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Abstract. Inexact Newton methods for the stable solution of nonlinear ill-posed problems are
considered. The corresponding inner scheme can be chosen to be any linear regularization with a
sufficient modulus of convergence. The regularization property of these Newton-type algorithms is
verified, that is, the iterates converge to a solution of the nonlinear problem with exact data when the
noise level tends to zero. Moreover, convergence rates are given. Finally, implementation issues
are discussed and the algorithm is applied to a parameter identification problem for an elliptic
PDE. The numerical results reproduce nicely theoretical predictions and show the efficiency of the
proposed method.

1. Introduction

We consider the stable solution of the nonlinear problem

F(x) = yδ (1.1)

whereF : D(F ) ⊂ X→ Y operates between the Hilbert spacesX andY . Here,D(F ) denotes
the domain of definition ofF . In (1.1) yδ is a perturbation of the exact but unknown data
y = F(x†) satisfying

‖y − yδ‖Y 6 δ (1.2)

with thea priori knownnoise levelδ > 0. We call (1.1)ill posedif x†, the solution of (1.1)
with exact data, does not depend continuously ony. Any algorithm for solving (1.1) has to
take care of this instability. Algorithms computing approximations fromyδ to x† in a stable
way are namedregularizations.

Suppose, throughout the paper, thatF is compact and continuous andD(F ) is infinite
dimensional. Then (1.1) is ill posed (essentially), see, e.g., [7, proposition 10.1].

The theory of regularization for linear ill-posed problems has reached a certain maturity,
if not its final state, see, e.g., [2, 7, 19, 21].

The investigation of regularizations for nonlinear ill-posed problems is still in its infancy
though considerable results have already been obtained. Basically, three concepts from the
linear theory have been carried over to the nonlinear situation to a certain extent. Those
are the Tikhonov–Phillips regularization (see, e.g., [5, 8, 20]), iterative regularizations (see,
e.g., [1, 3, 13, 14, 16, 17, 23]) and the approximative inverse approach (see [22]).

Nonlinear ill-posed problems are of growing interest in the applied sciences. For instance,
the mathematical modelling of ultrasonic, electrical impedance and microwave tomography
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leads to such kinds of problem, see, e.g., the recent proceedings volumes [9, 10] on inverse
problems in applications edited by Engl, Louis and Rundell.

The paper is organized as follows. In the next section our algorithm of inexact Newton
type is formulated and the mathematical set-up is introduced. An inexact Newton method
consists of two components: the outer Newton iteration which updates the current iterate and
an inner scheme which provides the update by approximately solving a local linear version
of (1.1). As inner scheme we allow any linear regularization method with a sufficient modulus
of convergence, for instance, theTikhonov–Phillipsregularization, thetruncated singular value
decomposition, theLandweberiteration, and theν-methods. The inner scheme is stopped as
soon as the relative (linear) residual is less than a given tolerance. We will show in section 3
that this stopping criterion is well defined whenever the tolerance is not too small.

To terminate the outer iteration we rely on a discrepancy principle, that is, we accept the
first iterate as an approximation tox† which yields a (nonlinear) residual having roughly the
order of magnitude of the noise level. In section 4 we verify termination of the outer iteration
by showing that the (nonlinear) residuals decrease linearly.

Our inexact Newton iteration is a regularization scheme which we will prove in section 5,
that is, the iterates converge to a solution of (1.1) as the noise levelδ tends to zero. Moreover
we determine the rate of convergence which is (almost) optimal under the source condition we
use.

The efficiency of our algorithm depends on the choice of the tolerances. We propose a
dynamic selection strategy based on our convergence analysis (section 6).

In section 7 we report on numerical experiments with respect to a parameter identification
problem for an elliptic PDE. This nonlinear model problem satisfies our theoretical
prerequisites. Indeed we are able to reproduce some of our analytical predictions on the
performance of the algorithm.

The relation between our inexact Newton method and other iterative techniques to
regularize (1.1) will be discussed in the final section.

2. The algorithm and preparatory considerations

One step of the Newton iteration applied to (1.1) consists in solving a linearized version of
(1.1). Suppose we have an approximationxn to x†. Then we get the new approximation
xn+1 = xn + sn where theNewton correctionsn is computed as a solution of

F ′(xn) s = yδ − F(xn) := bεn. (2.1)

Here,F ′ : D(F ) → L(X, Y ) is the Fŕechet derivative ofF which we assume to exist as a
continuous mapping.

Unfortunately, (2.1) is a linear ill-posed problem sinceF ′(v) is a compact operator for
all v ∈ D(F ), see, e.g., [24, proposition 7.33]. Furthermore, thenonlinear defectbεn is not the
exact right-hand side for computingsn. Theexact Newton updatese

n := x† − xn is a solution
of

F ′(xn) se
n = y − F(xn)− E(x†, xn) =: bn (2.2)

where

E(v,w) := F(v)− F(w)− F ′(w) (v − w)
is the remainder term of the first-order Taylor expansion. Hence,

‖bεn − bn‖Y 6 δ + ‖E(x†, xn)‖Y and bn ∈ R
(
F ′(xn)

)
. (2.3)
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The noise in the right-hand side of (2.1) is twofold. One part comes from the noise inyδ

whereas the other part is introduced by the linearization.
To obtain a useful approximationsn to se

n equation (2.1) needs to be regularized. A general
regularization scheme applied to (2.1) gives the Newton update

sn = sn,r = gr
(
A∗n An

)
A∗n
(
yδ − F(xn)

)
whereAn := F ′(xn) andgr : [0, θ ] → R, θ = ‖An‖2, is a piecewise continuous function.
The parameterr > 0 is calledregularization parameter.

Example 2.1.Let us look at five examples of regularization schemes.

1. The choicegr(t) = 1/(t + 1/r) leads to theTikhonov–Phillips regularizationwhere
gr(A

∗
nAn) = (A∗nAn+r−1 I )−1. HereREGINN is the variation of theLevenberg–Marquardt

algorithm investigated by Hanke [13].
2. Thetruncated singular value decompositionis characterized bygr(t) = 1/t , for t > 1/r

andgr(t) = 0, otherwise.
3. If gr(t) =

∑r−1
j=0(1− t)j and‖An‖ 6 1 then we have theLandweberregularization which

is an iterative regularization technique.
4. Other iterative regularization schemes are given by theν-methods(ν > 0) due to

Brakhage [4], see also Hanke [12]. For scaledAn, that is, ‖An‖ 6 1, the function
gr has the representationgr(t) =

(
1− P̃ (ν)r (t)

)
/t whereP̃ (ν)r (t) = P

(2ν−1/2,−1/2)
r (1−

2t)/P (2ν−1/2,−1/2)
r (1) with P (α,β)r denoting the Jacobi polynomials.

5. Theconjugate gradientmethod is a further iterative regularization scheme wheregr is a
polynomial of degreer − 1. It differs from the first four examples in its nonlinearity, that
is, gr

(
A∗n An

)
is a nonlinear operator.

In all the examples abovegr(A∗nAn)A
∗
ny provides an approximation toA†

ny for y ∈ D(A†
n)

whereA†
n is the pseudo-inverse ofAn, see, e.g., [7, 21].

Our iterative scheme for solving (1.1) in a stable way now has the form

xn+1 = xn + gin
(
A∗n An

)
A∗n
(
yδ − F(xn)

)
n = 0, 1, 2, . . . (2.4)

with an initial guessx0 ∈ D(F ). Here we face two problems.
First, the Newton iteration has to be stopped in time to avoid noise amplification. This

will be done by adiscrepancy principle, that is, we choose anR > 0 and accept the iteratexN
as an approximation tox† for which

‖yδ − F(xN)‖Y 6 R δ < ‖yδ − F(xk)‖Y k = 0, . . . , N − 1 (2.5)

holds true.
Second, we have to supply a sequence{in} of regularization parameters which allow for

a good approximationsn,in to se
n. All known a priori anda posterioriselection strategies for

in call for a precise knowledge of the noise level‖bεn − bn‖Y in (2.1). In view of (2.3) we
realize that this knowledge is not easily at hand even ifδ is known. Since we have to rely
on computable quantities we determinein as the smallestr ∈ N such that the relative (linear)
residual is smaller than a given toleranceµn ∈]0, 1]:

‖Ansn,r − bεn‖Y /‖bεn‖Y < µn. (2.6)

Algorithm REGINN, see figure 1, realizes our approach and belongs to the class ofinexact
Newton iterations, see, e.g., [18]. Thewhile loop implements the outer (Newton) iteration
and therepeat loop determines the correction step for the outer iteration. In the language
of inexact Newton iterations for well-posed problems the tolerances{µn} are calledforcing
terms.
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REGINN(x, R, {µn})
n = 0, x0 = x
while ‖F(xn)− yδ‖Y > R δ do
{ in = 0

repeat
in = in + 1
sn,in = gin (F ′(xn)∗F ′(xn)) F ′(xn)∗

(
yδ − F(xn)

)
until ‖F ′(xn) sn,in + F(xn)− yδ‖Y < µn ‖F(xn)− yδ‖Y
xn+1 = xn + sn,in
n = n + 1

}
x = xn
Figure 1. REGINN: REGularization based onINexactNewton iteration.

There is a difference in quality between the first two and the last three schemes from
example 2.1 when it comes to an implementation ofREGINN. The first two regularization
schemes require an explicit expression ofAn (respectively of a matrix version thereof). If such
explicit representations are available at all then only under additional computational effort,
see, for instance, the example in section 7. In contrast, the iterative regularizations only need
the operator–vector productsAnv andA∗nw to be implemented.

Primarily we are interested in using iterative regularizations in the inner loop ofREGINN.
Therefore we assume thatF ′ is scaled such that

‖F ′(v)‖ 6 1 for all v ∈ D(F ). (2.7)

3. Termination of the inner loop

In a first step towards an analysis of the algorithmREGINN we verify the termination of the
repeat loop provided suitableµn’s are given.

We recall that thediscrepancy principleapplied to the regularizations{gr}r∈N from
example 2.1 returns a well defined stopping index, see, e.g., [7] or [21]. Thus, ifτn > 1
then there exists a smallest indexrs ∈ N, the stopping index, such that

‖An sn,rs − bεn‖Y < τn ε (3.1)

where‖bεn − bn‖Y 6 ε.
In the case whenF is a linear mapping, algorithmREGINN coincides with the regularization

scheme within itsrepeat loop. For details see the following lemma. Its straightforward proof
is omitted.

Lemma 3.1. Let {gr}r∈N satisfy (3.1). SupposeF is a linear operator and letx0 ∈ X satisfy
‖F(x0) − yδ‖Y > R δ whereR > 1 (otherwise acceptx0 as an approximation tox†). Then,
for anyµ0 = τ0 δ/‖F(x0) − yδ‖Y with τ0 ∈]1, R], algorithmREGINN stops after the first
outer iteration. Moreover,REGINN reduces to the regularization method{gr}r∈N stopped by
the discrepancy principle (2.5).

Next we stipulate the local property (3.2) for the nonlinear functionF . LetQ : X×X→
L(Y ) be a mapping such that

F ′(v) = Q(v,w) F ′(w) and ‖I −Q(v,w)‖ 6 CQ ‖v − w‖X (3.2)

for all v,w ∈ Bρ(x†), the ball aboutx† with radiusρ. We refer to [16] for a discussion of
(3.2) and for examples of operators fulfilling (3.2), see also [7]. The Fréchet derivatives of
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nonlinear operators with property (3.2) have a null space which is invariant inBρ(x
†), that is,

N
(
F ′(v)

) = N
(
F ′(w)

)
for all v,w ∈ Bρ(x†).

Hypothesis (3.2) yields the Lipschitz-like estimate (3.3) inBρ(x†),

‖(F ′(v)− F ′(w)) (v − w)‖Y 6 CQ ‖v − w‖X ‖F ′(w) (v − w)‖Y (3.3)

which, in turn, implies that

‖E(v,w)‖Y 6
∫ 1

0

∥∥ [F ′(w + t (v − w))− F ′(w)] (v − w) ∥∥
Y

dt

6 CQ

2
‖v − w‖X ‖F ′(w) (v − w)‖Y

inBρ(x†). LetCQ ρ < 1. Then, the latter displayed inequality in combination with the inverse
triangle inequality gives

‖F(v)− F(w)‖Y > (1− CQ ρ) ‖F ′(w) (v − w)‖Y (3.4)

so that finally

‖E(v,w)‖Y 6 ω ‖F(v)− F(w)‖Y for all v,w ∈ Bρ(x†) (3.5)

whereω := CQ ρ/(1− CQ ρ). Note thatω < 1 forCQ ρ < 1/2.
Employing (3.5) we are able to estimate the data error‖bεn − bn‖Y in terms ofδ, ω and

the nonlinear defect

dn := ‖yδ − F(xn)‖Y = ‖bεn‖Y .
We have, forxn ∈ Bρ(x†),

‖E(x†, xn)‖Y 6 ω ‖y − F(xn)‖Y 6 ω
(‖y − yδ‖Y + dn

)
6 ω δ + ω dn.

Thus

‖bεn − bn‖Y 6 (1 +ω) δ + ω dn := ε = ε(xn, δ).
We are finally in a position to derivesufficientconditions onµn to stop therepeat loop.

Lemma 3.2. Let{gr}r∈N satisfy (3.1) and let (3.2) hold true withCQ ρ < 1/2. Further assume
thatxn ∈ Bρ(x†). IfR > (1+ω)/(1−ω) then therepeat loop of algorithmREGINN terminates
for any

µn ∈
]
ω +

(1 +ω) δ

dn
, 1
]
.

Proof. We will show that the stopping criterion of algorithmREGINN can be rewritten as the
discrepancy principle (3.1) with aτn > 1. This guarantees termination. We have that

τn := µn dn

ε(xn, δ)
= µn

(1 +ω) δ/dn + ω
> 1. (3.6)

Sinceδ < dn/R (otherwise the outer iteration would have been stopped withxn) our hypothesis
onR gives(1 +ω) δ/dn + ω < (1 +ω)/R + ω 6 1. �

Throughout the paper and without further notification letR andµn be chosen such that
(3.6) holds true forxn ∈ Bρ(x†). Also, let{gr}r∈N satisfy (3.1) always.
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4. Termination of the outer iteration

We will show that the nonlinear residuals decrease linearly.

Lemma 4.1. Suppose that thekth iteratexk of algorithmREGINN is well defined and lies in
Bρ(x

†). Further, let (3.5) hold with

ω < η/(2 +η) for one η < 1 (4.1)

(this will be true, for instance, ifρ is sufficiently small). If, furthermore,

R > 1 +ω

η − (2 +η) ω
and µk ∈

]
ω +

(1 +ω) δ

dk
, η − (1 +η) ω

]
(4.2)

as well asxk+1 ∈ Bρ(x†) then

‖yδ − F(xk+1)‖Y
‖yδ − F(xk)‖Y 6

µk + ω

1− ω 6 η. (4.3)

Proof. Before we start proving (4.3) we discuss the assumptions onω, R andµk. The bound
onω implies that the denominator of the lower bound ofR is positive. The lower bound onR
guarantees thatω + (1 +ω)/R is smaller thenη − (1 +η) ω which is the upper bound forµk
yielding (µk +ω)/(1− ω) 6 η. All parameters satisfy the requirements of lemma 3.2 so that
sk,ik is well defined.

SinceF(xk+1)− yδ = Aksk,ik + F(xk)− yδ +E(xk+1, xk) we obtain

‖F(xk+1)− yδ‖Y 6 µk ‖F(xk)− yδ‖Y + ω ‖F(xk+1)− F(xk)‖Y
6 µk ‖F(xk)− yδ‖Y + ω

(‖F(xk+1)− yδ‖Y + ‖F(xk)− yδ‖Y
)

which readily implies (4.3). �
The key estimate in the proof of the lemma from above can be traced back to

Hanke [13, equation (2.10)].
In the setting of lemma 4.1 we have that the residuals decreaseη-linearly uniformly

in δ ∈ [0, δ] for a δ > 0 small enough. This implies termination ofREGINN.
By btc ∈ Z for t ∈ R we denote the greatest integer:btc 6 t < btc + 1.

Theorem 4.2.Adopt the assumptions (4.1) and (4.2) onω, R, and theµk ’s from lemma 4.1.
Suppose further that all iterates{xk}k stay inBρ(x†).

If d0 = ‖yδ − F(x0)‖Y > R δ thenREGINN terminates after

N(δ) 6 blogη(R δ/d0)c + 1 (4.4)

outer iteration steps for all0< δ 6 δ. Moreover,∥∥A(x†− xN(δ))
∥∥
Y
6 R + 1

1− CQ ρ δ asδ→ 0 (4.5)

whereA := F ′(x†).

Proof. The bound (4.4) forN(δ) follows directly from lemma 4.1 since

‖F(xk)− yδ‖Y 6 ηk ‖F(x0)− yδ‖Y . (4.6)

We infer from (3.4) and (1.2) that∥∥A(x†− xk)
∥∥
Y
6 ‖y − F(xk)‖Y

1− CQ ρ 6 1

1− CQ ρ
(
δ + ‖yδ − F(xk)‖Y

)
for k ∈ {0, . . . N(δ)}. Especially,k = N(δ) together with (2.5) yields (4.5). �
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Let us discuss (4.5). Observe that‖A · ‖Y is a norm onN(A)⊥ being, in general,weaker
than the standard norm onX. If we startREGINN with x0 ∈ N(A)⊥ then all iterates will stay in
N(A)⊥ = R(A∗) due to (2.4) and (3.2). In the case ofx† ∈ N(A)⊥, the estimate (4.5) describes
norm convergence. This is a result which carries over from the linear to the nonlinear situation.

For our further analysis ofREGINN we restrict ourselves tolinear regularization schemes
{gr}r∈N0, g0 := 0, satisfying the assumptions (4.7) below withpr(t) := 1− t gr(t). Let us
assume the existence of positive constantsCg, Cp, andα such that

sup
t∈[0,θ ]

|gr(t)| 6 Cg rα sup
t∈[0,θ ]

|pr(t)| = 1 sup
t∈[0,θ ]

|t pr(t)| 6 Cp r−α. (4.7)

From now on the conjugate gradient method will not be considered anymore.

Example 4.3.The first four regularization schemes from example 2.1 satisfy (4.7).

1. Tikhonov–Phillips regularization:Cg = Cp = α = 1.
2. Truncated singular value decomposition:Cg = Cp = α = 1.
3. Landweber regularization:Cg = α = 1 andCp = exp(−1).
4. ν-methods (ν > 1): α = 2, sharp estimates forCg andCp are difficult to obtain.

Next we supply a norm estimate ofsk,ik = gik (A∗kAk)A∗kbεk whereAk = F ′(xk). The left and
middle relations in (4.7) as well as standard arguments, see, e.g., [7] and [21], lead to the norm
bound (4.8) for the operatorRik := gik (A∗kAk)A∗k ,

‖Rik‖ 6 CR iα/2k CR := √2Cg. (4.8)

So we get

‖sk,ik‖X 6 CR iα/2k ‖yδ − F(xk)‖Y . (4.9)

In the following we bound the stopping indexik. According to the definition ofik, cf (3.1) and
(3.6), we have, forik > 2,

τk ε(xk, δ) 6 ‖Ak sk,ik−1− bεk‖Y
6 ‖pik−1(Ak A

∗
k) bk‖Y + ‖pik−1(Ak A

∗
k) (b

ε
k − bk)‖Y

6 ‖pik−1(Ak A
∗
k) Aks

e
k‖Y + ε(xk, δ).

In the last step we used relation (2.2) for the exact Newton updatese
k = x† − xk and we used

the standardization of thepr ’s in (4.7). To proceed we assume there exists awk ∈ Y so that
se
k = A∗kwk (we will comment on this assumption in lemma 4.5 below). Hence, by the right

relation in (4.7),

ε(xk, δ) 6 Cp
‖wk‖Y
τk − 1

(ik − 1)−α. (4.10)

Altogether we are able to verify the following lemma.

Lemma 4.4. Let {gr}r∈N0 fulfil (4.7) and assume thatxk is well defined. Further, let there be
awk ∈ Y so thatse

k = F ′(xk)∗wk. Then, there exists a positive constantCI 6 max{1, 2α Cp}
such that

ik 6
(
CI
‖wk‖Y
τk − 1

)1/α

ε(xk, δ)
−1/α. (4.11)

Proof. First, we consider the caseik > 2. From (4.10) we obtain(ik−1)α 6 Cp ‖wk‖Y /(τk−
1)/ε(xk, δ). Sinceiαk 6 2α (ik − 1)α the inequality (4.11) is established withCI = 2α Cp. In
the case ofik = 1 the trivial estimateτk ε(xk, δ) = µk ‖bεk‖Y 6 ‖bεk‖Y 6 ‖bk‖Y + ε(xk, δ) and
(2.7) readily imply (4.11) withCI = 1. �
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Lemma 4.5. Suppose that the firstn iterates{x1, . . . , xn}of algorithmREGINNare well defined
and stay inBρ(x†). Moreover, let the initial guessx0 ∈ Bρ(x†) be such that

se
0 = F ′(x0)

∗w0 for onew0 ∈ Y. (4.12)

Then,

se
k = A∗k wk withwk = Q(x0, xk)

∗w0 −
k−1∑
j=0

Q(xj , xk)
∗ gij

(
Aj A

∗
j ) b

ε
j (4.13)

for k = 1, . . . , n, whereAj = F ′(xj ) andQ is the mapping from (3.2). Furthermore, if (4.7)
applies then

‖wk‖Y 6 C̃Q (1 +λ) (1 + C̃Q λ)
k−1 ‖w0‖Y k = 1, . . . , n (4.14)

where

λ = Cg CI

τ − 1
+ C̃g with τ = min{τ0, . . . , τn−1} andC̃g = sup

r∈N
sup
t∈[0,θ ]

t |gr(t)| 6 2.

The constant̃CQ is an upper bound ofQ: ‖Q(v, z)‖ 6 C̃Q for all v, z ∈ Bρ(x†).

Proof. Rewritese
k = se

0 −
∑k−1

j=0 sj,ij and note thatse
0 = A∗0w0 = A∗k Q(x0, xk)

∗w0 as well as
sj,ij = A∗j gij (Aj A∗j ) bεj = A∗k Q(xj , xk)∗ gij (Aj A∗j ) bεj . The first assertion follows readily.

From the relation on the right of (4.13) together with (4.7) we obtain that

‖wk‖Y 6 C̃Q
(
‖w0‖Y +

k−1∑
j=0

(‖gij (Aj A∗j ) (bεj − bj )‖Y + ‖gij
(
Aj A

∗
j ) bj‖Y

))

6 C̃Q
(
‖w0‖Y +

k−1∑
j=0

(
Cg i

α
j ε(xj , δ) + ‖gij

(
Aj A

∗
j ) Aj A

∗
jwj‖Y

))

6 C̃Q
(
‖w0‖Y +

(
Cg CI

τ − 1
+ C̃g

) k−1∑
j=0

‖wj‖Y
)

where we used (4.11) for the last inequality. The second assertion of lemma 4.5 follows now
inductively. �

For convenience we simplify (4.14) to

‖wk‖Y 6 CW 3k ‖w0‖Y with 3 := 1 + C̃Q λ. (4.15)

By (3.2) condition (4.12) can be rewritten as

x†− x0 ∈ R
(
F ′(x†)∗

) = R
((
F ′(x†)∗F ′(x†)

)1/2)
(4.16)

and is calledsource representation, see, e.g., [7]. It is an abstract smoothness assumption on
x†− x0.

Under certain assumptions the linear decrease of the nonlinear residuals carries over to
the Newton steps.

Lemma 4.6. Let (3.2) and (4.7) hold true. Let (4.12) apply for the initial guessx0 ∈ Bρ(x†)

and assume that the firstn iterates{x1, . . . , xn} stay inBρ(x†).
Let τ > 1. Further, let (3.5) hold true for

ω <
η

η + (1 + τ)
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whereη := σ/3 with σ < 1 and3 from (4.15). Finally, choose

R > τ (1 +ω)

η − ω (η + (1 + τ)
) and µk ∈

[
τ
(
ω +

(1 +ω) δ

dk

)
, η − (1 +η) ω

]
for k = 0, . . . , n. Then,

‖sk,ik‖X 6 CS ‖w0‖1/2Y ‖yδ − F(x0)‖1/2Y σ k/2 (4.17)

whereCS = CR
√
CI CW τ/(τ − 1)/m withm = min{µ0, . . . , µn} > τ

(
ω + δ (1 +ω)/d0

)
.

Proof. For a discussion of the restrictions onω andR see the opening of the proof of lemma 4.1.
The lower bound on theµk ’s yieldsτk > τ > 1, k = 0, . . . , n, cf (3.6).

Recalling (4.9), (4.11) and (4.15) we find that

‖sk,ik‖X 6 CR
√
CI CW ‖w0‖Y

τk − 1
3k/2 ε(xk, δ)

−1/2 ‖yδ − F(xk)‖Y .

The proof of (4.17) is established when applying (3.6) and (4.6) to the right hand side of the
above inequality. �

Using (4.17) we easily see that the Newton iterates stay in the ball with radius

a = a(δ) := CS ‖w0‖1/2Y ‖yδ − F(x0)‖1/2Y

1−√σ
about the centrex0. Hence, we may abandon the condition that the iterates stay inBρ(x

†) (see
theorem 4.2 and lemmata 4.5 and 4.6) by the following assumption:Ba(δ)(x0) ⊂ Bρ(x†). This
may be interpreted as a closeness assumption onx0 which is typical for Newton-type methods
where we can expect local convergence only.

Our next result shows that the reduction ratedk+1/dk for the nonlinear residuals
approximates the toleranceµk as the iteration progresses.

Corollary 4.7. Adopt the assumptions of lemma 4.6. Further, choosex0 such thatBa(δ)(x0) ⊂
Bρ(x

†). Then, fork = 0, . . . , N(δ)− 1,

‖yδ − F(xk+1)‖Y
‖yδ − F(xk)‖Y 6 min

{ µk + ω

1− ω , µk + C̃S σ
k/2
}

(4.18)

whereC̃S = CQ CS ‖w0‖1/2Y ‖yδ − F(x0)‖1/2Y .

Proof. Due to (4.3) it suffices to verify thatdk+1/dk 6 µk + C̃S σ k/2. Let rk := F ′(xk) sk,ik +
F(xk)− yδ. We have

F(xk+1)− yδ = F(xk + sk,ik )− F(xk) + F(xk)− yδ

=
∫ 1

0

(
F ′(xk + t sk,ik )− F ′(xk)

)
sk,ik dt + rk.

We apply (3.3) which yields

‖yδ − F(xk+1)‖Y 6 CQ

2
‖sk,ik‖X ‖F ′(xk) sk,ik‖Y + ‖rk‖Y .

Note that‖rk‖Y < ‖yδ − F(xk)‖Y . Thus,

‖F ′(xk) sk,ik‖Y 6 ‖rk‖Y + ‖yδ − F(xk)‖Y < 2 ‖yδ − F(xk)‖Y .
From both latter inequalities we deduce that

‖yδ − F(xk+1)‖Y <
(
CQ ‖sk,ik‖X +µk

) ‖yδ − F(xk)‖Y .
Now, the assertion follows from lemma 4.6. �

Our above results yield convergence of the Newton iterates tox† in the noise-free situation.
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Theorem 4.8.Adopt the assumptions of lemma 4.6 but letδ = 0, that is, the right-hand side
of (1.1) is known exactly. IfBa(0)(x0) ⊂ Bρ(x†) then

‖x†− xk‖ = O
(
σ k/2

)
ask→∞.

Proof. We infer from (4.13) and (3.4) that

‖x†− xk‖2X = 〈se
k , F

′(xk)∗wk〉X 6 ‖F ′(xk) se
k‖Y ‖wk‖Y

6 ‖wk‖Y
1− CQ ρ ‖y − F(xk)‖Y

(4.19)

which implies the assertion by (4.6) and (4.15). �

5. Regularization property

We will prove the regularization property of the algorithmREGINN, that is, the convergence of
xN(δ) to x† asδ → 0 whereN(δ) is the finite stopping index of the outer iteration according
to theorem 4.2.

Theorem 5.1.Let the assumptions of lemma 4.6 hold true and letBa(0)(x0) ⊂ int
(
Bρ(x

†)
)
. If

d0 = ‖yδ − F(x0)‖Y > R δ (for instance,F(x0) 6= y andδ sufficiently small) then

‖x†− xN(δ)‖X 6
√
CW (R + 1) ‖w0‖Y 3

1− CQ ρ
(
d0

R

)log1/η 3

δ(1−log1/η 3)/2 (5.1)

asδ→ 0 where06 log1/η 3 < 1.

Proof. Note that the elements of the Newton sequence produced byREGINN depend onδ, that
is,xk = xδk , k = 1, . . . , N(δ). SinceBa(0)(x0) lies in the interior ofBρ(x†) there exists aδ > 0
such thatBa(δ)(x0) ⊂ Bρ(x†) for all 0 < δ 6 δ. The estimates (4.19) and (1.2) together with
(2.5) and (4.15) imply

‖x†− xN(δ)‖2X 6
‖wN(δ)‖Y
1− CQ ρ

(
δ + ‖yδ − F(xN(δ))‖Y

)
6 CW (R + 1) ‖w0‖Y

1− CQ ρ 3N(δ) δ.

SinceN(δ) 6 logη(R δ/d0) + 1, see (4.4), we obtain that3N(δ) 6 33logη(R δ/d0) =
3(R δ/d0)

logη 3. Further, logη 3 = − log1/η 3 which verifies (5.1). Finally, 16 3 < 1/η,
see lemma 4.6, is equivalent to 06 log1/η 3 < 1. �

SupposeF is a linear mapping, see lemma 3.1. ThenN(δ) = 1 for all δ > 0 andCQ ρ
may be considered zero. Further,‖w1‖Y 6 (1 +λ) ‖w0‖Y , see (4.14). The technique of proof
of theorem 5.1 gives now the error bound

‖x†− x1‖X 6
√
(R + 1) (1 +λ) ‖w0‖1/2Y δ1/2.

The latter error bound reflects exactly the order optimality of the linear regularization schemes
{gr}r∈N0 (4.7) applied to a linear problem under the source conditions (4.12) and (4.16),
respectively, see, e.g., [7, 21].

In the nonlinear case, if‖wN(δ)‖Y is uniformly bounded inδ, that is3 = 1, the iterates
{xN(δ)}δ>0 converge with order 1/2: ‖x†−xN(δ)‖X = O

(√
δ
)

asδ→ 0. Hence, the optimality
result carries over from the linear to the nonlinear situation.
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6. Choosing the tolerances

In implementing algorithmREGINN we have the freedom to select the sequence of tolerances
{µk}. Our analysis includes non-constantµk ’s within certain limits, see lemma 4.1. We like to
choose the tolerances dynamically such that the overall number

∑N(δ)−1
k=0 ik of passes through

therepeat loop becomes rather ‘small’.
To this end we try to minimizeN(δ), the number of Newton steps, by allowing theµk ’s to

be small. However, the tolerances should not be too small to avoid noise amplification while
solving the linearization (2.1). In the starting phase of algorithmREGINN the nonlinear defect
will be relatively large and therepeat loop will terminate in spite of a small tolerance.

We therefore start with a small tolerance and increase it during the Newton iteration. This
is in accordance with (4.2). An increase of the tolerance will be indicated when the number of
passes through therepeat loop of two successive Newton steps increases significantly. The
tolerances shall be decreased by a constant factor whenever the consecutive numbers of passes
through therepeat loop drop.

We propose the choice (6.2). Chooseµstart ∈]0, 1[, γ ∈]0, 1], and let̃µ0 = µ̃1 := µstart.
Fork = 2, . . . , N(δ)− 1 define

µ̃k :=
 1− ik−2

ik−1
(1− µk−1) ik−1 > ik−2

γ · µk−1 otherwise
(6.1)

and choose

µk := µmax ·max
{
R · δ/‖F(xk−1)− yδ‖Y , µ̃k

}
k = 0, 1, . . . , N(δ)− 1 (6.2)

whereµmax ∈]µstart, 1[ bounds theµk ’s away from 1 (uniformly ink andδ). The parameter
µmax should be very close to 1, for instance,µmax = 0.999 is reasonable. We know that the
repeat loop may not terminate if the tolerance is too small. A rapid decrease of the tolerances
should be avoided therefore. Restrictingγ to the interval [0.9, 1] has proved quite satisfactory
in our numerical experiments.

In the following section we demonstrate the performance of the algorithmREGINN together
with the strategy (6.2) whereµstart is as small as 0.1.

In defining theµk ’s from the auxiliarỹµk ’s we incorporated asafeguardingtechnique to
prevent oversolving of (2.5) in the final Newton step. The idea is obvious: if the nonlinear
defect ofxN(δ)−1 is already close toR · δ it is superfluous to reduce it in the last step possibly
far beyond the desired level by the factorµ̃N(δ)−1. Safeguarding is a standard procedure in
inexact Newton methods for well-posed problems, see, e.g., [18, section 6.3].

Remark 6.1. Our tolerance selection scheme (6.2) can be modified in an obvious way. Replace
the quotientik−2/ik−1 byQ(ik−2/ik−1) in (6.1). The functionQ : [0, 1] → [0, 1] should be
strict monotonically increasing withQ(0) = 0 andQ(1) = 1, for instance,Q(t) = tβ , β > 0.
For β < 1 (β > 1) the respective tolerances will increase slower (faster) compared to our
choice (6.1).

Further, the factorγ = γk may also be determined from the ratioik−1/ik−2.

7. Numerical experiments: a model problem

We present numerical experiments for a parameter identification model problem from interior
measurements. Because our main assumption (3.2) is satisfied the model problem is well
suited to study the performance of the algorithmREGINN. Indeed we will see that some of



320 A Rieder

our theoretical assumptions have exactly the impact predicted by our analysis of the former
sections.

We would like to reconstructc in the 2D-elliptic problem

−1u + c u = f in �

u = g on ∂�
(7.1)

from the knowledge ofu in � =]0, 1[2. In (7.1),1 is the Laplacian. Further,f ∈ L2(�) and
g is the trace of a function inH 2(�). Let F : D(F ) → L2(�) be the operator mapping the
parameterc to the solutionu of (7.1). Here,D(F ) = {c ∈ L2(�) | ‖c− c̃‖L2 6 β for somẽc >
0} for a positiveβ small enough, see [6, lemma 2.1]. Identifyingc thus reduces to solving the
nonlinear problem

F(c) = u. (7.2)

If u has no zeroes in� then we can solve (7.2) forc explicitly: c† = (f + 1u)/u thereby
showing that (7.2) has a unique solutionc† which does not depend continuously on the data.
Hence, the direct inversion formula is useless if only perturbed datauδ are available.

Hanke, Neubauer and Scherzer have been able to verify (3.2) in the vicinity of any
c ∈ D(F ) such thatF(c) > 0 a.e., see [16, example 4.2]. Consequently, we should be able to
reproduce some of our theoretical results when applying algorithmREGINN to the parameter
identification problem (7.2).

The Fŕechet derivativeF ′(c) : L2(�)→ L2(�) is given by

F ′(c)v = −L(c)−1
(
v · F(c)) (7.3)

whereL(c) : H 2(�) ∩ H 1
0 (�) → L2(�) is the differential operatorL(c)u = −1u + c u,

cf [6, lemma 2.4]. Hence, the abstract smoothness condition (4.16) in the present situation
reduces to

(c†− c0)/F (c0) ∈ H 2(�) ∩H 1
0 (�), (7.4)

especially,(c†− c0)|∂� = 0.
For our numerical approach we discretize (7.1) using finite differences, see e.g. [11] for

the following notation. We approximate the action ofL onu in (xi, yj ) by the difference star

Lu(xi, yj ) ≈ h−2

 0 −1 0
−1 4 +h2 c(xi, yj ) −1

0 −1 0

 u(xi, yj ).
Here, h = 1/(n + 1), n ∈ N, is the discretization step size and the grid points are
(xi, yj ) = (i h, j h), 1 6 i, j 6 n. Proceeding in the standard way using lexicographical
ordering of the grid points and incorporating the boundary constraints into the right hand side
yields then2 × n2-linear system

(A + C)u = f
whereA is the matrix belonging to the difference star of−1 andC = diag(c1, . . . , cn2) is the
diagonal matrix with entriesc`(i,j) = c(xi, yj ). By ` : {1, . . . , n}2 → {1, . . . , n2} we denote
the lexicographical ordering. Please note thatu`(i,j) = u(xi, yj ) + O(h2) ash → 0 for u
sufficiently smooth.

In this discrete setting we would like to recoverC from u. Again, in the presence of
noise, the direct reconstruction formulac` = (f −Au)`/u` is useless. Instead we consider
the nonlinear equation

F (C) = u (7.5)
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with F : Rn2 → Rn2
defined byF (C) = (A + C)−1 f . The functionF is differentiable with

Jacobian

F ′(C)w = −(A + C)−1
(
F (C)� w) (7.6)

where� denotes the component-wise multiplication of vectors. Similar to the infinite
dimensional setting we can verify (3.2) forF ′.

For our numerical experiments we have chosen the following set-up: the parameter to be
identified isc†(x, y) = 1.5 sin(4π x) sin(6π y) + 3((x − 0.5)2 + (y − 0.5)2) + 2, see figure 5
(top). Further,f andg have been selected such thatu(x, y) = 16x (x − 1) y (1− y) + 1 is
the solution of (7.1) with respect toc†.

As the perturbed right-hand sideuδ of (7.5) we worked withuδ = u + δ v. Here,
u`(i,j) = u(xi, yj ) andv = z/‖z‖h with z being a vector with random entries uniformly
distributed in [−1, 1]. Hence,‖u − uδ‖h = δ measured in the weighted Euclidean norm
‖ · ‖h = h ‖ · ‖2 onRn2

which approximates theL2(�)-norm.
The eigenvalues ofA are known explicitly, see, e.g., [11]. Thus,

‖F ′(C)‖h 6 ‖(A + C)−1‖2h ‖f‖h 6 ‖A−1‖2h ‖f‖h 6
1

4π4

(
π h/2

sin(π h/2)

)4

‖f‖h
for C > 0. The scaling requirement (2.7) will be satisfied automatically in our computations
below. We are thus allowed to use theν-method,ν = 1, as inner regularization scheme
throughout.

In our first experiment we shall illustrate the regularization property, see theorem 5.1, and
the growth behaviour ofN(δ) asδ→ 0, see theorem 4.2. In order not to pollute the asymptotic
behaviour by other effects we fixµk = 0.995. We start our Newton iteration on (7.5) with
C0 = diag(c0

`), c
0
`(i,j) = c0(xi, xj ), where

c0(x, y) = 3((x − 0.5)2 + (y − 0.5)2) + 2 + 48x (x − 1) y (1− y) (7.7)

which satisfies (7.4).
The results presented in figures 2, 3 and 4 are based on the parameterR = 3, see (2.5),

and the discretization step sizeh = 1/100.
Figure 2 displays the relative error‖CN(δ) − C†‖h/‖C†‖h for δ ∈ {10−(r+1)/2 | r =

1, . . . ,11} whereC† is c† evaluated at the grid points. Since both coordinate axes in figure 2
are scaled logarithmically the linear decrease of the error with a slope of about 1/2 indicates
that ‖CN(δ) − C†‖h = O

(
δ1/2

)
asδ → 0. This is the optimal rate according to our theory,

see (5.1).
The curve of the semi-logarithmical plot in figure 3 demonstrates the asymptotic relation

N(δ) = O(| log δ|) asδ→ 0, see (4.4), which is, in turn, a confirmation of the linear decrease
of the nonlinear residuals. Recall thatη ≈ µk for k large, see (4.18). Thus, the slope of
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Figure 2. Relative error versus noise levelδ (µk = 0.995 for allk).
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Figure 3. Stopping indexN(δ) versus noise levelδ (µk = 0.995 for allk).
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Figure 4. The overall number
∑N(δ)−1
k=0 ik of inner iteration steps versus noise levelδ. Solid line:

µk = 0.995 for all k, dotted and dashed lines:µk chosen according to (6.2) withµstart = 0.1,
µmax= 0.999, whereγ = 1.0 (dotted with?) andγ = 0.9 (dashed with�).

the curve in figure 3 matches perfectly with its theoretical value−1/ log 0.995 ≈ 459 for
δ 6 10−3, i.e.,N(10−(r+2)/2)−N(10−(r+1)/2) ≈ 459/2 for r = 5, . . . ,10.

Replacing the static tolerance strategyµk = 0.995 for allk by the dynamic strategy (6.2)
improves—as expected—the efficiency of algorithmREGINN. In figure 4 we plotted the overall
numberSδ :=∑N(δ)−1

k=0 ik of inner iteration steps versus the noise levelδ. The numerical value
of Sδ is a reliable measure for the computational effort. Hence, figure 4 shows clearly that the
dynamic strategy (µstart= 0.1,µmax= 0.999,γ = 1.0 respectivelyγ = 0.9) outperforms the
static one. Please note that both tolerance choices lead to the same relative errors displayed
in figure 2. The stopping indicesN(δ) relative to the dynamic strategy are rather small, for
instance,N(10−6) = 32 (γ = 0.9).

Now we demonstrate the mode of action of our tolerance selection strategy (6.2) more
explicitly. The effects of using (6.2) can be studied by looking at tables 1 and 2. For
δ = 10−5/2, R = 1.5, µstart = 0.6, µmax = 0.999, andγ = 0.95 the convergence history
of algorithm REGINN is listed in table 1. The discretization step size ish = 1/64. By
dk := ‖F (Ck) − uδ‖h andek := ‖Ck − C†‖h/‖C†‖h we denote the nonlinear defect and the
relative error of thekth Newton iterate, respectively. We observe the following.

• The tolerances decrease by the factorγ · µmax (respectivelyµmax) during the iteration
whenever the stopping indices of the inner iteration drop (respectively do not change) for
two successive Newton steps.
• The ratiodk/dk−1 tends toµk−1 from below ask goes toN(δ), cf (4.18).
• The safeguarding technique indeed preventsREGINN from unnecessary work in the final
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Table 1. Convergence history ofREGINN with respect to the tolerance selection (6.2) where
µstart= 0.6,µmax= 0.999, andγ = 0.95.

k µk−1 ik−1 dk/dk−1 dk/(R · δ) ek

1 0.6 9 0.5149 12.509 0.4282
2 0.6 8 0.5447 6.814 0.3438
3 0.5694 8 0.5284 3.600 0.3149
4 0.5689 9 0.4968 1.789 0.3056
5 0.6161 50 0.6091 1.090 0.2853
6 0.9300 205 0.9298 1.013 0.1798
7 0.9861 127 0.9861 0.999 0.1596

7′ 0.9819 150 0.9819 0.995 0.1526

step. The rowk = 7′ of table 1 shows the final step in the case when safeguarding is
turned off (all other iteration steps remain unchanged).

Safeguarding is more vital for a smallµstart, see table 2. With the exception ofµstart= 0.1
all parameters are selected as above. Note that the overall number of inner iteration stepsSδ
and the erroreN(δ) are smaller than for the choiceµstart= 0.6.

Table 2. Convergence history ofREGINN with respect to the tolerance selection (6.2) where
µstart= 0.1,µmax= 0.999, andγ = 0.95.

k µk−1 ik−1 dk/dk−1 dk/(R · δ) ek

1 0.1 14 0.0826 2.007 0.3056
2 0.4978 260 0.4974 0.998 0.1410

Finally, we present the graphs of two reconstructionsCN(δ) to C† respectivelyc† for
different initial iterates. We ran the algorithmREGINN using δ = 0.01, R = 1.4 and the
discretization step sizeh = 1/64. The middle part of figure 5 shows the reconstruction with
respect to the starting guessc0 from (7.7) which satisfies (7.4). The bottom part of figure 5
shows the result for the starting guessc0 = 2 which obviously violates (7.4).

Though both starting iterates have about the same distance to the exact solution, the
algorithmREGINN started with (7.7) provides the better reconstruction in less than half the run-
time compared to algorithmREGINN started withc0 = 2. This observation has the following
explanation. Each Newton stepsik is in the range ofF ′(xk)∗. In view of (7.3) we conclude that
sik |∂� = 0. Thus, the starting guess will not be changed on∂� as the iteration progresses. This
behaviour for the present example lies in the nature ofanyalgorithm computing the correction
step by approximating the minimum norm solution of (2.1).

8. Discussion and conclusion

We compare our algorithmREGINN to other iterative regularization strategies for nonlinear
ill-posed problems studied recently in the literature.

The following type of iteration (An = F ′(xn))
xn+1 = xn + gin

(
A∗n An

)
A∗n
(
yδ − F(xn)

)
+
(
I − gin

(
A∗n An

)
A∗nAn

)
(x0 − xn) (8.1)

has been investigated extensively by several authors, see, e.g., [1, 3, 17]. We discuss (8.1)
furnished with thea posterioristopping rule (2.5) (a priori stopping strategies are also known).
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Figure 5. Top: the parameterc† to be identified at the grid points(i h, j h), 1 6 i, j 6 63,
h = 1/64. Middle and bottom: reconstructionCN(δ) with respect to initial iteratesC0
satisfying (middle) and violating (7.4) (bottom).
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There are two differences to our algorithm: the appearance of an additional summand, cf (2.4),
and the regularization parametersin are increaseda priori by a certain rate.

The additional term is claimed to bring in an extra stability. Indeed, for several linear
regularization schemes{gr} (e.g., Tikhonov–Phillips regularization, Landweber iteration)
optimal convergence rates have been established under a slightly more general version of
(3.2) and under the source condition

x†− x0 ∈ R
((
F ′(x†)∗F ′(x†)

)κ)
, 06 κ 6 κmax (8.2)

whereκmax depends on{gr}.
For our algorithm we have only been able to prove optimal convergence rates forκ = 1/2,

see (4.16). However, we do not need the extra term which means additional numerical effort in
eachiteration step. For instance, if the Landweber iteration is used in (8.1) an extra operator-
vector product withAn has to be performed in each Landweber step! See [17, method 2.8].
If one considers (8.1) with the Tikhonov–Phillips regularization then an implementation is
available requiring only an additional vector subtraction and scalar multiplication per iteration
step, see, e.g., [3]. But the latter variation of (8.1) is expensive by itself since a linear system
with operatorA∗nAn + i−1

n I has to be solved exactly in each step. An explicit representation of
An is not always at hand, see, for instance, our parameter identification problem in the former
section, cf (7.6). Therefore, this method is sometimes impossible to use.

The a priori determination of the inner regularization parametersin in (8.1) makes an
oversolving of (2.5) very likely in the final step.

Tautenhahn [23] suggested another theoretically appealing regularization for (1.1) which
is closely related to (8.1). He also obtains optimal convergence rates under (8.2). However,
the regularizer of Tautenhahn’s method is not given explicitly. It is itself the solution of a
nonlinear (well-posed) equation. From a practical point of view this nonlinear equation has
to be solved approximately by an iteration. This additional approximation process was not
incorporated in the convergence analysis.

Our analysis of algorithmREGINN does not settle the convergence ofxN(δ) to a solution
of (1.1) asδ→ 0 under assumptions weaker than (4.12). Let us consider the source condition
(8.2) for 0< κ < 1/2. We need to find a meaningful upper bound forik (cf (4.11) where
the source condition (4.16) enters our analysis). Such an estimate is crucial to show that the
iterates stay in the ballBρ(x†) by bounding the Newton steps, see (4.17). One, of course,
could try to circumvent this problem by some modifications which, however,must notaffect
the numerical performance ofREGINN. Hence, adding a stabilizing term or choosing theik ’s
a priori as in (8.1) is ruled out. In our opinion, completely new techniques are necessary to
show convergence (and convergence rates) in the general situation (8.2).

Inexact Newton methods for the regularization of nonlinear ill-posed problems have
already been suggested by Hanke [13, 14]. In [14] the conjugate gradient (cg) iteration
serves as inner regularization. Under a slightly weaker form of (3.2) only the convergence of
subsequences of{xN(δ)}δ>0 to solutions of (1.1) is shown. We could prove convergence in a
weaker norm under (3.5), see (4.5).

One may consider this as a theoretical gap of Newton-cg. One may further argue thatcg
will outperform theν-methods as inner iterations sincecg reduces the (linear) residual faster.
Also, in usingcg the scaling (2.7) will be superfluous.

The following two aspects weaken the above arguments.

• Hanke and Hanson [15] proposed a method to guarantee (2.7) almost without additional
effort.
• The ν-methods have advantages over thecg-method concerning the stability of the

provided approximative solution with respect to the stopping index. If thecg-iteration is
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not stopped at the optimal point it diverges more rapidly than semiiterative solvers do, see,
e.g., Hanke [12]. Thus, the Newton correction computed bycg will be very sensitive to
changes in theµk ’s. The performance of Newton-cgunder a dynamic tolerance selection
scheme like (6.2) is unclear therefore.

From a theoretical point of view one cannot—at the present time—pass a judgement whether
Newton-cgorREGINNwith theν-method will perform better. This question has to be answered
by extensive numerical experiments.

We end the discussion by commenting on [13]. The regularization property of the
Levenberg–Marquardt algorithm (first method in example 2.1) was shown under a slightly
weaker form of (3.2) and without a source condition (hence, no rates are given). Hanke’s
analysis, on the other hand, requires another strong assumption: the regularization parameter
has to be chosen from (2.6) with equality! This cannot be realized when allowingdiscrete
regularization parameters. Therefore Hanke’s approach does not apply toREGINN in general.

For the Levenberg–Marquardt algorithm with the weaker condition (2.6) we could prove
convergence rates.

In the present paper we gave a regularization analysis for inexact Newton iterations
furnished with a rather general class of inner regularizations, see (4.7). For the first time,
the linear decrease of the nonlinear residuals could be shown and convergence rates have been
established. Moreover, our analysis gave rise to a dynamic selection strategy for the tolerances
which greatly improves the performance of our algorithm.
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