRE will provide temporal operators which refer to earlier states of the
reasoning process (i.e., they refer to the history of it).
12. This has also taken place in the area of information system development but to a less extent and in a shorter period of
time.

13. A list of formal methods for system development is provided by Ryan & Sennett (1993), see also Gaudel (1994) and
http://www.comlab.ox.ac.uk that provides a survey on formal methods available via the World Wide Web. Recent
introductions to formal specification methods are provided by Turner & McCluskey (1994) and Sheppard
(1995).

22

expertise which was called the strategic layer, but most of the KADS-oriented languages do
not provide modelling primitives for this layer.

The reasoning modules of DESIRE can be roughly identified with inference actions in (ML)2

and KARL, but DESIRE provides a much more sophisticated means of controlling the
reasoning process of an inference action. The information state is represented at a meta-level
and via transformation other modules can influence the meta level facts and therefore the
object-level reasoning of the module. This extended granularity of controlling the reasoning
process of the elementary buildings blocks (the elementary inference actions) is not provided
by (ML)2 and KARL.

An explicit distinction between domain knowledge and the generic specification of the
reasoning process by a problem-solving method as in KADS is not made in DESIRE. One has
to admit that the module and transformation concept of DESIRE is powerful enough to cover
such a distinction. Still it is not so much the question whether something could be expressed
in a language but rather whether the language itself provides a strong bias on how things
become expressed in it.

The descriptions of states and of state transitions is much more complex in DESIRE than in
(ML)2 or KARL. The powerful control of the reasoning process of a module by meta-level
facts and the corresponding interaction primitives (epistemic-assumption, object-target
etc.) makes understanding a DESIRE specification not an easy task. The precise role of
(possible hypothesis(X:hypotheses), target(dynamic-target,X:OA,confirm)): <<true,true>, <false,false>,

<unknown,false>>; in an object-target transformation for the reasoning process is defined by
complex transition functions included into the semantics of DESIRE. There are also complex
and implicit dependencies between various parts of the entire specification. For example, that
the global control rule (3) in Figure 11 refers to the case where the module symptom
interpretation fails can only be understood when looking at the local specification of the
transformation reflect down and its target parameter confirm and the mapping of the truth
value unknown.

From a semantical point of view a significant difference between DESIRE and (ML)2 or
KARL lies in the fact that the former uses temporal logics for specifying the dynamic
reasoning process whereas the latter use dynamic logic. In dynamic logic, the semantics of
the overall program is a binary relation between its input and output sets (Mi,Mo). In
DESIRE, the entire reasoning trace T which leads to the derived output is used as semantics:

T = Mi,M1,...,Mn,Mo

Therefore, DESIRE uses a sequence of models to define the semantics of a specification.
Otherwise, the truth of formulas depends on the current state only. A semantics which
includes the derivation path by a sequence of models is necessary when one wants to specify
dynamic integrity constraints on the reasoning process which do not only restrict valid
relations between input and outputs but which also define restrictions for the reasoning
process itself. Such constraints are often used in the specification of information systems
(Jungclaus, 1993) or database updates (Bonner & Kifer, 1993). Currently, it is not clear at all
whether a semantics based on model pairs as in (ML)2 and KARL or a path-semantics by a
sequence of models as in DESIRE is better suited for specifying kbs. An interesting feature of
Transaction logic as discussed by Bonner & Kifer (1993) is that it integrates both types of
semantics into one coherent framework.11

21

represents the truth values of the object-level at point t and the complete model Nt represents
the truth values of the meta-level at point t. More precisely, a state is described by the truth
values of all object- and meta-information facts of all modules, by the truth values of all
meta-information facts of all transformations, and by the truth values of all object- and meta-
information facts of the supervisor module which interprets the global control rules.

A state transition from a pair of models (Mt,Nt) to (Mt+1,Nt+1) can be achieved by a number
of complex transition functions which are built into the semantics of DESIRE. Such a
transition function expresses either an object-level reasoning step of a module with update of
its meta-level (in the case of the supervisor module it defines the interpretation of the global
control rules) or by transitions which realise object-object interaction, meta-meta interaction,
upward reflection, or downward reflection. Each of these transition functions is defined
(operationally) by a set of transition rules and a virtual rule interpreter which are hard-wired
into the semantics of DESIRE (see Gavrila & Treur (1994) for more details).9

The overall semantics of the specification of a kbs is specified by a trace of a number of
model pairs (M1,N1),...,(Mn,Nn).

1.2.5 Comparing DESIRE with (ML)2 and KARL

A significant difference exists at a conceptual perspective between DESIRE and KADS
oriented specification languages like (ML)2 and KARL. DESIRE tries to cover most aspects
of a system specification: the reasoning behavior, the system/user-interaction, and it allows
the specification of multi-agent systems. Languages like (ML)2 and KARL are much more
restricted as they focus on specifying the reasoning behavior of a kbs.

Apart from this general distinction, a rough analogy can be made by identifying the global
control rules with the task layer and the modules with inference actions in KADS. With
regard to the representation of control, (ML)2 and KARL use a procedural representation
whereas DESIRE uses the more conventional view in Artificial Intelligence. Control is
specified by a set of rules and a rule interpreter has to evaluate preconditions of these rules
and select a rule with valid preconditions. The representation of control by means of rules has
the well known advantages and disadvantages of production rule systems. On the one hand,
local control decisions can be represented in an elegant manner and reasoning over control
decisions can be expressed. On the other hand, the global behavior of the system becomes
difficult to predict.10

The different representation of control between DESIRE on the one hand and (ML)2 and
KARL on the other is a consequence of the different scopes of the approaches. The latter
define the control of the reasoning process of domain and inference layers at the task layer.
The former does not only aim at specifying the control of the object-level reasoning process
but it also specifies reasoning processes over the control of the object-level inferences. That
is, DESIRE aims to represent strategic reasoning. In the original KADS-I framework
(Wielinga et al., 1992) this type of knowledge was located at a fourth layer in the model of

9. For example, the internal substates of the interpreter which define the semantics of a reasoning module are:
integrate new input from the input buffer, prepare task execution, work on current subtask, integrate new output
into the output buffer, finish task execution, suspended, idle. For each phase specific transformation rules are
defined.
10. An intermediate position is taken by the operational knowledge specification language MoMo which
provides Petri nets for specifying control (Voss & Voss, 1993).

20

unknown. During conservative reasoning, unknown facts can change to true or false. This
three-valued logic is used only for the object-level. The truth values of the meta-level of a
module are always complete, see table 1. The reasoning process at the meta-layer is non-
conservative. For example, the derivation of a truth value for an object-level fact which was
originally unknown changes the truth value of unknown(object-level fact) from true to false.
The information state of an entire module is therefore a pair consisting of a partial model for
the object-level and a complete model for the meta-level.

Linear temporal logic with partial models as states is used to specify the reasoning trace of a
module (and also of the whole system). At each point in time t, the truth values of all ground
atoms of a module are determined by a pair of models (Mt,Nt) where the partial model Mt

Fig. 13 The modules hypothesis generation and symptom interpretation.

module symptom interpretation : reasoning
input signature symptoms;
output signature output-si

signature meta-hyp;
endsig
target sets dynamic targets
initial meta-facts

requestable(fever(D:fever-degree));
knowledge base

if fever(no) then healthy;
if fever(no) then not pneumonia;
if fever(no) then not influenza;
if fever(low) then influenza;
if fever(low) then not healthy;
if fever(low) then not pneumonia;
if fever(high) then influenza;
if fever(high) then pneumonia;
if fever(high) then not healthy;

endmod

module hypothesis generation : reasoning
input signature input-hg

signature meta-hyp;
relations

si-false : hypotheses;
endsig
output signature output-hg

signature meta-hyp;
relations

possible-hypothesis : hypotheses;
endsig
target sets initial targets
initial meta-facts

target(initial targets,
possible-hypothesis
(X:hypotheses),determine);

knowledge base
if not si-false(healthy)
then possible-hypothesis (healthy);
if si-false(healthy)
then possible-hypothesis (influenza);
if si-false(healthy)
then possible-hypothesis (pneumonia);

endmod

Fig. 14 The transformations reflect down and reflect up.

transformation reflect up : epistemic-object
domain symptom interpretation

epistemic output signature
epistemic-output-symptom-interpretation;

co-domain hypothesis generation
object input signature input-hg;

sort links (OA,hypotheses)
object links identity
atom links

(false(X:OA),si-false(X:hypotheses)):
<<true,true>, <false,false>>;

endtrans

transformation reflect down : object-target
domain hypothesis generation

epistemic output signature output-hg;
co-domain symptom interpretation

object input signature
target-input-symptom-interpretation;

sort links (hypotheses,OA);
object links identity;
atom links

(possible-hypothesis(X:hypotheses),
target(dynamic-target,X:OA,confirm)):

<<true,true>, <false,false>,
<unknown,false>>;

endtrans

19

interpretation by rule (5).

Four transformations are defined. The transformation reflect down provides facts from the
object-level of hypothesis generation as target facts of the meta-level of symptom
interpretation. A possible hypothesis which is generated by the module hypothesis
generation is passed by this transformation to the module symptom interpretation to check
whether it coincides with the available symptoms. The transformation reflect up provides
epistemic facts from the meta-level of symptom interpretation as object-level facts of
hypothesis generation. A meta-level fact from symptom interpretation expressing the truth
value of object-level expressions becomes an atom at the object-level of hypothesis
generation. This input is used by hypothesis generation to derive a new possible hypothesis.
The transformation ask is a meta-level interaction where a request of symptom interpretation
is passed as a target to the module world. This transformation covers the case where the
module symptom interpretation needs the truth value of a new symptom in order to evaluate a
possible hypothesis. Finally, the transformation answer passes object-level facts from world
to symptom interpretation. Here, the request of symptom interpretation for the truth value of a
new symptom is fulfilled.

After defining the global level, the three modules and their transformations have to be
specified. First, we define in Figure 12 signatures which are used in the modules. Figure 13
provides the definitions of the reasoning modules symptom interpretation and hypothesis
generation. The strategy of hypothesis generation is to use the hypothesis healthy as a default
hypothesis. If symptom interpretation returns that this hypothesis is wrong according to its
knowledge base and the requested truth values of symptoms, one the other possible
hypotheses influenza and pneumonia is generated. The dataflow transformations reflect
down, reflect up, ask, and answer remain to be defined. Figure 14 provides the definition of
reflect down and reflect up. The first transition passes a reasoning target (possible hypothesis)
which should be confirmed (other possibilities would be reject or confirm) from hypothesis
generation to symptom interpretation. This downward reflection has to map a three-valued
logic onto a two-valued one. The second transformation returns the truth value of the
provided hypothesis.

1.2.4 Linear Partial Temporal Logic as Semantics

In this section we give a rough survey on the semantics of DESIRE. For a general outline see
Treur (1994) and for details Gavrila & Treur (1994). DESIRE uses partial models to
represent the information states of the object-level of a module. One information state is
represented by one partial model: ground atoms can have the truth value true, false or

Fig. 12 Signature definitions.

signature symptoms
sorts fever-degree
objects

no,low, high : fever-degree;
relations

fever : fever-degree;
endsig
signature hypotheses

relations healthy, influenza,pneumonia;
endsig

signature meta-hyp
sorts

hypotheses
objects

healthy, influenza,pneumonia: hypotheses;
endsig

18

user input of findings (symptoms) is viewed to be given to the system in the (ML)2 and
KARL models. The hypothesis generation step derives all possible hypothesis for the given
findings. In the following, we refine this inference action generate into three components, as
DESIRE also aims to represent the user/system interaction and the detailed control of the
object-level inference process. We specify a component, symptom interpretation, which
reasons about the given symptoms and possible hypotheses to explain them. It also specifies
the interaction with the user if the truth values of further symptoms are required by the
reasoning process. A component hypothesis generation derives possible hypotheses
controlled by the meta-level of this component. A third component world represents the user.

Figure 11 defines the global control and dataflow of our example. Three modules and four
transformations are defined. The module hypothesis generation generates possible
hypotheses. The module symptom interpretation checks whether a possible hypothesis is
confirmed by the available symptoms. If it needs further symptoms it asks the module world
for further input. Control rule (1) starts the entire system by executing the module hypothesis
generation. If this module terminates, either control rule (6) or (2) applies. If the module
symptom interpretation is activated by control rule (2) it can either succeed, fail or it can get
suspended. In the first case control rule (7) is applied and a hypothesis which is consistent
with the given symptoms is found. In the second case control rule (3) applies which leads
again to the activation of module hypothesis generation. In the third case, the module world is
activated by rule (4) and if it succeeds it leads to the reactivation of module symptom

Fig. 11 The global level in DESIRE

(1) IF start
THEN next-module(hypothesis generation,initial targets,data-driven,any)
AND next-pre-trans(reflect up)

(2) IF termination(hypothesis generation,initial targets,succeeded)
THEN next-module(symptom interpretation, dynamic targets,goal-driven,every)
AND next-pre-trans(reflect down)

(3) IF termination(symptom interpretation, dynamic targets,failed)
THEN next-module(hypothesis generation,initial targets,data-driven,any-new)
AND next-pre-trans(reflect up)

(4) IF suspended(symptom interpretation)
THEN next-module(world, dynamic targets,goal-driven,any)
AND next-pre-trans(ask)

(5) IF termination(world, dynamic targets, succeeded)
THEN next-to-resume(symptom interpretation)
AND next-pre-trans(answer)

(6) IF termination(hypothesis generation,initial targets,failed) THEN stop
(7) IF termination(symptom interpretation, dynamic targets,succeeded) THEN stop

symptom interpretation worldanswer (object-object)

hypothesis

reflect down
(object-target)

ask (request-target)

generation

reflect up
(epistemic-object)

17

reasoning process of the module. For each target atom, it is further specified whether it should
be confirmed (i.e., found to be true), rejected (i.e., found to be false), or just determined (i.e,
found to be true or false).

Each module is divided into an object level (the knowledge base) and a meta level. The
language for specifying an object level is many-sorted predicate logic with three truth values
true, false, and unknown. The signature (input + output + internal signature) defines sorts,
constants, function symbols, and predicate symbols. An assignment of a truth value to all
ground atoms of the language is called an information state. During the reasoning process of
the module this information state is changed.

The signature of the meta-level language is implicitly given by the object-level language and
some standard predicates which are used to express meta-information over the information
state of the object level. The meta-level facts are divided into targets and assumptions of the
reasoning process at the object level (meta-input facts), and epistemic facts and requests from
the reasoning process at the object level (meta-output facts). A target specifies an object-level
output fact a component should derive and an assumption specifies an object-level input fact
that is being assumed by the component. An epistemic fact describes the truth value of an
object-level fact and a request specifies an object-level input fact which must be known by
the module to complete the object-level reasoning process. The initial control status of a
module can be specified by the initial meta-level facts.

At both levels, formulas are all-quantified disjunctions of literals which are written as
implications (if literal-conjunction then literal). Existential quantification is not provided. As
the conclusion of such an implication could be a negated literal the language is not restricted
to Horn logic.8

The logic at the meta level is two-valued. That is, the three-valued logic at the object level has
to be mapped on the two-valued logic at the meta level. Table 1 shows this mapping for the
three standard meta predicates unknown(X), false(X), and true(X).

A transformation has to define the correspondence of the output atoms of one module with
the input atoms of another module. In addition, it is necessary to describe how the truth values
of the atoms are related. The specification of the domain and co-domain of a transformation
are part of the global view and define the connection between modules. The from-type can be
object, epistemic, or request, the to-type can be object, assumption, or target. In total, nine
different variants of transformations can be defined (see Treur, 1992). Each of them fall into
one of the four types of transformation which were mentioned earlier.

1.2.3 The Example in DESIRE

In the following, we use a part of our running diagnosis example. In fact, we refine the
hypothesis generation step following an example given by van Langevelde et al. (1992). The

8. The authors of DESIRE make no precise judgement about the expressive power of their sublanguage of first-
order logic.

Table 1. Truth values of meta level predicates in DESIRE

object-fact unknown(object-fact) false(object-fact) true(object-fact)

unknown true false false

false false true false

true false false true

16

possibility is that a module gets suspended when its reasoning process stops with a request
for additional input facts required to achieve its reasoning goal. The target set2 specifies the
sort of literals which should be derived by the newly activated module N (i.e., it specifies the
goal of the local reasoning process). The two different request types data-driven and goal-
driven are provided. In the former case, the module derives target literals as far as possible
given the available input, and will not generate requests for additional information. In the
latter case, the module poses a request for further input literals if it needs an unknown input
literal during the derivation process of a target literal. DESIRE distinguishes different degrees
of exhaustiveness with respect to the target set. For example: derive the truth value of one
literal of the target set (any); derive the truth value of one literal of the target set which has
not been derived before (any-new); derive the truth values of all literals of the target set for
which it is possible (all-possible); or derive the truth value of all literals of the target set
(every). Before executing the module N, the transformations T1,...,Tn are executed providing
the module N with new input.

1.2.2 The Local View

At the local level, the modules and the transformations have to be specified in more detail.
The specification schema of a reasoning module is given in Figure 10. The signatures of a
module are divided into the input signature, the output signature, and the internal (hidden)
signature of the module. The input and output signatures can be used in the specification of
transformations. The target set specifies the set of atoms one is interested in as result of the

7. Or a list of modules if appropriate.

Meta-level

Object-level

Module M1

Meta-level

Object-level

Module M2

Object interaction

Meta interaction

Meta-level

Object-level

Module M3

Upward reflection

Downward reflection

Fig. 8 The four transformation types in DESIRE.

Fig. 9 The general outline of a control rule in DESIRE.

IF termination(M, target set1, succeeded)
THEN next-module(N, target set2, request type, exhaustiveness)
AND next-pre-trans(T1,...,Tn)

Fig. 10 The specification of a reasoning module in DESIRE.

Module <name> : reasoning
input <signature>
output <signature>
target-sets <list-of-target-set-names>
initial meta-facts

<initial-meta-facts-specification>
internal <signature>
knowledge base

<rules>
endmod

15

about flexible control of object-level inferences whereas languages such as (ML)2 or KARL
define control of object-level inferences by a procedural language. DESIRE also provides a
much more detailed means to express control of the object-level inferences.

1.2.1 The Global View

The definition of the global level includes the decomposition of the entire functionality into
components (i.e., modules), the definition of the dataflows between the modules by means of
transformations, and the global control flow. Recently, hierarchical structuring primitives
were introduced by Brazier et al. (1995b) which enable hierarchical specification of the
decomposition reflecting the hierarchical refinement from tasks into subtasks. Modules,
which correspond to elementary subtasks, and their data and control flows can be grouped
together to form larger components. For reasons of simplicity, we will not discuss this
additional structuring primitive in the paper and refer the reader to Brazier et al. (1995b).

The entire task of a kbs is decomposed into subtasks and each module achieves a subtask of
the complete functionality. Each module has its own information state which can change as
the result of an interaction with another module or as a result of its own activation which may
provide data for another module. DESIRE distinguishes conventional and reasoning modules.
Conventional modules can provide information from the environment (databases, user, etc.)
whereas reasoning modules describe how some output facts can be derived from input facts
by means of a knowledge base. Each reasoning module contains object and meta-level
information. The meta-level can be used to express control over the reasoning process at the
object level.

The dataflow between modules is represented by transformations between modules. DESIRE
distinguishes four main transformation types (cf. Geelen et al., 1991; Treur, 1992) as pictured
in Figure 8:

• Object interaction: Object-level information from module M1 is used as object-level input
for module M2.

• Meta interaction: Meta-level information from module M1 is used as meta-level input for
module M2.

• Upward reflection: Meta-level information from module M2 is used as object-level input
for module M3. Meta-level facts of module M2 are used in module M3 as object-level
facts. Therefore, module M3 reasons about module M2.

• Downward reflection: Object-level information from module M3 is used as meta-level
input for module M2. Object-level conclusions of module M3 are used as meta-level facts
for module M2. Therefore, the results of the reasoning process of M3 are used to control
the reasoning process of module M2.

By using transformations object-meta distinctions between components are made explicit,
allowing an unlimited number of meta-levels to describe the entire system.

The global control flow of the system is specified by supervisor rules which determine the
starting point of the reasoning process (i.e., the module which starts the reasoning process)
and the possible transitions. The basic primitives of the control language are the activation of
a module and preconditions for its activation. The general outline of a control rule is given in
Figure 9. The condition that specifies when a module N has to be activated is described in
terms of the termination status of some other module M.7 If module M has achieved its goal,
specified by the target set1, its termination status is succeeded, otherwise it is failed. A third

14

(1989) and Fuchs (1992) carried out a debate as to whether specification languages should be
operational or not. In the domains of software engineering, information system development,
and knowledge engineering, operational as well as formal specification languages can be
found. This seems therefore to be an open debate. Two major objections to operational
specification languages are:

• The executability restricts the expressive power especially if efficient execution is
required to support prototyping in a meaningful manner.

• Executable specifications can unnecessarily constrain the choice of possible
implementations.

Both of these objections have been experienced during the design of KARL. The logical
language is restricted to Horn logic and the specification of control requires a deterministic
(over-)specification. On the other hand, testing is a powerful tool for evaluating a
specification and neither symbolic execution nor partial verification can deliver the same
support for it. In general, the use of techniques from logic programming, which integrate a
declarative semantics with an operational one, make the distinction between the two types of
specification approaches less sharp.

1.2 DESIRE

DESIRE (van Langevelde et al., 1992; van Langevelde et al., 1993)6 stands for DEsign and
Specification of Interacting REasoning components. Three main principles underlie the
specification of a kbs with DESIRE:

• DESIRE distinguishes a local and a global view in describing a system. A task is
decomposed into several components. Each component defines a local view of the
knowledge. The global view is defined by decomposing the whole system into modules
and by introducing interactions between the modules.

• Another distinction is made between static and dynamic aspects. The specification of the
static aspects covers the data and the knowledge of the system. The specification of its
dynamic aspects covers the dynamic reasoning behavior of the system. DESIRE includes
the specification of control knowledge which guides the reasoning process of the system.

• The third distinction concerns the difference of object-level and meta-level reasoning. At
the object-level, the system reasons about the world state. Knowledge about how to use
this knowledge to guide the reasoning process is specified at the meta-level. The meta-
level reasons about controlling the use of the knowledge specified at the object-level
during the reasoning process. The meta-level describes the dynamic aspects of the object-
level in a declarative fashion.

Important distinctions between DESIRE and the specification languages which were
discussed above are as follows. First, DESIRE does not rely on the KADS model of expertise
as a conceptual framework for specifying the system. Second, DESIRE does not rely on the
distinction of six different model types as is in KADS. Actually, a specification in DESIRE
could also cover the user/system-interaction (Brazier & Treur, 1994), which is described in
the model of communication in KADS. The modularization and interaction concept of
DESIRE can be naturally extended to specify multi-agent systems as described by Brazier et
al. (1995a). Third, DESIRE uses its object/meta-level distinction to specify and to reason

6. A good introduction is provided by Geelen et al. (1991).

13

UPWARD MAPPING
causality(cause:x, effect:y)←

caused-by(cause:x, effect:y).
END;

VIEW Causality
DEFINITIONS

hypothesis

causality

causeeffect
finding

VIEW Finding
UPWARD MAPPING

x ∈ finding← x ∈ input data.
END;

UPWARD MAPPING
preference(low:x, high:y)←

x ∈ hypothesis ∧ x[probability : v] ∈ disease ∧
y ∈ hypothesis ∧ y[probability : w] ∈ disease ∧
v < w.

END;

VIEW Preference
DEFINITIONS

hypothesispreference

high

low

STORE hypothesis
DEFINITIONS

hypothesis

END

INFERENCE ACTION generate

INFERENCE ACTION select

PREMISES finding, causality;
CONCLUSIONS hypothesis;
RULES

x ∈ hypothesis ←
 y ∈ finding ∧
causality(cause:x,effect:y).

END

PREMISES hypothesis, preference;
CONCLUSIONS diagnosis;
RULES

x ∈ not-max-hypothesis ←
 x ∈ hypothesis ∧
y ∈ hypothesis ∧

END

preference(low:x,high:y).

x ∈ diagnosis ←

¬ x ∈ not-max-hypothesis.

DOWNWARD MAPPING
x ∈ output-data ← x ∈ diagnosis.

END;

TERMINATOR diagnosis
DEFINITIONS

diagnosis

Fig. 7 An inference layer in KARL.

x ∈ hypothesis ∧

12

of inference actions. Whereas views and terminators are used to link a domain layer with a
generic inference layer, stores are used to model the dataflow dependencies between
inference actions. The definitions of the inference actions, stores, views, and terminators of
our example are given in Figure 7.

Task layer. KARL uses the logical language Procedural-KARL (KARL), a variant of
dynamic logic, at the task-layer. Therefore, it can be used in a similar way as procedural
programming languages to express control. The primitive programs correspond to calling an
inference action, and atomic formulae indicate whether knowledge roles contain elements of
a given class. Such primitive programs and atomic formulae can be arranged into sequences,
loops, and alternatives. Programs may be combined to named subtasks, similar to procedures
in programming languages. The task layer of our example looks like:

hypothesis := generate(finding); diagnosis := select(hypothesis)

Each inference action defines a function symbol used in assignments. Each store and
terminator is modelled by a (program) variable. The value assignments of the variables are
used to represent the current state of the reasoning process.

1.1.4 Differences between KARL and (ML)2

Two remarks can be made when comparing the conceptual models of (ML)2 and KARL: on
the one hand, KARL provides much stronger support in modelling terminological knowledge
at the domain and inference layers. The KARL model distinguishes values, objects, classes,
attributes with domain and range restrictions, predicates, is-a relationships between classes,
etc. KARL integrates semantic data modelling primitives into a logical framework whereas
(ML)2 provides only the language primitives of first-order logic (i.e., sorts, predicates and
constants) as modelling primitives. On the other hand, KARL does not provide an object-
meta-logic relationship between the logical languages used to describe domain and inference
layers and restricts the logical language to Horn logic (with restricted negation in the body of
Horn clauses).

From a semantical point of view, two main differences arise: KARL uses the minimal model
semantics of logic programming for the domain and inference layers, whereas (ML)2 relies on
the standard model-theoretical semantics of predicate logic. At the task layer, inference
actions are modelled as predicates in (ML)2 and as functions in KARL. In KARL, each
inference action defines a function which is used to interpret a function symbol used in an
assignment in dynamic logic. The execution of an inference action delivers one instantiation
of the predicate in (ML)2 and all “instantiations” in KARL as the complete minimal Herbrand
model of the logical theory describing the inference action and the facts of the input roles is
evaluated. Therefore, there is no non-deterministic choice of one instantiation of the inference
actions and also no history variable in KARL which is necessary in (ML)2 to prevent the
rederivation of “old” values.

“A specification must be operational” (Balzer & Goldman, 1979): KARL is an executable
specification language as the logical language at the domain and inference layers is
restricted to Horn logic (extended by stratified negation) and the dynamic logic at the task
layer is restricted to regular and deterministic programs (cf. Kozen, 1990). For (ML)2, the
evaluation of a specification is possible for the domain and inference layers with theorem-
proving techniques but no support is provided for the overall evaluation including the
specification of the dynamic aspects of the reasoning process at the task layer. Hayes & Jones

11

1.1.3 KARL

The language KARL (Angele et al., 1994; Fensel, 1995) was developed as part of the MIKE
project (Angele et al., 1993) and provides a formal and executable specification language for
the KADS model of expertise by combining two types of logic: Logical-KARL (L-KARL)
and Procedural-KARL (P-KARL). L-KARL, a variant of Frame Logic (Kifer et al., 1993), is
provided to specify domain and inference layers. It combines first-order logic with semantic
data modelling primitives (see Brodie (1984) for an introduction to semantic data models). A
restricted version of dynamic logic is provided by P-KARL to specify a task layer.
Executability is achieved by restricting Frame logic to Horn logic with stratified negation
(Przymusinski, 1988) and by restricting dynamic logic to regular and deterministic programs.
Again, we will discuss the domain, inference, and task layers in KARL.

Domain layer. KARL uses L-KARL to describe the domain layer. It provides predicates,
classes, class hierarchies, single- and set-valued attributes with domain and range restrictions,
and multiple attribute inheritance for modelling terminological domain knowledge. The
derivation of new object denotations can be expressed by functions. The domain layer of our
running example is given in Figure 6. As it is a simple example the domain layer contains
only ground facts and some terminological definitions given by the graphical language of
KARL.

Inference layer. The same language L-KARL as is used at the domain layer is provided for
specifying inference actions and roles at the inference layer. KARL distinguishes three types
of knowledge roles. Views define an upward translation from the domain layer to the
inference layer (giving read-access). Terminators define a downward translation from the
inference layer to the domain layer (giving write-access). Stores provide the input or output

Fig. 5 A task layer in (ML)2.

while more-solution-piagenerate(finding(X),causality(finding(X),hypothesis(Y)),hypothesis(Y))
do give-solution-piagenerate(finding(X),causality(finding(X),hypothesis(Y)),hypothesis(Y)) enddo
give-solution-piaselect(hypothesis(X),preference(Z),diagnosis(X))

disease

E-ID term probability

healthy 0.5

influenza 0.1

pneumonia 0.05

caused-by

effect cause

no-fever healthy

low-fever influenza

low-fever pneumonia

high-fever pneumonia

symptom

E-ID term

no-fever

low-fever

high-fever

input data

E-ID term

low-fever

diseasesymptom probability

Real

effect cause

caused-by

output data

Fig. 6 A domain layer in KARL.

input data

10

inputpreference(Z) =def { pref(hypothesis(X),hypothesis(Y)) |
ask| (domain layer,prefer(X,Y))}

ask∈ (theory,X) is true iff X is an axiom of theory and ask| (theory,X) is true iff X is a logical
consequence of theory. The knowledge role hypothesis does not provide domain knowledge
for the inference actions. It collects the output of the inference action generate and provides it
as an input to the inference action select. This dynamic character of hypothesis makes it
necessary to define the input predicate inputhypothesis at the task layer. The knowledge role
diagnosis is used as an output role only and therefore requires no input predicate.

Task layer. Quantified-dynamic logic is used to specify dynamic control at the task layer.
Every predicate specifying an inference action at the inference layer together with the test
operator ? is regarded as an elementary program statement and the knowledge roles are used
as input and output parameters of such programs. For every such elementary program a
history variable is defined which stores the input-output pairs for every execution step.

The key idea is to non-deterministically choose a value binding of a logical variable by the
test operator and store this value in a state variable.

Four types of task-layer operations are available for each inference action piai: checking
whether an instantiation exists, checking whether an instantiation has already been computed,
checking whether more instantiations exist, and actually computing and storing a new
instantiation:

has-solution-piai (I,O) =def piai(I,O)

old-solution-piai (I,O) =def ((I,O) ∈)

more-solution-piai(I,O) =def (has-solution-piai(I,O) ∧ ¬old-solution-piai(I,O))

The important program is give-solution-piai which gives one possible solution:

give-solution-piai (I,O) =def (more-solution-piai(I,O)?; := <(I,O) | >

Note that old-solution-piai versus is an administration for the non-deterministic
execution of give-solution-piai necessary to ensure the derivation of new instantiations of the
predicate.

These primitive programs and predicates can be combined using sequential composition,
non-deterministic iteration and non-deterministic choice. These combinations are rich enough
to model more standard constructions like deterministic iteration and conditional statements.

For our example, we have to define the input predicate inputhypothesis and the control flow
between the inference actions. The knowledge role hypothesis collects the output of the
inference action generate and provides it as input to the inference action select. The following
definition of the input predicate is the way in which (ML)2 can be used to define dataflow
between inferences.

inputhypothesis(X) =def ∃ I1,I2 with (I1,I2,X) ∈

The task layer of our example is given in Figure 5.

V piai

V piai

V piai
V piai

V piai

V piagenerate

9

In Figure 4, we introduce the lift definitions for the knowledge roles preference, hypothesis
and diagnosis.5 The knowledge role preference is connected to the domain layer as it
provides domain knowledge for the reasoning process. On the other hand, the knowledge role
hypothesis collects intermediate results from the problem-solving process and provides it for
another inference action. As it obtains its contents from an inference action it does not require
mapping definitions which would connect it to the domain layer. The knowledge role
diagnosis collects the results of the problem-solving process and has no connection to the
domain layer either.

The input predicates used in the definition of the inference action piagenerate and piaselect have
not yet been defined. For this purpose, reflection rules are provided which connect truth in
object- and meta-logic.

inputfinding(finding(X)) =def ask∈ (domain layer,finding(X))
inputcausality(causality(X,Y)) =def ask∈ (domain layer,causality(X,Y))

5. For the sake of limited space we skip the lift definitions of finding and causality.

Fig. 3 Inference actions in (ML)2.

theory select
input roles hypothesis, preference;
output roles diagnosis;
signature

predicates piaselect;
variables X, Y, Z;

axioms
piaselect(hypothesis(X), preference(Z), diagnosis(X)) ←

inputhypothesis(hypothesis(X)) ∧
inputpreference(preference(Z)) ∧
¬ (∃ Y : inputhypothesis(hypothesis(Y)) ∧ pref(hypothesis(Y),hypothesis(X)) ∈ Z)

endtheory

Fig. 4 Connecting domain and inference layers in (ML)2.

lift-definition preference
from domain layer;
to select;
signature

sorts boolean; quoted-term
constants “X”, “Y”;
functions preference: (quoted-term , quoted-term) → boolean;

mapping
lift(domain layer,prefer(X,Y)) → pref(“X”, “Y”);

end lift-definition

lift-definition hypothesis
to generate, select;
signature

sorts boolean; term;
functions hypothesis: term → boolean;

end lift-definition

lift-definition diagnosis
to select;
signature

sorts boolean; term;
functions diagnosis: term → boolean;

end lift-definition

8

relationships. The specification of a domain layer can be divided into several modules. Such a
module or theory defines a signature (i.e., sorts, constants, functions, and predicates) and
defines axioms (i.e., logical formulae). These modules, i.e. subtheories, can be combined by a
union operator. In the following, we define the domain layer for our running example. For
simplicity, we define the entire domain layer in one module; see Figure 2.

Inference layer. In (ML)2 every inference action and every knowledge role is described by a
theory similar to domain layer theories. An inference action (called primitive inference action
in (ML)2) is described by a predicate and a logical theory. The inference actions generate and
select are modelled by two predicates:

piagenerate(finding(X), causality(finding(X),hypothesis(Y)), hypothesis(Y))
piaselect(hypothesis(X), preference(Z), diagnosis(Y))

The description of the inference action select is given in Figure 3. (ML)2 also uses order-
sorted logic at this layer, but we leave out the sorts in Figure 3 for brevity.

The inference layer is modelled as a meta-language of the domain layer. This meta-relation
allows the inference-layer to specify properties of relations over domain-layer formulae
without resorting to second-order logic. Object- and meta-language are connected by a
naming relation and reflection rules. At the inference layer a lift operation is defined for every
knowledge role which is connected to the domain layer. The lift operator defines a naming
relation by mapping expressions of the domain layer to variable-free terms at the inference
layer. This lift-operator is defined as a system of rewrite rules that translate domain-layer
sentences into inference-layer terms.

Fig. 2 A domain layer in (ML)2.

theory domain layer
signature

sorts symptom, disease, real;
constants

no-fever, low-fever, high-fever : symptom;
healthy, influenza, pneumonia : disease;
0.5,0.1,0.05 : real;

functions probability : disease → real;
predicates

= : (real,real); > : (real,real);
caused-by : (symptom,disease);
prefer : (disease,disease);
actual-symptoms : symptom;

variables X1, X2 : disease; Y1, Y2 : real;
axioms

actual-symptoms(low-fever);
caused-by(no-fever,healthy);
caused-by(low-fever,influenza);
caused-by(low-fever,pneumonia);
caused-by(high-fever,pneumonia);
=(probability(healthy),0.5);
=(probability(influenza),0.1);
=(probability(pneumonia),0.05);
prefer(X1,X2) ← =(probability(X1),Y1) ∧ =(probability(X2),Y2) ∧ Y1 > Y2;

endtheory

7

different specification approaches.4

The main point of a model of expertise is the separation of domain knowledge and control
knowledge. The domain layer contains the static knowledge from the application domain and
its terminology. The inference and task layers describe the dynamic reasoning process of the
system. The inference layer defines the elementary inference steps, the relations between
them, and the role of the domain knowledge for the reasoning process. In our example, the
causal relationship is used by the generate inference step and the knowledge about
probabilities is used by the select step. The description at the task layer completes the
definition of the dynamics by defining control over the execution of the inference steps. The
inference layer can be viewed as defining the vocabulary to express the control at the task
layer. The distinction between the domain-specific knowledge and the domain-independent
description of the reasoning process enables the reuse of domain knowledge for different task
and reasoning strategies and the reuse of reasoning strategies (called problem-solving
methods) in different domains. For instance, the problem-solving method in Figure 1 (i.e., the
inference and task layers) can be applied in medical or technical application areas. In contrast
to general-purpose methods like generate-and-test or search strategies like hill climbing,
beam search, or chronological backtracking, such a problem-solving method is restricted to a
specific type of problems (i.e., to a specific task). A library of reusable problem-solving
methods is provided by Breuker & van de Velde (1994). Large-scale reuse of domain
knowledge is studied in the KAKTUS project (cf. Wielinga & Schreiber, 1994; Schreiber et
al., 1995).

Without using formal specification languages, the semantics of the elementary elements of a
model of expertise have to be defined by using natural language. KARL and (ML)2 have been
developed to formalize these elementary elements.

1.1.2 (ML)2

The language (ML)2 (van Harmelen & Balder, 1992) provides a formal specification
language for the KADS model of expertise by combining three types of logic: order-sorted
first-order logic extended by modularization for specifying the domain layer, first-order
meta-logic for specifying the inference layer, and quantified dynamic logic (Harel, 1984),
which was originally developed for the verification of procedural programs, for specifying
the task layer. In the following, we discuss domain, inference, and task layers of a model in
(ML)2.

Domain layer. The sublanguage of (ML)2 used to model a domain layer is order-sorted first-
order logic extended by modularisation. Instances are modelled by constants, and sorts can be
used to model classes of such constants. Sorts can be arranged in an is-a hierarchy.
Relationships between concepts are modelled by predicates of the according sorts. Attributes
of concepts are modelled by functions. Arbitrary first-order theories can be used to specify

4. A further simplification is that we regard only a priori probabilities for the diagnoses. Therefore, we do not
have to specify any probabilistic inferences. The definition of an appropriate calculus for probabilities is not at
all an implementational detail which could be skipped during knowledge acquisition. Each of these existing
calculi make specific assumptions about the domain and the task of the kbs. The specification of the appropriate
calculi is therefore part of the knowledge acquisition process. None of the knowledge specification languages
provides a built-in calculi for probabilities as there exists no golden standard for them. However, each of the
languages provides language primitives which enable the specification of an inference calculus for probabilities
according to a given domain and task.

6

define the role of the domain knowledge in the reasoning process. The dynamic roles are
used to refer to intermediate results of the problem-solving process. The inference
structure connects inference actions and roles and defines the dependencies between
these elements.

• The task layer defines the goals of the reasoning process and the way to achieve the goals.
It defines control over the execution of inference actions.

We use a small diagnostic example to illustrate the model of expertise. The domain layer
provides causal knowledge which can be used to relate findings to diagnoses and knowledge
which can be used to assign preferences to possible diagnoses. The task of the kbs consists of
finding the diagnosis with the highest probability for a given set of symptoms. The inference
layer consists of two inference actions:

• generate, creating possible hypotheses based on the given findings and the causal
relationships at the domain layer.

• select, assigning a preference to hypotheses and selecting the diagnosis with the highest
preference.

A simple control flow is defined by first executing the inference generate and then applying
the inference select on its output. generate derives all possible hypotheses which could
explain the findings and select chooses the hypothesis with the highest preference (i.e.,
highest probability). The complete model is given in Figure 1. It is clear that such an
exhaustive search could not normally be done for realistic domains. But we tried to keep the
example as simple as possible and we will use it during the entire paper to illustrate the

symptom disease

caused-by probability

[0,1]

finding generate hypothesis select

preferencecausality

diagnosis

Domain Layer

Inference Layer

hypothesis := generate(finding, causality);
diagnosis := select(hypothesis, preference)

Task Layer

Goal: Find the diagnosis that explains the reported findings
and that has the highest preference.
Body:

Fig. 1 A model of expertise for a simplified diagnostic task.

5

Harmelen & Balder, 1992), which was developed as part of the KADS projects (Wielinga et
al., 1992; Schreiber et al., 1993 & 1994), and KARL (Angele et al., 1994; Fensel, 1995),
which can be viewed as the executable part of (ML)2. (ML)2 is a formalization language for
KADS models of expertise. Its expressive power (full first-order logic) is beyond the scope of
computational functions. KARL is an operational language which restricts the expressive
power by using a variant of Horn logic. By comparing both languages we can point out some
significant differences when aiming at formal or operational specification languages. As the
significant property of all of the KADS oriented languages is the use of the KADS model of
expertise as a conceptual framework for specifying a system, we also have to introduce this
model and its underlying philosophy.

The language DESIRE (van Langevelde et al., 1992 & 1993) is discussed as an example from
languages which rely on a different conceptual model for describing a kbs: the notion of a
compositional architecture. A kbs is decomposed into several interacting components. Each
component contains a piece of knowledge at its object-layer and its own control defined at its
internal meta-layer. The interaction between components is represented by transactions and
the control flow between these modules is defined by a set of control rules. As will be shown
later, the interaction with the user of a kbs can easily be integrated into its specification (by an
additional module). In contrast, languages like (ML)2 specify only the reasoning process of
the kbs but not its interaction with the environment as this aspect is not regarded in the KADS
model of expertise.

Common to all approaches is that a specification of a kbs has to cover three aspects: the
specification of static aspects of a kbs, the specification of the dynamic aspects of a kbs (i.e.,
its reasoning), and the combination of both.

1.1 KADS Oriented Languages

In the following, we first introduce the KADS oriented point of view in knowledge
engineering. Then, the formalization and operationalization languages (ML)2 and KARL for
KADS models of expertise are described. Finally, we briefly compare both languages.

1.1.1 Knowledge Level Modelling of Knowledge-Based Systems

A collection of models was developed in the CommonKADS project (Schreiber et al., 1994)
to cover the different aspects of a kbs. The organisation model describes the main features of
an organisation in which the kbs should be used. The task model describes the set of tasks
which are performed by the organisation. The agent model describes the different agents
which execute these tasks including the kbs, its environment, the user, etc. The specification
of the interaction of the user with the kbs is given in the communication model. The design
model describes the architecture of the implementation which realizes the kbs. The model of
expertise is particularly significant for describing a kbs as it describes the different types of
knowledge required by the kbs as well as the role of this knowledge in the reasoning process
of the kbs. This last model distinguishes three different types of knowledge:

• The domain layer provides the domain-specific knowledge necessary for defining the task
and for realizing the different inference steps of the problem-solving process.

• The inference layer defines the reasoning process of the kbs. It consists of inference
actions, (static and dynamic) knowledge roles, and an inference structure. The inference
actions define the elementary inference steps of the reasoning process. The static roles

4

the required knowledge. A symbol level description corresponds to a design specification or
implementation. Distinguishing between the knowledge and the symbol levels therefore
reflects the distinction of specification and design/implementation in software engineering. In
software engineering, the distinction between a functional specification and the design/
implementation of a system is often discussed as a separation of what and how.

“The generation of system-level requirements is, to the extent possible, a pure what,
addressing the desired characteristics of the complete system. The next steps,
determining the next level of the hierarchy and allocating system requirements to the
elements, are in fact a how.” (Dorfman, 1990)

During the specification phase, what the system should do is established in interaction with
the users. How the system has to do its tasks is defined during design and implementation
(i.e., which algorithmic solution can be applied). This separation—even in the domain of
software engineering this separation is often not practicable—does not work in the same way
in the domain of knowledge-based systems, because a high amount of the problem-solving
knowledge, i.e. knowledge about how to meet the requirements, is not a question of efficient
algorithms and data structures, but exists as domain-specific and task-specific heuristics as a
result of the experience of an expert. For many problems which are completely specifiable it
is not possible to find an efficient algorithmic solution. Problems in diagnosis or design are
easy to specify but it is not necessarily possible to derive an efficient algorithm from these
specifications; domain-specific heuristics or domain-specific inference knowledge is needed
for the efficient derivation of a solution. “In simple terms this means analysis is not simply
interested in what happens, as in conventional systems, but also with how and why”
(Brooking, 1986). One must not only acquire knowledge about what a solution for a given
problem is, but also knowledge about how to derive such a solution in an efficient manner.

As a consequence the problem arises of distinguishing the two different kinds knowledge of
how to solve a problem in knowledge engineering (KE). “There is a difference between what
we would call respectively knowledge-level control and symbol-level control” (Schreiber,
1992). At the knowledge level there is a description of the domain knowledge and the
problem-solving method which is required by an agent to solve the problem effectively and
efficiently. This knowledge must already be modelled during the specification phase. At the
symbol level there is a description of efficient algorithmic solutions and data structures for
implementing an efficient computer program (i.e., a very specific agent). As in software
engineering, this type of knowledge can be added during the design and implementation of
the system. Therefore, a fourth requirement for languages specifying kbs is:

(iv) A language must combine non-functional and functional specification techniques: On
the one hand, it must be possible to express algorithmic control over the execution of
substeps. On the other hand, it must be possible to characterize substeps only
functionally without making commitments to their algorithmic realization.

During the last years a number of formal or executable specification languages have been
developed for describing a kbs at the “knowledge level”. The majority of the specification
languages for kbs are based on the KADS model of expertise (see Wielinga et al., 1992;
Schreiber et al., 1993) or define their conceptual model as a modification of it. As a detailed
discussion and comparison of KADS oriented languages has already be provided by Fensel &
van Harmelen (1994), we choose only prototypical approaches of this group to illustrate the
significant features of these languages. In fact, we have chosen the languages (ML)2 (van

3

Firstly, it should provide a framework for applying general results achieved in SE for the
specification of kbs. It should prevent the KE field from developing things a second time.
Secondly, it should enable the possibility to generalize results achieved for specifying kbs to
other types of systems which share similarities with kbs. Thirdly, the relationships between
formal methods in both communities become even more important when integrated systems
need to be specified. The integration of knowledge-based subcomponents into conventional
software systems arises as a necessity when such components are applied in real-world
environments.

Two limitations of our paper have to be mentioned. Firstly, we look at SE and KE as
academic disciplines. That is, we discuss languages which are mentioned in the scientific
literature. In the case of SE, most of the languages which we will discuss can report a number
of applications. In the case of KE, there are as yet only very few applications of formal
specification methods outside the academic world. Secondly, we focus our attention on
specification languages. A different issue would be to compare methods or methodologies for
the formal specification of systems. Methodological aspects like the combination of
conceptual modelling techniques with formal specification techniques or formal support in
deriving correct implementations from specifications are discussed only if they appear as
features of these languages.

The contents of the paper is organized as follows. Section 1 introduces the main
characteristics of specification languages for kbs. We have chosen the formal specification
language (ML)2 and the executable specification language KARL which both rely on the
same semiformal specification technique—the KADS model of expertise—as a conceptual
model to describe a kbs. These languages are contrasted with DESIRE which describes a kbs
as a set of components (i.e., modules) with internal object/meta-level distinction and global
control. Section 2 discusses specification languages originating from software engineering.
From the overwhelming amount of work we have chosen traditional approaches from the
property-oriented stream (i.e., functional specifications based on algebraic techniques) as
well as from the model-oriented stream (i.e., VDM and Z). In addition, we discuss a more
recent approach using algebraic specification techniques to describe a software system in an
operational manner (i.e., Evolving Algebras). Structured analysis is used as an example of a
semiformal specification technique in software engineering. Finally, in section 3 an overall
comparison of these languages is made along criteria which are relevant in the context of
specifying kbs.

1 Specification Languages in Knowledge Engineering

The knowledge level “is characterized by knowledge as the medium and the principle of
rationality as the law of behavior.” (Newell, 1982)

At the knowledge level, the knowledge required by a kbs to solve its task in an efficient
manner is described in an implementation-independent manner. It is described in terms of
goals, operations, and knowledge about the relationships of goals and operations. At the
symbol level, a specific computational agent is implemented which carries out the problem-
solving process by means of a computer program. In terms of software engineering: a
knowledge level description is a specification of the functionality of the desired system and

2

developed which intend to improve the development process of software as well as the
quality of its result. Most of these specification languages focus on a functional specification
of the software artefact. That is, they specify what a software artefact must do without
determining the way this functionality should be achieved, i.e. realized. A main concern of
these languages is the development of correct software. Specifications define proof
obligations for the specifier and later on for the programmer of the software. Program
transformation calculi as in Bauer et al. (1987) or data reification and operation
decomposition techniques as in Bicarregui et al. (1994) support the development of correct
software from and in accordance with a formal specification.

A difference between these approaches and knowledge specification languages results from
the fact that the latter do not aim at a pure functional specification. Specification languages
from knowledge engineering also specify control over the use of the knowledge during the
reasoning process. That is, they specify the way the functionality is achieved. In general, such
differences are not surprising. As knowledge specification languages are restricted to a
specific type of system we should expect specific features of these languages which
distinguish them from “general purpose” languages in software engineering. The latter, after
all, must cover a much broader collection of software artefacts. We will see that knowledge
specification languages make much more use of conceptual models in describing a system.
These models distinguish different types of knowledge and define object/meta-level
relationships between them. The applicability of such conceptual models is gained by
restricting the scope of the languages to a specific type of system. Specific aspects of kbs
which result in specific requirements for specification languages are:3

(i) The separation of knowledge and control: The original production rule paradigm
enabled the declarative specification of knowledge by a set of production rules. The
dynamics of the reasoning process was provided by an inference engine using generic
inference strategies as forward or backward chaining. Classical examples of this type of
system are MYCIN (Clancey, 1987) and XCON (McDermott, 1982). A new level of
defining control independently of the domain knowledge was reached by developing
task-specific shells or so-called role-limiting methods (Chandrasekaran, 1986; Marcus,
1988). These shells fix a task-specific problem-solving strategy and distinguish the
different types of domain knowledge required for it. Meanwhile, a collection of such
task-specific problem-solving methods exists (see Breuker & van de Velde, 1994) which
can be used to specify the reasoning process of a kbs independently from the domain
knowledge.

(ii) The generic specification of problem-solving methods: The separation of knowledge
and the control of the reasoning process using this knowledge enable the generic
specification of this control knowledge. As a consequence two types of software reuse
become possible: the problem-solving methods can be applied in different domains and
the domain knowledge can be used by different methods.

(iii) Object-meta relationship between domain knowledge and inference processes: A
problem-solving method defines and controls the use of domain knowledge for the
inference process. It is therefore a meta-level description of the object-level knowledge.
Most knowledge specification languages therefore provide a meta-level architecture to
describe a kbs.

The discussion of the relationships between formal methods in KE and SE has three goals.

3. A fourth requirement will be given subsequently.

1

Formal Specification Languages in Knowledge and Software
Engineering

Dieter Fensel
University of Amsterdam, Department SWI, Roetersstraat 15, 1018 WB Amsterdam, the Netherlands.

E-mail: fensel@swi.psy.uva.nl

Abstract During the last years, a number of formal specification languages for knowledge-based
systems (kbs) have been developed. Characteristics of such systems are a complex knowledge
base and an inference engine which uses this knowledge to solve a given problem. Languages for
kbs have to cover both these aspects. They have to provide a means to specify a complex and large
amount of knowledge and they have to provide a means to specify the dynamic reasoning
behavior of a kbs. Nevertheless, kbs are just a specific type of software system. Therefore it seems
quite natural to compare formal languages for specifying kbs with formal languages which were
developed by the software engineering community for specifying software systems. That is the
subject of this paper.

Introduction

Over the last few years a number of semiformal, formal, and executable specification
languages1 have been developed for describing knowledge-based systems (kbs). These
specification languages can be used to specify the knowledge which is required by the system
as well as the reasoning process which uses this knowledge in order to solve the task which is
assigned to the system. On the one hand, these languages should enable a specification which
abstracts from implementation details. On the other hand, they should enable a detailed and
precise specification of a kbs at a level which is beyond the scope of specifications in natural
language. Surveys of these languages can be found in Treur & Wetter (1993) and Fensel &
van Harmelen (1994). A short description of their history and usefulness is included in this
issue (van Harmelen & Fensel, 1995).2 The main purpose of this paper is not to provide a
further survey of these languages. Instead, we compare this body of work with results
achieved by the software engineering community. As kbs are a specific type of software
artefact we should expect significant similarities between formal specification languages
developed in knowledge engineering (KE) and in software engineering (SE). Therefore it is
not an unreasonable idea to look at work which is done in the area of software engineering.
The development of formal, executable, and semiformal specification languages has an
almost twenty-five year tradition in SE and has led to a multitude of languages. In reaction to
the software crisis from the late sixties a large number of formal specification languages were

1. An informal specification technique uses any natural language texts and arbitrary pictures. A semi-formal specification
technique has a defined syntax, a number of predefined primitives, and allows the use of natural language in a limited
manner. A formal specification technique has a semantics which is defined in a mathematical formalism. This semantics can
be nonconstructive, that means it is not necessary that it is always computable. Still, it provides a precise formalism for
specifying software and it can also be used to prove properties of such a specification. An executable specification technique
has a constructive semantics which should be implemented to provide testing as a means of evaluating a specification.

2. See also ftp://swi.psy.uva.nl/pub/keml/keml.html at the World Wide Web.

In: The Knowledge Engineering Review, 10(4), 1995.

