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Abstract. Inexact Newton methods for the stable solution of nonlinear ill-posed problems are
considered. The corresponding inner scheme can be chosen to be any linear regularization with a
sufficient modulus of convergence. The regularization property of these Newton-type algorithms is
verified, that s, the iterates converge to a solution of the nonlinear problem with exact data when the
noise level tends to zero. Moreover, convergence rates are given. Finally, implementation issues
are discussed and the algorithm is applied to a parameter identification problem for an elliptic
PDE. The numerical results reproduce nicely theoretical predictions and show the efficiency of the
proposed method.

1. Introduction

We consider the stable solution of the nonlinear problem
F(x) =)’ (1.1)

whereF : D(F) C X — Y operates between the Hilbert spa&eandY. Here,D(F) denotes
the domain of definition of". In (1.1) y° is a perturbation of the exact but unknown data
y = F(x") satisfying

ly —»lly <8 (1.2)

with the a priori knownnoise leveb > 0. We call (1.1)ill posedif xT, the solution of (1.1)

with exact data, does not depend continuouslyorny algorithm for solving (1.1) has to
take care of this instability. Algorithms computing approximations frgnto x in a stable

way are namedegularizations.

Suppose, throughout the paper, tifats compact and continuous amd F) is infinite
dimensional. Then (1.1) is ill posed (essentially), see, e.g., [7, proposition 10.1].

The theory of regularization for linear ill-posed problems has reached a certain maturity,
if not its final state, see, e.g., [2,7,19, 21].

The investigation of regularizations for nonlinear ill-posed problems is still in its infancy
though considerable results have already been obtained. Basically, three concepts from the
linear theory have been carried over to the nonlinear situation to a certain extent. Those
are the Tikhonov—Phillips regularization (see, e.g., [5, 8, 20]), iterative regularizations (see,
e.g., [1,3,13,14,16,17, 23]) and the approximative inverse approach (see [22]).

Nonlinear ill-posed problems are of growing interest in the applied sciences. For instance,
the mathematical modelling of ultrasonic, electrical impedance and microwave tomography
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leads to such kinds of problem, see, e.g., the recent proceedings volumes [9, 10] on inverse
problems in applications edited by Engl, Louis and Rundell.

The paper is organized as follows. In the next section our algorithm of inexact Newton
type is formulated and the mathematical set-up is introduced. An inexact Newton method
consists of two components: the outer Newton iteration which updates the current iterate and
an inner scheme which provides the update by approximately solving a local linear version
of (1.1). As inner scheme we allow any linear regularization method with a sufficient modulus
of convergence, forinstance, thikhonov—Phillipgegularization, th&runcated singular value
decompositionthe Landwebeiiteration, and the-methods The inner scheme is stopped as
soon as the relative (linear) residual is less than a given tolerance. We will show in section 3
that this stopping criterion is well defined whenever the tolerance is not too small.

To terminate the outer iteration we rely on a discrepancy principle, that is, we accept the
first iterate as an approximation td which yields a (nonlinear) residual having roughly the
order of magnitude of the noise level. In section 4 we verify termination of the outer iteration
by showing that the (nonlinear) residuals decrease linearly.

Our inexact Newton iteration is a regularization scheme which we will prove in section 5,
that is, the iterates converge to a solution of (1.1) as the noisedégatls to zero. Moreover
we determine the rate of convergence which is (almost) optimal under the source condition we
use.

The efficiency of our algorithm depends on the choice of the tolerances. We propose a
dynamic selection strategy based on our convergence analysis (section 6).

In section 7 we report on numerical experiments with respect to a parameter identification
problem for an elliptic PDE. This nonlinear model problem satisfies our theoretical
prerequisites. Indeed we are able to reproduce some of our analytical predictions on the
performance of the algorithm.

The relation between our inexact Newton method and other iterative techniques to
regularize (1.1) will be discussed in the final section.

2. The algorithm and preparatory considerations

One step of the Newton iteration applied to (1.1) consists in solving a linearized version of
(1.1). Suppose we have an approximatignto x™. Then we get the new approximation
Xp,+1 = X, + 5, Where theNewton correction,, is computed as a solution of

F'(x,)s = y° — F(x,) := b, (2.1)

Here, F' : D(F) — L(X,Y) is the Fechet derivative of" which we assume to exist as a
continuous mapping.

Unfortunately, (2.1) is a linear ill-posed problem sinE&v) is a compact operator for
all v e D(F), see, e.g., [24, proposition 7.33]. Furthermore,rtbelinear defecb’, is not the
exact right-hand side for computing. Theexact Newton update := x" — x, is a solution
of

F'(x)s8=y—F(x,) — Ex', x,) = b, (2.2)
where

E(w,w) = FWw) — F(w) — F'(w) (v — w)
is the remainder term of the first-order Taylor expansion. Hence,

165 — bally <8 +IE&T, x)lly and b, € R(F'(x,)). (2.3)
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The noise in the right-hand side of (2.1) is twofold. One part comes from the noiske in
whereas the other part is introduced by the linearization.

To obtain a useful approximatiopto s® equation (2.1) needs to be regularized. A general
regularization scheme applied to (2.1) gives the Newton update

Sp = Sn,r = 8r (A: An)AZ ()’8 - F(xn))

whereA, = F'(x,) andg, : [0,0] — R, 0 = ||A,|? is a piecewise continuous function.
The parameter > 0 is calledregularization parameter

Example 2.1.Let us look at five examples of regularization schemes.

1. The choiceg,(r) = 1/(t + 1/r) leads to theTikhonov—Phillips regularizatiorwhere
g (A*A,) = (A*A,+r~1 I)~1. HereREGINN is the variation of th&evenberg—Marquardt
algorithm investigated by Hanke [13].

2. Thetruncated singular value decompositincharacterized by, (1) = 1/¢,fort > 1/r
andg,(¢) = 0, otherwise.

3. Ifg.(r) = Z’];é(l—t)f and| A, || < 1thenwe have theandweberegularization which
is an iterative regularization technique.

4. Other iterative regularization schemes are given byitieethods(v > 0) due to
Brakhage [4], see also Hanke [12]. For scaled that is, ||[A,|| < 1, the function
g has the representatign(r) = (1 — P (1))/r where B (1) = P2 V> Y21 -
21)/ P2~ Y2712 1) with PP denoting the Jacobi polynomials.

5. Theconjugate gradienmethod is a further iterative regularization scheme wiheris a
polynomial of degree — 1. It differs from the first four examples in its nonlinearity, that
is, g- (A% A,) is a nonlinear operator.

In all the examples abovg (A% A,) Ay provides an approximation tﬁ):[y fory e D(A:[)
whereA! is the pseudo-inverse df,, see, e.g., [7, 21].
Our iterative scheme for solving (1.1) in a stable way now has the form

Xpr1 = Xy + g, (A% Ay) A% (¥’ = F(x) n=0,12... (2.9)

with an initial guess;y € D(F). Here we face two problems.

First, the Newton iteration has to be stopped in time to avoid noise amplification. This
will be done by aliscrepancy principlethat is, we choose aR > 0 and accept the iteraig,
as an approximation te' for which

Iy = FGem)lly S RS < |y — F(xo)lly k=0,...,.N—1 (2.5)

holds true.

Second, we have to supply a sequefigé of regularization parameters which allow for
a good approximatiom, ;, tos:. All known a priori anda posterioriselection strategies for
i, call for a precise knowledge of the noise leyé] — b, ||y in (2.1). In view of (2.3) we
realize that this knowledge is not easily at hand evehid known. Since we have to rely
on computable quantities we determipeas the smallest € N such that the relative (linear)
residual is smaller than a given tolerance€]0, 1]:

”Ansn,r - bf;”Y/”bZ”Y < Up. (26)

Algorithm REGINN, see figure 1, realizes our approach and belongs to the classxafct
Newton iterationssee, e.g., [18]. Thehile loop implements the outer (Newton) iteration
and therepeat loop determines the correction step for the outer iteration. In the language
of inexact Newton iterations for well-posed problems the toleratjagk are calledforcing
terms



312 A Rieder

REGINN(x, R, {i,})
n=0, xo=x
while [|F(x,) — y’|ly > RS do
{ i,=0
repeat
i,=i,+1
Sn,in, = 8in (F/(Xn)*F/(X,,)) F/(xn))k (y5 - F(X,,))
until ”F/(xn) Sn,iy + F(xn) - yts”Y < MUn ”F(xn) - yBHY
Xp+1 = X, + Sn,iy
n=n+1l

X =X,

Figure 1. REGINN: REGularization based obNexactNewton iteration.

There is a difference in quality between the first two and the last three schemes from
example 2.1 when it comes to an implementatiorRB&INN. The first two regularization
schemes require an explicit expressiomgf{respectively of a matrix version thereof). If such
explicit representations are available at all then only under additional computational effort,
see, for instance, the example in section 7. In contrast, the iterative regularizations only need
the operator—vector products,v andA*w to be implemented.

Primarily we are interested in using iterative regularizations in the inner loBRGIfNN.
Therefore we assume thAt is scaled such that

IF ] <1 for all v € D(F). (2.7)

3. Termination of the inner loop

In a first step towards an analysis of the algoritRB&INN we verify the termination of the
repeat loop provided suitable,’s are given.

We recall that thediscrepancy principleapplied to the regularizationfg, },cn from
example 2.1 returns a well defined stopping index, see, e.g., [7] or [21]. Thysif 1
then there exists a smallest indexe N, the stopping index, such that

”An sn,rs - b; ”Y <TE¢ (31)

where||b; — b,y < e.

Inthe case whe# is alinear mapping, algorithREGINN coincides with the regularization
scheme within itsepeat loop. For details see the following lemma. Its straightforward proof
is omitted.

Lemma 3.1. Let{g,} <y Satisfy (3.1). SupposE is a linear operator and letg € X satisfy
| F(xo) — ¥’|ly > R& whereR > 1 (otherwise accepto as an approximation ta™). Then,
for any uo = 1o /|| F(x0) — ¥°|ly with 7o €]1, R], algorithmREGINN stops after the first
outer iteration. MoreoveREGINN reduces to the regularization methdg. }, <y stopped by
the discrepancy principle (2.5).

Next we stipulate the local property (3.2) for the nonlinear funcfionetQ : X x X —
L(Y) be a mapping such that

F'(v) = Q(v, w) F'(w) and 1= Q@, w) < Collv—wlx 3.2)

for all v, w € B,(x"), the ball about™ with radiusp. We refer to [16] for a discussion of
(3.2) and for examples of operators fulfilling (3.2), see also [7]. Tleket derivatives of
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nonlinear operators with property (3.2) have a null space which is invarian", that is,
N(F'(v)) = N(F'(w)) for all v, w € B, (x").
Hypothesis (3.2) yields the Lipschitz-like estimate (3.3Bj(x"),

I(F'(v) = F'(w)) (v = w)lly < Co llv—wlx IIF'(w) v — wlly (3.3)

which, in turn, implies that
1
1@l < [+ 10 =) = F)] 0 = w) ], d

C /
< 79 v —wlix [F'(w) (v —w)ly

in Bp(x*). LetCy p < 1. Then, the latter displayed inequality in combination with the inverse
triangle inequality gives

[F(v) = Fw)|ly = (1—Cgp) [F'(w) (v —w)ly (3.4)
so that finally
IE(w, wy <o ||F() — F(w)]|ly forallv, w € Bp(xT) (3.5)

wherew := Cgy p/(1— Cg p). Note thatw < 1forCy p < 1/2.
Employing (3.5) we are able to estimate the data efdr— b, ||y in terms ofs, » and
the nonlinear defect

dy =11y = F@lly = 16,1y
We have, forx, € B, (x"),

IEGT, x)lly S @lly — Fa)lly <o (ly — ¥ lly +dy) < 08+ wd,.
Thus

b, = bully < A+w)d+wd, '=¢ = &(xy, 9).
We are finally in a position to deriveufficientconditions onu,, to stop therepeat loop.

Lemma 3.2. Let{g,}, <y satisfy (3.1) and let (3.2) hold true witty, p < 1/2. Further assume
thatx, € Bp(xT). If R > (1+w)/(1—w) thentherepeat loop of algorithnREGINN terminates
for any

Q+w)s
y € |o+ 1]

o & Jor =5

Proof. We will show that the stopping criterion of algorithREGINN can be rewritten as the

discrepancy principle (3.1) withg > 1. This guarantees termination. We have that

Mn dn Mn
= >1
e(xn,8)  (Q+w)d/d, +w

Sinces < d, /R (otherwise the outer iteration would have been stoppedwy)tbur hypothesis
onRgives(1+w)d/d, +w < (1+w)/R+w < 1. a

n ~—

(3.6)

Throughout the paper and without further notification®eand 1, be chosen such that
(3.6) holds true for, € B,(x"). Also, let{g, },y satisfy (3.1) always.
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4. Termination of the outer iteration

We will show that the nonlinear residuals decrease linearly.

Lemma 4.1. Suppose that théth iterate x; of algorithmREGINN is well defined and lies in
B,(x"). Further, let (3.5) hold with

w<n/(2+n) for one n<l1 (4.1)

(this will be true, for instance, ip is sufficiently small). If, furthermore,

l+tw 1+w)$é
> — and + , n— 1+ 4.2
G e Mke]w A n)w] (4.2)
as well asx+1 € B, (x") then
s _

Iy’ = Fd)lly _ o+ o (4.3)

IV —Fplly  1-o

Proof. Before we start proving (4.3) we discuss the assumptions,dhandu,. The bound
onw implies that the denominator of the lower boundrois positive. The lower bound oR
guarantees that + (1 +w)/R is smaller them) — (1 +n) w which is the upper bound fqr,
yielding (ux + w)/(1 — w) < n. All parameters satisfy the requirements of lemma 3.2 so that
sk, 1S well defined.

SinceF (xi+1) — y8 = Aksk,ik + F(xy) — y8 + E (x3+1, X;) We obtain

IF (eeen) — ¥ lly < sk IF () — ¥ lly + @ |1 F (eeen) — F () lly

<k 1FG) = Y lly + o (1F () — Y2 lly + I1F o) — ¥0lly)
which readily implies (4.3). a

The key estimate in the proof of the lemma from above can be traced back to
Hanke [13, equation (2.10)].

In the setting of lemma 4.1 we have that the residuals decredisearly uniformly
iné € [0, 8] foras > 0 small enough. This implies terminationREGINN.

By 7] € Z fort € R we denote the greatest integér] <t < [¢] + 1.

Theorem 4.2. Adopt the assumptions (4.1) and (4.2)@nR, and thew,'s from lemma 4.1.
Suppose further that all iterates; }; stay ian(xT).
If do = ||y* — F(x0)|ly > R 8 thenREGINN terminates after

N () < |log,(R3/do)] +1 (4.4)
outer iteration steps for ald < § < 5. Moreover,
R+1
N
||A(x —xN(rS))”y < m 8 ass - 0 (4.5)

whereA := F’(x").
Proof. The bound (4.4) foiv (8) follows directly from lemma 4.1 since

IF Ca) = ¥Plly < 0 IF (o) = ¥°lly- (4.6)
We infer from (3.4) and (1.2) that

y = FG)lly )
< 5+ —F
T Cys S1scgp I - FGIY)

fork € {0,... N(§)}. Especiallyk = N (8) together with (2.5) yields (4.5). O

Jaat -], <.



Regularization via inexact Newton iterations 315

Let us discuss (4.5). Observe thiat - ||y is a norm orN(A)=* being, in generalveaker
than the standard norm da If we startREGINN with xo € N(A)* then all iterates will stay in
N(A)* = R(A*) due to (2.4) and (3.2). Inthe casexdfe N(A)*, the estimate (4.5) describes
norm convergence. This is a result which carries over from the linear to the nonlinear situation.
For our further analysis EGINN we restrict ourselves tinear regularization schemes
{gr}reng, g0 = 0, satisfying the assumptions (4.7) below wjiih(¢) := 1 — ¢ g.(r). Let us
assume the existence of positive constantsC,, anda such that
sup g, ()] < Cyr” sup |p, ()] =1 sup |t p (D] < Cpr™. (4.7)
1€[0,6] 1€[0,6] 1€[0,6]
From now on the conjugate gradient method will not be considered anymore.

Example 4.3. The first four regularization schemes from example 2.1 satisfy (4.7).

1. Tikhonov—Phillips regularizationC, = C, = a = 1.

2. Truncated singular value decompositi@. = C, = « = 1.

3. Landweber regularizatiorC, = o = 1 andC, = exp(—1).

4. v-methods ¢ > 1): @ = 2, sharp estimates f@r, andC, are difficult to obtain.

Next we supply a norm estimate of;, = g, (A;Ax) A;b; whereA, = F'(x;). The left and
middle relations in (4.7) as well as standard arguments, see, e.g., [7] and [21], lead to the norm
bound (4.8) for the operatdt;, := g;, (A Ax) A},

IR, || < Cri®  Cgi=./2C,. (4.8)
So we get
Isksllx < Cr i l1y® = Foe) v (4.9)

In the following we bound the stopping indéx According to the definition of,, cf (3.1) and
(3.6), we have, for; > 2,

T £(xk, 8) < || Ak Skip—1 — by lly
< NI pig—1(Ax AD brlly + 1| pip—1(Ax AY) (b — by

< N pi-1(Ax AD Arsglly + e (xx, ).

In the last step we used relation (2.2) for the exact Newton updatex™ — x; and we used

the standardization of thg,’s in (4.7). To proceed we assume there existg. & Y so that

sg = Ajwi (we will comment on this assumption in lemma 4.5 below). Hence, by the right
relation in (4.7),

£(t 8) < Cp !w"_” T =D (4.10)

Altogether we are able to verify the following lemma.

Lemma 4.4. Let{g, } <n, fulfil (4.7) and assume thay, is well defined. Further, let there be
awy € Y sothats; = F'(xx)* wi. Then, there exists a positive constant< max{1, 2* C,}
such that

1/

i < <c, ”w"”Y) e(xp, 8) Ve, (4.11)
Tk — 1

Proof. First, we consider the cage> 2. From (4.10) we obtait, —1)* < C), llwilly /(T —

1)/e(xi, 8). Sinceif < 2% (ix — 1)* the inequality (4.11) is established with = 2% C,,. In

the case of;, = 1 the trivial estimatey, e (xx, 8) = e 167 ly < 161y < |blly +&(xx, §) and

(2.7) readily imply (4.11) withC; = 1. |
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Lemma 4.5. Suppose that the firgtiterates{xy, . . ., x,,} of algorithmREGINN are well defined
and stay inB, (x"). Moreover, let the initial guesg, € B, (x") be such that
sg = F'(x0)" wo for onewg € Y. (4.12)
Then,
k—1
s = Al wy with wy = Q(xo, x¢)*wo — » | Q(xj, x)* gi, (A; AN b (4.13)
=0

fork=1,...,n,whereA; = F'(x;) and Q is the mapping from (3.2). Furthermore, if (4.7)
applies then

lwelly < Co M+2) A +Co ) lwolly  k=1....n (4.14)
where
Cg Cl ~ . . ~
A=—"—7+C, with ¢ = min{zo, ..., 7,—1} andC, = sup sup ¢ |g,(¢)| < 2.
-1 reN t€[0,6]

The constanﬁg is an upper bound of): ||Q (v, 2)|| < 5Q forall v,z € Bp(x’r).

Proof. Rewritesf = s§ — Y5, and note that§ = A} wo = A} Q(xo. x1)* wo as well as

sji; = A% g (A; Af;_) b: = Aj Q_(xj, xK)* gi;(Aj AY) bE. T_he first assertiorj follows readily.
From the relation on the right of (4.13) together with (4.7) we obtain that
k—1

lwelly < Co <||wo||y +> " (llgi, (A; A @5 = bp)lly + g, (4; Aj)b,ny))
j=0
- k—1
< Cy <||w0||Y + Z (C, i e(xj, 8) +llgi (A; AD)Aj Aj'ijY))
j=0

< Co (Iwolly + (fg_ci + ﬁg) jX_; lw;lly)
where we used (4.11) for the last inequality. The second assertion of lemma 4.5 follows now
inductively. a
For convenience we simplify (4.14) to
lwelly < Cw A* lwolly with A := 1+Cy A. (4.15)
By (3.2) condition (4.12) can be rewritten as
xt = xg € R(F/(xT)") = R((F/(xT)*F/(xT))l/2> (4.16)

and is calledsource representatigrsee, e.g., [7]. It is an abstract smoothness assumption on
)CT — X0-.
Under certain assumptions the linear decrease of the nonlinear residuals carries over to

the Newton steps.
Lemma 4.6. Let (3.2) and (4.7) hold true. Let (4.12) apply for the initial guesse B, (x")

and assume that the firgtiterates{x, ..., x,} stay inB, (xT.
Letr > 1. Further, let (3.5) hold true for
Ui

o< —-
n+l+1)
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wheren := o/A witho < 1and A from (4.15). Finally, choose

1+ l+w)s

R > rd+w) and Mke[r(a)+&

n—wm+@+1)) dy
fork =0,...,n. Then,

Iskillx < Cs lwolly® I1y* = Fxo) 72 o*72 (4.17)
whereCs = Cg /C; Cy t/(x — D/m withm = min{uo, ..., ta} = 7 (0 +8 (1 +w)/do).
Proof. For adiscussion of the restrictions@mndR see the opening of the proof oflemma4.1.
The lower bound on thg,'s yieldst;, >t > 1,k =0, ..., n, cf(3.6).

Recalling (4.9), (4.11) and (4.15) we find that

C; Cw |lwolly _
lsiillx < Cr || =———7—— A e (x, 872 |1y — F(xi)lly-
v -

The proof of (4.17) is established when applying (3.6) and (4.6) to the right hand side of the

>, n—(1+n)w]

above inequality. O
Using (4.17) we easily see that the Newton iterates stay in the ball with radius
o llwoly® Iy? = Fxo) I
a=a(d):=Cg
1-./o

about the centre,. Hence, we may abandon the condition that the iterates stBy(ir) (see
theorem 4.2 and lemmata 4.5 and 4.6) by the following assumpBgg:(xo) C B, (x"). This
may be interpreted as a closeness assumptiag amich is typical for Newton-type methods
where we can expect local convergence only.

Our next result shows that the reduction ratg,/d; for the nonlinear residuals
approximates the tolerangg as the iteration progresses.

Corollary 4.7. Adopt the assumptions of lemma 4.6. Further, chagseich thatB, ) (xo) C
B,(x"). Then, fork =0,..., N() — 1,
Iy — F (s lly - w = k2
= < min , e+ C 0/} 4.18
1> — F(xo)lly - 7770 (4.18)
whereCs = Cg Cs lwolly? 11y’ — F(xo) 1%

Proof. Due to (4.3) it suffices to verify thak.1/d; < jux + Cs o*/2. Letr i= F'(x;) sii, +
F(xx) — . We have

F(xar) — Y = Flx +se) — Fx) + Fg) — »°

1
= / (F'(x + 1 53) — F'(x) sk, 0t +r.
0
We apply (3.3) which yields

Iy* = F () lly < C—ZQ ki llx [1F o) sk lly + el
Note that||r¢]ly < [|y® — F(x)|ly. Thus,
IF G s lly < relly + 11y = FOolly < 2101y° = FOally-
From both latter inequalities we deduce that
Iy = Fsd)lly < (Co liskilix + i) 1y° = F@lly-
Now, the assertion follows from lemma 4.6. a

Our above results yield convergence of the Newton iterateSitothe noise-free situation.
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Theorem 4.8. Adopt the assumptions of lemma 4.6 butSlet 0, that is, the right-hand side
of (1.1) is known exactly. B, (xo) C B,(x") then

Ix" = xell = O(c*7?) ask — oo.

Proof. We infer from (4.13) and (3.4) that

2
It — xell% = (8, F/ o) wi)x < ITF () sElly Nlwlly

llwilly (4.19)
<—— —F
1—Cop ly = F(xolly
which implies the assertion by (4.6) and (4.15). |

5. Regularization property

We will prove the regularization property of the algoritBEGINN, that is, the convergence of
XN to xT ass — 0 whereN (8) is the finite stopping index of the outer iteration according
to theorem 4.2.

Theorem 5.1. Let the assumptions of lemma 4.6 hold true andlg) (xo) C int(B,(x")). If
do = ||y? — F(x0)|ly > R & (for instance,F (xo) # y ands sufficiently small) then

R+1 A oGy, A
||xT . ||x < Cw ( ) ”wO”Y @ (S(l—logl/,7 A)/2 (5_1)
1-— CQ 1% R

ass — Owhere0 < log, , A < 1.

Proof. Note that the elements of the Newton sequence producBe8¢INN depend ord, that
is,x; = x,f, k=1,..., N(8). SinceB,q)(xo) lies in the interior opr(xT) there exists @ > 0
such thatB, ) (xo) C B,,(xT) forall0 < § < 8. The estimates (4.19) and (1.2) together with
(2.5) and (4.15) imply

lwnelly

S+|y = F
1—CQp( Iy (xne)lly)

2
IxT — xne % <

< Cw (R+1) |lwolly ANG® 5
1- CQ P
Since N(8) < log,(Ré8/do) + 1, see (4.4), we obtain that¥® < A AlHR/D
A (R 8/dp)°% . Further, log A = —log,,, A which verifies (5.1). Finally, I A < 1/n,
see lemma 4.6, is equivalent toQlog, , A < 1. O

SupposeF is a linear mapping, see lemma 3.1. Thé) = 1 forall§ > 0 andCy p
may be considered zero. Furthgw|ly < (1+X) Jwolly, see (4.14). The technique of proof
of theorem 5.1 gives now the error bound

Ix" = x1llx < VR+D @ +n) wolly? 842,

The latter error bound reflects exactly the order optimality of the linear regularization schemes
{gr}ren, (4.7) applied to a linear problem under the source conditions (4.12) and (4.16),
respectively, see, e.g., [7, 21].

In the nonlinear case, {fwy s, lly is uniformly bounded irf, that isA = 1, the iterates
{xn() }s>0 converge with order [2: ||xT—xN(5>||X = O(\/X) ass — 0. Hence, the optimality
result carries over from the linear to the nonlinear situation.
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6. Choosing the tolerances

In implementing algorithn REGINN we have the freedom to select the sequence of tolerances
{ur}. Our analysis includes non-constants within certain limits, see lemma 4.1. We like to
choose the tolerances dynamically such that the overall nu@ﬁ’é )~1 ;. of passes through
therepeat loop becomes rather ‘small’.

To this end we try to minimizé/ (8), the number of Newton steps, by allowing thgs to
be small. However, the tolerances should not be too small to avoid noise amplification while
solving the linearization (2.1). In the starting phase of algoriBB®INN the nonlinear defect
will be relatively large and theepeat loop will terminate in spite of a small tolerance.

We therefore start with a small tolerance and increase it during the Newton iteration. This
is in accordance with (4.2). Anincrease of the tolerance will be indicated when the number of
passes through theepeat loop of two successive Newton steps increases significantly. The
tolerances shall be decreased by a constant factor whenever the consecutive numbers of passes
through therepeat loop drop.

We propose the choice (6.2). Chogsg,rt €]0, 1, v €]0, 1], and letiig = 1 = ustart
Fork=2,..., N(§) — 1define

ip—2

1- — Q- 1) -1 2 -2
i o= L1 ot e (6.1)
Y k-1 otherwise
and choose
[t = pmax- Max{R - 8/IIF (xi—1) — ¥ lly, Fix} k=0,1,....,N©) -1 (6.2)

whereumax €] istars 1[ bounds theu,'s away from 1 (uniformly ink ands). The parameter
max Should be very close to 1, for instangg,ax = 0.999 is reasonable. We know that the
repeat loop may not terminate if the tolerance is too small. A rapid decrease of the tolerances
should be avoided therefore. Restrictingp the interval [09, 1] has proved quite satisfactory

in our numerical experiments.

Inthe following section we demonstrate the performance of the algoRE®TINN together
with the strategy (6.2) whergesiis as small as Q.

In defining theu,'s from the auxiliaryji,'s we incorporated aafeguardingechnique to
prevent oversolving of (2.5) in the final Newton step. The idea is obvious: if the nonlinear
defect ofxy 1 is already close t@ - § it is superfluous to reduce it in the last step possibly
far beyond the desired level by the facfogs)—1. Safeguarding is a standard procedure in
inexact Newton methods for well-posed problems, see, e.g., [18, section 6.3].

Remark 6.1. Ourtolerance selection scheme (6.2) can be modified in an obvious way. Replace
the quotienti;_»/ix_1 by Q(ix_2/i;r_1) in (6.1). The functiorQ : [0, 1] — [0, 1] should be
strict monotonically increasing wit (0) = 0andQ(1) = 1, for instanceQ(t) = t#, 8 > 0.
For 8 < 1 (B > 1) the respective tolerances will increase slower (faster) compared to our
choice (6.1).

Further, the factory = y, may also be determined from the ratja;/ix—>.

7. Numerical experiments: a model problem

We present numerical experiments for a parameter identification model problem from interior
measurements. Because our main assumption (3.2) is satisfied the model problem is well
suited to study the performance of the algoritRBGINN. Indeed we will see that some of
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our theoretical assumptions have exactly the impact predicted by our analysis of the former
sections.
We would like to reconstruet in the 2D-elliptic problem
—Au+tcu=f in Q

(7.1)
u=g onaoQ

from the knowledge of in  =]0, 1[%. In (7.1),A is the Laplacian. Further, € L?(2) and

g is the trace of a function if?(Q). Let F : D(F) — L?(Q) be the operator mapping the
parametet to the solution: of (7.1). Herep(F) = {c € L%(Q) | |lc —¢]| ;2 < B for somer >

0} for a positiveg small enough, see [6, lemma 2.1]. Identifyinthus reduces to solving the
nonlinear problem

F(c) =u. (7.2)

If u has no zeroes i then we can solve (7.2) far explicitly: ¢" = (f + Au)/u thereby
showing that (7.2) has a unique solutighwhich does not depend continuously on the data.
Hence, the direct inversion formula is useless if only perturbed:dadiae available.

Hanke, Neubauer and Scherzer have been able to verify (3.2) in the vicinity of any
¢ € D(F) such thatF(c) > 0 a.e., see [16, example 4.2]. Consequently, we should be able to
reproduce some of our theoretical results when applying algo®REGANN to the parameter
identification problem (7.2).

The Féchet derivativeF’(c) : L?(Q) — L?(Q) is given by

F'(c)v=—L() v F(0)) (7.3)

whereL(c) : H?(Q) N H}(Q) — L%(Q) is the differential operatof(c)u = —Au + cu,
cf [6,lemma 2.4]. Hence, the abstract smoothness condition (4.16) in the present situation
reduces to

(c" = co)/F(co) € H*(Q) N HF (), (7.4)

especially(c’ — co)|sq = 0.
For our numerical approach we discretize (7.1) using finite differences, see e.g. [11] for
the following notation. We approximate the action®bnu in (x;, y;) by the difference star

0 -1 0
Lu(xi,y))~h™2| =1 4+hc(x;,y) -1 |u(x,y)).
0 -1 0

Here,h = 1/n + 1), n € N, is the discretization step size and the grid points are
(xi,y;)) = (@Gh,jh), 1 <i, j < n Proceeding in the standard way using lexicographical
ordering of the grid points and incorporating the boundary constraints into the right hand side
yields then? x n?-linear system

A+Qu=Ff
whereA is the matrix belonging to the difference star-eA andC = diag(cs, . .., ¢,2) is the
diagonal matrix with entrieg,; j, = c(x;, y;). By £ : {1,..., n}? — {1, ..., n% we denote

the lexicographical ordering. Please note thaf ;) = u(x;, y;) + O(h?) ash — 0 foru
sufficiently smooth.

In this discrete setting we would like to recoverfrom . Again, in the presence of
noise, the direct reconstruction formula= (f — Au),/u, is useless. Instead we consider
the nonlinear equation

FC =u (7.5)
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with F : R” — R" defined byF(C) = (A + C)~! f. The functionF is differentiable with
Jacobian

F'(Cw=—(A+C)"}(F(C) O w) (7.6)

where ® denotes the component-wise multiplication of vectors. Similar to the infinite
dimensional setting we can verify (3.2) fét.

For our numerical experiments we have chosen the following set-up: the parameter to be
identified iscT(x, y) = 1.5 sin(4x x) sin(6x y) + 3((x — 0.5)2 + (y — 0.5)) + 2, see figure 5
(top). Further,f andg have been selected such thé&t, y) = 16x (x — 1)y (L —y) +1is
the solution of (7.1) with respect td.

As the perturbed right-hand side of (7.5) we worked withu® = u + §v. Here,
we,j) = u(x;, y;) andv = z/||z|l, with z being a vector with random entries uniformly
distributed in -1, 1]. Hence,||lu — ¥’|, = § measured in the weighted Euclidean norm
I -1ln = h| - |l onR" which approximates th&2(2)-norm.

The eigenvalues of are known explicitly, see, e.g., [11]. Thus,

IF'©)lln < 1A+ 21 £l < IATHZ FI < Lo (_zhiz_ ‘ £
" hASES WIS 478\ sinGr h)2) "

for C > 0. The scaling requirement (2.7) will be satisfied automatically in our computations
below. We are thus allowed to use themethod,v = 1, as inner regularization scheme
throughout.

In our first experiment we shall illustrate the regularization property, see theorem 5.1, and
the growth behaviour a¥ (8) as§ — 0, see theorem 4.2. In order not to pollute the asymptotic
behaviour by other effects we fix;, = 0.995. We start our Newton iteration on (7.5) with
Co = diaQXcg), Cg(i,/') = co(x;, xj), where

co(x,y) =3((x — 052+ (y—05)+2+48x (x — 1)y (1—y) (7.7)

which satisfies (7.4).

The results presented in figures 2, 3 and 4 are based on the par&net8r see (2.5),
and the discretization step size= 1/100.

Figure 2 displays the relative errdiCye) — CTll,/ICT|lx for § € {1070+V/72|r =
1,...,11} whereC' is ¢! evaluated at the grid points. Since both coordinate axes in figure 2
are scaled logarithmically the linear decrease of the error with a slope of atirtdicates
that||Cye) — C'll, = O(8Y/?) asé — 0. This is the optimal rate according to our theory,
see (5.1).

The curve of the semi-logarithmical plot in figure 3 demonstrates the asymptotic relation
N(8) = O(llog 8|) asé — 0, see (4.4), which is, in turn, a confirmation of the linear decrease
of the nonlinear residuals. Recall that~ w; for k large, see (4.18). Thus, the slope of

1
<
_—
10t \"\
102 I~
>
103 s
101 102 10°3 10 10°5 10

Figure 2. Relative error versus noise lev2{u; = 0.995 for allk).
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Figure 3. Stopping indexV () versus noise levell (i, = 0.995 for allk).
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Figure 4. The overall numbe[,iv(‘é)’l ix of inner iteration steps versus noise ledelSolid line:

ur = 0.995 for all k, dotted and dashed linegt;, chosen according to (6.2) wittagtart = 0.1,
umax = 0.999, wherey = 1.0 (dotted withx) andy = 0.9 (dashed with).

the curve in figure 3 matches perfectly with its theoretical vaiig log 0.995 ~ 459 for
§ <1078, i.e,, N(107*2/2) — N(10~0*D/2) ~ 459/2 forr =5, ..., 10.

Replacing the static tolerance strategy—= 0.995 for allk by the dynamic strategy (6.2)
improves—as expected—the efficiency of algoritkiBG INN. In figure 4 we plotted the overall
numbers; := Y~ @~'i, of inner iteration steps versus the noise léeThe numerical value
of S; is a reliable measure for the computational effort. Hence, figure 4 shows clearly that the
dynamic strategyystart = 0.1, tmax = 0.999,y = 1.0 respectivelyy = 0.9) outperforms the
static one. Please note that both tolerance choices lead to the same relative errors displayed
in figure 2. The stopping indice8 (§) relative to the dynamic strategy are rather small, for
instance N (10°%) = 32 (y = 0.9).

Now we demonstrate the mode of action of our tolerance selection strategy (6.2) more
explicitly. The effects of using (6.2) can be studied by looking at tables 1 and 2. For
§ = 10%2, R = 1.5, justart = 0.6, umax = 0.999, andy = 0.95 the convergence history
of algorithmREGINN is listed in table 1. The discretization step sizehis= 1/64. By
d; == |F(Cy) — u’||, ande, := ||Cr — CT|l»/lICT|l» we denote the nonlinear defect and the
relative error of theith Newton iterate, respectively. We observe the following.

e The tolerances decrease by the fagtor umax (respectivelyumax) during the iteration
whenever the stopping indices of the inner iteration drop (respectively do not change) for
two successive Newton steps.

e The ratiod /dy_1 tends tou,_1 from below askt goes toN (§), cf (4.18).

e The safeguarding technique indeed prev@R&INN from unnecessary work in the final
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Table 1. Convergence history adfEGINN with respect to the tolerance selection (6.2) where
tstart = 0.6, tmax = 0.999, andy = 0.95.

k-1 ir-1  di/di—1  di/(R-8) e

1 0.6 9 0.5149 12.509 0.4282
2 06 8  0.5447 6.814 0.3438
3 0.5694 8 0.5284 3.600 0.3149
4 0.5689 9 0.4968 1.789 0.3056
5 0.6161 50 0.6091 1.090 0.2853
6 0.9300 205 0.9298 1.013 0.1798
7 09861 127 0.9861 0.999 0.1596

7 09819 150 0.9819 0.995 0.1526

step. The rowk = 7' of table 1 shows the final step in the case when safeguarding is
turned off (all other iteration steps remain unchanged).

Safeguarding is more vital for a smallr, See table 2. With the exception@fi,: = 0.1
all parameters are selected as above. Note that the overall number of inner iteratiaf} steps
and the erroey s, are smaller than for the choigeya = 0.6.

Table 2. Convergence history adfEGINN with respect to the tolerance selection (6.2) where
tstart= 0.1, max = 0.999, andy = 0.95.

ko k-1 -1 di/dk-1  di/(R-8) e

1 01 14 0.0826 2.007 0.3056
2 04978 260 0.4974 0.998 0.1410

Finally, we present the graphs of two reconstructiéhgs, to C' respectivelyc’ for
different initial iterates. We ran the algorithREGINN usingé = 0.01, R = 1.4 and the
discretization step size = 1/64. The middle part of figure 5 shows the reconstruction with
respect to the starting guegsfrom (7.7) which satisfies (7.4). The bottom part of figure 5
shows the result for the starting guegs= 2 which obviously violates (7.4).

Though both starting iterates have about the same distance to the exact solution, the
algorithmREGINN started with (7.7) provides the better reconstruction in less than half the run-
time compared to algorithiREGINN started withco = 2. This observation has the following
explanation. Each Newton stepis in the range of”(x;)*. In view of (7.3) we conclude that
i, lae = 0. Thus, the starting guess will not be changed @ras the iteration progresses. This

behaviour for the present example lies in the naturngflgorithm computing the correction
step by approximating the minimum norm solution of (2.1).

8. Discussion and conclusion

We compare our algorithrREGINN to other iterative regularization strategies for nonlinear
ill-posed problems studied recently in the literature.
The following type of iteration4,, = F’'(x,))

Xn+1 = X + 8i, (A: An)A; (y5 - F(xn)) + (I — 8i, (A: An)AZAn)(XO - xn) (81)

has been investigated extensively by several authors, see, e.g., [1,3,17]. We discuss (8.1)
furnished with thea posterioristopping rule (2.5)4 priori stopping strategies are also known).
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There are two differences to our algorithm: the appearance of an additional summand, cf (2.4),
and the regularization parametéysre increased priori by a certain rate.

The additional term is claimed to bring in an extra stability. Indeed, for several linear
regularization schemef,} (e.g., Tikhonov—Phillips regularization, Landweber iteration)
optimal convergence rates have been established under a slightly more general version of
(3.2) and under the source condition

xT—xo € R((F’(xT)*F’(xT))K), 0 < « < Kmax (8.2)

wherexmax depends offg, }.

For our algorithm we have only been able to prove optimal convergence rates=fay 2,
see (4.16). However, we do not need the extra term which means additional numerical effortin
eachiteration step. For instance, if the Landweber iteration is used in (8.1) an extra operator-
vector product with4, has to be performed in each Landweber step! See [17, method 2.8].
If one considers (8.1) with the Tikhonov—Phillips regularization then an implementation is
available requiring only an additional vector subtraction and scalar multiplication per iteration
step, see, e.g., [3]. But the latter variation of (8.1) is expensive by itself since a linear system
with operatorA* A, +i 11 has to be solved exactly in each step. An explicit representation of
A, is not always at hand, see, for instance, our parameter identification problem in the former
section, cf (7.6). Therefore, this method is sometimes impossible to use.

The a priori determination of the inner regularization parameigrim (8.1) makes an
oversolving of (2.5) very likely in the final step.

Tautenhahn [23] suggested another theoretically appealing regularization for (1.1) which
is closely related to (8.1). He also obtains optimal convergence rates under (8.2). However,
the regularizer of Tautenhahn’s method is not given explicitly. It is itself the solution of a
nonlinear (well-posed) equation. From a practical point of view this nonlinear equation has
to be solved approximately by an iteration. This additional approximation process was not
incorporated in the convergence analysis.

Our analysis of algorithrREGINN does not settle the convergencexafs, to a solution
of (1.1) ass — 0 under assumptions weaker than (4.12). Let us consider the source condition
(8.2) for 0 < ¥ < 1/2. We need to find a meaningful upper bound fofcf (4.11) where
the source condition (4.16) enters our analysis). Such an estimate is crucial to show that the
iterates stay in the bal,(x™) by bounding the Newton steps, see (4.17). One, of course,
could try to circumvent this problem by some maodifications which, howewast notaffect
the numerical performance 8EGINN. Hence, adding a stabilizing term or choosing fie
a priori as in (8.1) is ruled out. In our opinion, completely new techniques are necessary to
show convergence (and convergence rates) in the general situation (8.2).

Inexact Newton methods for the regularization of nonlinear ill-posed problems have
already been suggested by Hanke [13,14]. In [14] the conjugate gradignit€ration
serves as inner regularization. Under a slightly weaker form of (3.2) only the convergence of
subsequences @k ys)}s-0 t0 solutions of (1.1) is shown. We could prove convergence in a
weaker norm under (3.5), see (4.5).

One may consider this as a theoretical gap of NevagpnOne may further argue thag
will outperform thev-methods as inner iterations sinogreduces the (linear) residual faster.
Also, in usingcg the scaling (2.7) will be superfluous.

The following two aspects weaken the above arguments.

e Hanke and Hanson [15] proposed a method to guarantee (2.7) almost without additional
effort.

e The v-methods have advantages over tteemethod concerning the stability of the
provided approximative solution with respect to the stopping index. IEthigeration is
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not stopped at the optimal point it diverges more rapidly than semiiterative solvers do, see,
e.g., Hanke [12]. Thus, the Newton correction computeddpwill be very sensitive to
changes in the,'s. The performance of Newtoog under a dynamic tolerance selection
scheme like (6.2) is unclear therefore.

From a theoretical point of view one cannot—at the present time—pass a judgement whether
Newton€gorREGINN with thev-method will perform better. This question has to be answered
by extensive numerical experiments.

We end the discussion by commenting on [13]. The regularization property of the
Levenberg—Marquardt algorithm (first method in example 2.1) was shown under a slightly
weaker form of (3.2) and without a source condition (hence, no rates are given). Hanke’s
analysis, on the other hand, requires another strong assumption: the regularization parameter
has to be chosen from (2.6) with equality! This cannot be realized when allalidcgete
regularization parameters. Therefore Hanke’s approach does not aalgIen in general.

For the Levenberg—Marquardt algorithm with the weaker condition (2.6) we could prove
convergence rates.

In the present paper we gave a regularization analysis for inexact Newton iterations
furnished with a rather general class of inner regularizations, see (4.7). For the first time,
the linear decrease of the nonlinear residuals could be shown and convergence rates have been
established. Moreover, our analysis gave rise to a dynamic selection strategy for the tolerances
which greatly improves the performance of our algorithm.
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