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← readable(α)<*-0.5>
(7)

(8)
(9)

readable(α)<<{*0.5,1}>>←

FAIL

(8) (7)

← reads(R,α)<1>,

❒

(4)

reads(R,α)<1>,comp(R,α)<-1>,

(9)

comp(R1,α)<-1>,
reads(R2,α)<-1>,
comp(R2,α)<1>,

(9)
µ=0.5

(1)

(5)

(6)

FAIL
← reads(R,α)<-1>,

comp(R,α)<1>,
reads(R1,α)<0.5>,
reads(R2,α)<0.5>,
\=(R1,R2)

←reads(R1,α)<0.5>,
reads(R2,α)<0.5>,
\=(R1,R2)

readable(α)<<{-1}>> ←
reads(R,α)<-1>,comp(R,α)<1>

...

...{*0.5,1} ∩↑-1 = ∅

(↑*-0.5)c∩↑1 ={*0.5,1} (↑*-0.5)c∩↑−1 ={-1}

{−1} ∩↑0.5 = ∅

(1) comp(r,α)<1>
(2) comp(s,α)<-1>
(3) comp(t,α)<0.5>
(4) reads(r,α)<-1>
(5) reads(s,α)<0.5>
(6) reads(t,α)<0.5>
(7) readable(X)<1>← reads(R,X)<1>,comp(R,X)<-1>
(8) readable(X)<-1>← reads(R,X)<1>,comp(R,X)<1>
(9) readable(X)<µ> ←

reads(R1,X)<µ>, reads(R2,X)<µ>, \=(R1,R2)



ii) Let P<ν> ← P1<ν1>,...,Pm<νm> be a program clause that doesn’t share any variables with
the proof query  Q<<σ>>← Q1<µ1>,...,Qn<µn>  and P and Q are unifiable via mguΘ.
• If σ ∩ (↑ν) =∅, the query← (Q1<µ1>,...,Qn<µn>, P1<ν1>,...,Pn<νm>) Θ
 is the R&R-resolvent of the given program clause and the proof query.

• If σ ∩(↑ν) = τ ≠ ∅, the proof  query
(Q<<τ>> ← Q1<µ1>,...,Qn<µn>, P1<ν1>,...,Pm<νm>) Θ
is the R&R-resolvent of the given program clause and the proof query.

The complement of an upset must not to be confused with a "downset"↓µ :={δ ∈ ∆ ; µ ≥ δ}. The
above definition is a generalization of regularity as given in [Hähnle, 95] for totally ordered sets
to lattice orderings.
The completeness of R&R-resolution for distributive truth value spaces that fulfill the descending
chain condition follows from the results of [Lu, Murray and Rosenthal, 93] and is shown in
[Messing, 95]. The notation R&R-resolution is a shortcut for "resolution and reduction": R&R-
resolution performs annotated resolution and reduction. In [Lu, Murray and Rosenthal, 93] it has
been shown how both of them can be subsumed to signed resolution.
R&R-resolution allows to build proof trees likely to SLD-resolution. In figure 4 we show the
proof tree for the query←readable(α)<*-0.5>  of the above example.
There are different possibilities to instantiateµ in (9). In the successful path in the proof tree it is
the least element such that the intersection is empty.

 4.2  REGULA

We have developed the program REGULA that performs R&R - resolution [Stackelberg, 95].
REGULA contains already some strategies to restrict the search space, which can be enormous
especially if variables and functions are involved. REGULA then uses so-called minimal
valuations, that is, the variables of a program clause are instantiated with minimal values wrt the
query.
For example, in figure 4, when resolvingreadable(α)<|{-1}|> ← reads(R,α)<-1>,comp(R,α)<1>
with clause (9),µ=0.5 is the minimal value to get{−1}∩↑0.5 = ∅. This can be generalized to the
case that functions occur as sign in a query. On the other hand, if queries contain, say, "both" of
FOUR, this value is decomposed to "true" and "false" and then both queries are processed.

5   Related Work, Conclusion, and Outlook

In [Dubois and Prade, 94], defaults of the form p→q are encoded in a possibilistic framework as a
rule (p→q, α) which reads, roughly speaking, as "p∧q is with a valueα more possible than
p∧¬q ". The rules for evidential reasoning [Baldwin87]: P← P1,...,Pn<µ> and other approaches
of uncertainty reasoning have the same form.
The essential difference annotated/signed logics make is that the value is attached to each single
literal and not to a rule. This is a more general approach and enables us to express more detailed
information.
In [Leach and Lu, 94] ca-resolution is developed for annotated programs. The authors use
constraints to produce regular proofs (and therefore can profit from constraint logic programming
techniques). But processing the query from left to right causes incompleteness in ca-resolution.
R&R-resolution is in this respect more close to SLD-resolution.
In this contribution we have shown how knowledge can be expressed in many-valued Horn
clauses and proposed our proof procedure R&R-resolution. This opens up prospects for various
applications.



Definition 3.4  T(I,I)

The bilattice T(I,I) consists of pairs (x,y) where x, y∈ I = [0,1] and
(x,y)≤k (x',y') : ⇔ x ≤ x' ∧ y ≤ y‘,
(x,y)≤t (x',y') : ⇔ x ≤ x' ∧ y‘ ≤ y,
¬(x,y) = (y,x).

The elements of T(I,I) are pairs (X,Y) that can be taken as two-dimensional truth values: X refers
to what is evidential for a fact, Y to what is against.
Now, returning to the example, a model has to evaluate readable(α) to *-0.5 or a k-greater value
so we can conclude from the result that there are divergent opinions about the readability of the
paper.

 figure 3. T(I,I) and finite subsets

Another remark on T(I,I): It has been proposed to use a pair (X,Y) with X being thenecessity and
Y being thepossibility of a fact [Baldwin, 87, Zhang, 92]. This interpretation can be transformed
to the above given if we take into consideration thatA is possible as far asnot A is necessary.

4   R&R-Resolution: A proof procedure for many-valued Horn clauses

R&R-resolution is essentially based on signed resolution. Asigned clause has the form
{S1:A1,...,Sn:An}, whereS1,...,Sn are subsets of an arbitrary set∆ of truth values andA1..., An are
first-order atomic formulas. Signed resolution forms the intersection of the signs: For example, if
∆ = [0,1], the signed resolvent of{[0,0.7]:A, [0,0.5]:B} and{[0.5,1]:A, [0.4,1]:C} is {[0.5,0.7]:A,
[0,0.5]:B, [0.4,1]:C}. Many-valued Horn clauses are special cases of signed clauses if the signs in
many-valued clauses are taken as so-called upsets in an partially ordered truth value space.
Definition 4.1  R&R - Resolution

Let (P , ∆) be a many-valued program. A clause← Q1<µ1>,...,Qn<µn> is called aquery.
A clauseQ<<σ>> ←  Q1<µ1>,...,Qn<µn>, whereσ is anarbitrary set of truth values is called a
proof query.

↑µ :={δ ∈ ∆ ; µ ≤ δ} is called theupset of µ. Mc denotes the complement of a set M.

i) Let P<ν> ← P1<ν1>,...,Pm<νm> be a program clause that doesn’t share any variables with
the query← Q1<µ1>,...,Qn<µn> and P and Q1 are unifiable via mguΘ.
• If (↑ν) ∩ (↑µ1)c =∅, the query(←Q2<µ2>,...,Qn<µn>,P1<ν1>,...,Pm<νm>) Θ
is the R&R-resolvent of the given program clause and the query.

• If (↑ν) ∩(↑µ1)c =  σ ≠ ∅, the proof  query
(Q1<<σ>> ← Q2<µ2>,...,Qn<µn>, P1<ν1>,...,Pm<νm>) Θ is the R&R-resolvent of the given
program clause and the query.
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I2 is a model of the program. For example, I2 (bavarian(peter))=1 ≥k 1 and
I2 (drinks_beer(peter)) = 1≥k 0.5, so clause (1) is satisfied for X =peter.
Interpretations that map every instance to the top element of the truth value space are always
models. On the other hand, if any head of the program clauses has the form L<⊥>, every
interpretation is a model.
Many-valued Horn clauses can be treated similar to usual Horn clause programs, especially if the
truth value space is finite. In the following we give a more detailed example.

 3.3  A Second Example
Suppose a program committee has to decide about the acceptance or rejection of papers. There
are three referees for a paper; they have different foreknowledge, so they assess their competence
with five values between -1 and 1 (ordered in the usual way and therefore forming a complete
lattice). The program committee has some guidelines for the decision about the contributions.
Suppose it has to judge about readability then it could use rules like
• A paper is readable, if someone not familiar with the topic finds it easy to read.
• A paper is not readable, if someone familiar with the topic finds it hard to read.
• In other cases, agreements of referees are decisive.

In many-valued Horn clauses, these rules read as follows:
A paper X is readable, if someone not familiar with the topic finds it easy to read.

readable(X)<1>← reads(R,X)<1>,comp(R,X)<-1>
A paper X is not readable, if someone familiar with the topic finds it hard to read.

readable(X)<-1>← reads(R,X)<-1>,comp(R,X)<1>
In other cases, agreements of referees are decisive.

readable(X)<µ> ← reads(R1,X)<µ>, reads(R2,X)<µ>, \=(R1,R2)
Here \= is (as usual) a binary built-in predicate that is satisfied if the arguments are not equal.
Together with the statements of three referees r, s, t concerning the paper α and competence
factors we get the following program:

(1) comp(r,α)<1>
(2) comp(s,α)<-1>
(3) comp(t,α)<0.5>
(4) reads(r,α)<-1>
(5) reads(s,α)<0.5>
(6) reads(t,α)<0.5>
(7) readable(X)<1>← reads(R,X)<1>,comp(R,X)<-1>
(8) readable(X)<-1>← reads(R,X)<-1>,comp(R,X)<1>
(9) readable(X)<µ> ← reads(R1,X)<µ>, reads(R2,X)<µ>, \=(R1,R2)

Now, what about the readability ofα? From (1), (4) and (8) it follows
readable(α)<-1>.

From (5), (6) and (9) it follows
readable(α)<0.5>

A model of this program (if based on [-1, -0.5, 0, 0.5, 1]) would map readable(α) to 0.5 or a
greater value. This is not very intuitive. The disagreement between the referees is neglected.
The above values can be taken as the nodes of the lower edges in the lattice NINE shown in figure
3. NINE can be taken as a finite subset of the bilattice T(I,I) (we changed the notation of the
elements just for simplicity):



3   Many-valued Horn Clauses

We do not concentrate on technical details but try to make things clear by some examples. We
assume a first-order language as usual.

Definition 3.1  Many-valued Horn Clauses, semantics

Many-valued Horn clauses are rules P<µ> ← P1<µ1>,...,Pn<µn>, where P, P1,...,Pn are first-
order literals,µ, µ1,...,µn are elements of a complete lattice∆ of truth values, or variables, or
terms. A set of many-valued Horn clauses is calledmany-valued program, denoted by (P, ∆).
An interpretation I from the ground atoms to∆ satisfies a signed ground atom P<µ> (P being
ground,µ an element of the truth value space) iff I(P) ≥ µ. An interpretation is amodel of a
clause P<µ> ← P1<µ1>,...,Pn<µn> iff I(P1) ≥ µ1,..., I(Pn) ≥ µn implies I(P) ≥ µ. An interpreta-
tion is amodel of a program iff I is a model of each clause.

 3.2  Example
For example, consider the program
(1) drinks_beer(X)<0.5> ← bavarian(X)<1>
(2) drinks_beer(X)<−0.5>←taxidriver(X)<1>
(3) bavarian(peter)<1>←
(4) bavarian(lucy)<1>←
(5) taxidriver(lucy)<1>←
where the truth values are the elements of D1 as lattice wrt the k-ordering.
Consider the interpretations I1, I2 listed in the following table:

I1 is not a model of the program because I1(taxi-driver(peter))= ±1 ≥k1 but
I1(drinks_beer(peter)) = 0.5 and 0.5≥k -0.5 does not hold, so clause (2) is not satisfied.

J1 J2 J3 J4

v(F1,Ji) 0.5 0 1 -1

v(F2,Ji) 0.5 0.5 1 1

v(F3,Ji) 0.5 0.5 -1 0.5

Σ 1.5 1 1 0.5

⊕ 0.5 0.5 ±1 ±1

φ 0.37 0.25 1 0.5

I1 I2 I1 I2

bavarian(peter) 1 1 taxi-driver(lucy) 1 1

bavarian(lucy) 1 1 drinks_beer(peter) 0.5 1

taxi-driver(peter) ±1 0 drinks_beer(lucy) -0.5 ±0.5



The partial orderings induced by∧, ∨, ⊗, ⊕ we denote as follows:
x ≤k y :⇔ x ⊗ y = x (and hence x⊕ y = y), x≤t y :⇔ x ∧ y = x (and hence x∨ y = y).

In a bilattice, the truth values differ in their degree of truth ("true" is "more true" than "false") and
in their degree of knowledge (to know that a fact is "false" is more information than to know that
it is "default-true"). The smallest non-trivial bilattice is the well-known lattice of four-valued
logic FOUR, first introduced by Belnap [Belnap, 77].⊗ has been called consensus-operator,⊕
gullible-operator [Fitting, 91]. These operators match two values wrt their degree of information.
The values of example 2.1 can be structured in D1, (the reader who is familiar with bilattices will
realize the bilattice of default reasoning).

 figure 2. Bilattices

The k-height in a bilattice measures the degree of information by a numerical value. We‘ll apply it
in the following example.

Definition 2.3  Height

LetB = (B, ∧, ∨, ⊗, ⊕, ¬) be a bilattice with bottom element⊥ and top elementT wrt ≤k, x∈ B.
A k-chain between x0 and xn is a sequence x0,x1,..., xn with x0 ≤k x1 ≤k ... ≤k xn .
hk(x) :=lub {n| ⊥,x1,..., xn-1,x k-chain between⊥ and x} is calledk-height of x,
hk(B) := hk(T) is called thek-height of B.
ρ(x):= hk(x)/hk(B) is called therelative k-height of x, provided the k-height ofB is finite.

Example: The k-height of D1 is 4, andρ(-1) = 3/4 = 0.75.

 2.4  The first example continued
We define a decision functionφ that combines the grade of knowledge with the grade of
acceptance. The values v(Fj,J) are summed up and then multiplied with the degree of information
gathered by v(Fj,J). That is,

φ(J, F1, F2, F3) := ( Σj=1,2,3v(Fj, J))* ρ(⊕j=1,2,3v(Fj, J))
The preference relation now is J3 > J4 > J1 > J2 (see the following table): J3 will be subscribed
first. There are two researchers that need this journal so this is a reasonable decision. J4 ranges
higher than J2 which is also intuitive because there is more knowledge and more need of J4 than
of J2.
There is a variety of other decision functions that can be constructed in a similar way. It depends
on the given situation how to do it.
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 2.1  A first example
Suppose the department of computer science of a university has to decide about the subscription
of journals. The number of journals is limited by the budget. The researchers working at the
department have divergent interests and they are familiar with some topics while they do not
know much about other fields. Now every researcher gets a list of journals and has to make some
comments on it. These comments might by characterized as shown in figure 1. According to the
degree of the acceptance the comments are evaluated to numerical values between -1 and 1.

 figure 1. Assessments of a journal

Suppose three researchers F1, F2, F3 give the answers concerning the journals J1,...,J4 listed in the
following table:

Simply adding the values yields the preference relation J1 > J2 ~ J3 > J4:
• J1 will be subscribed first although there is nobody who really wants it.

• J2 ranges higher than J4, although there is someone who really wants J4 but nobody who really
wants J2.

• J2 and J3 have the same range although there is more information and acceptance about J3.

There are many situations in which a degree of information plays an important role for decision
making. In fact, the values in this scenario have two dimensions: Familiarity with the topic and
rejection/acceptance.
The above values can be embedded in a bilattice. The formal definition reads:

Definition 2.2  Bilattice

A bilattice is a structureB = (B, ∧, ∨, ⊗, ⊕,¬) where B is a set of truth values, such that
(B, ∧, ∨) and (B,⊗, ⊕) are complete lattices and¬ is a function from B to B  (callednegation)
with
i) ¬(¬a) = a for any truth value a,
ii) ¬ is a lattice homomorphism from (B, ∧, ∨) to (B, ∨, ∧) and
iii) ¬ is a lattice homomorphism from (B,⊗, ⊕) to (B,⊗, ⊕).

J1 J2 J3 J4

v(F1,Ji) 0.5 0 1 -1

v(F2,Ji) 0.5 0.5 1 1

v(F3,Ji) 0.5 0.5 -1 0.5

Σ 1.5 1 1 0.5
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but my tendency is negative" but my tendency is positive"



This paper addresses knowledge representation, reasoning, and conflict management with many-
valued logics. We show by some examples how information can be expressed in many-valued
Horn clauses, how fitting truth value spaces can be found, and how conflict solving strategies can
be involved. We do not focus on technical details but try to open up prospects of applications.
Many-valued logics offer a variety of possibilities to express uncertain, incomplete, temporal or
fuzzy knowledge and enable us to reason in the presence of inconsistencies. In the last years,
many-valued logics have been made more and more accessible to programming techniques. Two
approaches can be handled similar to classical logic programming: Annotated logic has been
developed by Kifer and Subrahmanian [Kifer and Subrahmanian, 92, Subrahmanian, 92],
Subrahmanian, 94], signed logic has been developed independently by Murray [Murray and
Rosenthal, 91, Murray and Rosenthal, 93], and Hähnle [Hähnle, 90, Hähnle, 91]. The connection
between signed logic and annotated logic has been established in [Lu, Murray and Rosenthal, 93].
The authors have shown how annotated logic programs can be made amenable to a linear
restriction rule, that performs both annotated resolution and reduction.
With the increasing computability many-valued logics get more and more attractive for AI-
applications. According to the different kinds of inexact knowledge the truth values have to be
chosen and combined. Uncertain knowledge like "perhaps she will stop smoking next week"
requires a different handling than default knowledge like "birds usually fly" or fuzzy information
("he is a tall man"). The flexibility of many-valued logics lies in the independency of the truth
value space. It can be selected according to the application domain.
Annotated logic programs base on lattice structures which are also intuitive for representing
knowledge. Signed logic in general makes no restrictions to the structure of the truth value set,
but lattice structures make signed logic more tractable for computing.
Bilattices were defined by Ginsberg [Ginsberg, 88], and further investigated by Fitting [Fitting,
92]. The bilattice-approach is a basic contribution to many-valued logics. Bilattices help to
distinguish sorts of inexact knowledge and their combining according to the application. We
should keep this structures in mind while modelling uncertainty. In this paper we give some
examples to show how suggestive bilattices are in the context of knowledge representation and,
especially, for the purpose of combining knowledge bases. These structures can be used by the
knowledge engineer without having investigated the whole mathematical surrounding. We give
here just the very basic definitions. In fact, we do not make use of all bilattice functions, but
present them for completeness.
We have implemented a proof procedure called REGULA for many-valued Horn clauses. We will
give a short description of it.
This paper is organized as follows: In section 2 we give an example to motivate the definitions of
bilattices and the height in a bilattice. In section 3 we define many-valued Horn clauses and give a
second example. Section 4 describes our proof procedure. The last section concludes the work
and shows future perspectives.

2   Truth Value Spaces

In many-valued logics, propositions are attached with a truth value taken from a truth value space.
A common truth value space is the unit interval [0,1] where 0 stands for "completely wrong" and
1 for "completely true". We give a first example to show how a second "dimension" in a truth
value space can make modelling and reasoning more intuitive.
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Abstract
Uncertainty, incompleteness and vagueness are typical features of common-sense as well as
expert knowledge. Reasoning based on such knowledge demands strategies to combine divergent
information. All the more this is true in the context of integrating knowledge bases. This paper
addresses knowledge representation, reasoning, and conflict management with many-valued
logics. We show by some examples how information can be expressed in many-valued Horn
clauses, how fitting truth value spaces can be found -in this context we also consider bilattices-
and how conflict solving strategies can be involved. We do not focus on technical details but try to
open up prospects of applications.

1   Introduction

One of the main efforts of AI is to model and formalize inexact knowledge: Uncertainty,
incompleteness and vagueness are typical features of common-sense as well as expert knowledge.
Reasoning based on such knowledge demands strategies to combine divergent information. For
example, specific information should be preferred to more general knowledge, hard facts should
replace default knowledge, and unsolvable contradictions should be made obvious.
All the more this is true in the context of integrating knowledge bases. This problem arises, if
large knowledge bases must be built in teamwork, where each team is responsible for certain parts
or aspects [Studer, Landes and Pirlein, 92]: Partial knowledge bases must be finally combined to
one. A similar problem appears if knowledge bases are reused. If some parts of a knowledge base
are actualized, they have to be integrated into the final system [Neches et al., 91]. There may also
be several knowledge bases which represent knowledge of the same domain. A natural language
understanding consulting system for instance may obtain knowledge extracted from different text
sources [Klose and Luck, 91]. Generated answers should be based on information that is
consistent with all the different knowledge bases.
In multiple-agent systems we are also concerned with the problem of conflicting information.
Each agent possesses knowledge about the world and other agents, but has restricted facilities,
tasks and competencies. There might be a global knowledge base shared by everyone but in
general there is no central unit that decides what to do in case of conflicts.


