
Evolutionary Algorithms for Neural Network Design and

Training

J�urgen Branke

University of Karlsruhe

Institut f�ur Angewandte Informatik

und Formale Beschreibungsverfahren

D-76128 Karlsruhe, Germany

Email: branke@aifb.uni-karlsruhe.de

January 1995

Abstract

Neural networks and genetic algorithms are two relatively young research areas
that were subject to a steadily growing interest during the past years. Both models
are inspired by nature, but whereas neural networks are concerned with learning of
an individual (phenotypic learning), evolutionary algorithms deal with a population's
adaptation to a changing environment (genotypic learning).

This paper focuses on the intersection of neural networks and evolutionary compu-
tation, namely on how evolutionary algorithms can be used to assist neural network
design and training. The purpose of the paper is to set forth the general considerations
that have to be made when designing an algorithm in this area and to give an overview
on how researchers addressed these issues in the past.

Keywords: arti�cial neural networks, evolutionary algorithms, evolutionary trai-
ning, evolutionary design.

1 Introduction

Apart from tasks that mainly depend on simple arithmetic, the brain is far superior com-

pared to common digital computation: the brain is fault tolerant, can interpret imprecise

information, adapt to new situations etc.

Naturally, scientists in the early 1940s [49] tried to use knowledge gained in neural

biology when they were looking for improvement of conventional computing. As a result,

in analogy to the brain, an arti�cial neural network is composed of many very simple

calculating units (also called neurons) that are connected to form a network. The structure

of the network determines whether one neuron may in
uence another. Weights assigned to

each connection specify the extent of possible in
uence.

0Technical Report No. 322, University of Karlsruhe, Institute AIFB.

Also published in: Jarmo T _Alander, ed_, Procceedings of the 1st Nordic Workshop on Genetic Algorithms
and its Applications. Vaasa, Finland, 1995

1

Despite the fact that the single neurons are extremely simple, the network as a whole

is very powerful. Indeed it has been shown that arti�cial neural networks, if large enough,

can approximate arbitrary continuous functions. (For introductory literature to the �eld

of neural networks, the reader is referred to e.g. [31]).

But although knowing there exists a suitable network for a speci�c problem is important,

�nding it proved to be di�cult. Although there exist some algorithms to set the weights

by learning from presented input/output examples given a �xed topology, these algorithms

often get stuck in local minima. To lead to good results, they strongly depend on problem

speci�c parameter settings and on the topology of the network.

To determine a good or perhaps optimal topology is even more di�cult and has already

been labeled a "black art" [51]. Indeed most often today, an appropriate structure is created

by intuition and time consuming trial and error.

To use evolutionary algorithms as a global and very broad search procedure to assist

neural network design and training seems to be a straightforward idea, especially since the

real brain also is somehow the result of biological evolution.

Evolutionary algorithms (EAs) are a class of probabilistic adaptive algorithms based

on the principles of biological evolution. The three major forms of these algorithms cur-

rently are Genetic Algorithms, Evolution Strategies and Evolutionary Programming. For

a comparison of these representatives see for example [19, 20, 33].

In general, evolutionary algorithms distinguish themselves from similar search algo-

rithms by working on a population of individuals each representing a possible (trial) solu-

tion to the problem. Each individual is assigned a "�tness score" according to how good a

solution to the problem it is.

The algorithm's three main operators are selection, recombination and mutation. Only

individuals that are competitive (according to their �tness value) get the possibility to

survive long enough to produce o�spring by recombination and mutation and thus to

transfer their genetic material to the next generation.

By considering many points in the search space simultaneously, evolutionary algorithms

reduce the risk of converging to local optima. Although they use probabilistic rules to guide

their search, by favoring the mating of the �tter individuals, the most promising areas in

search space are explored.

Past experiences demonstrated that evolutionary algorithms represent e�ective and

robust search algorithms that allow to quickly locate areas of high quality solutions even

if the search space is very large and complex. This quality makes these algorithms well

suited to arti�cial neural network design and training where the search space is in�nite,

highly dimensional and multimodal [74].

The user who wants to apply evolutionary algorithms to solve a speci�c problem has

at least to provide problem speci�c knowledge in the following form:

� representation: evolutionary algorithms work with "genetic" representations of trial

solutions, usually in form of a string of real or integer numbers. The user has to

provide a suitable representation and a function that maps genetic representation

into phenotypic trial solutions.

� performance: a function has to be provided that associates a performance value with

each individual. The performance should re
ect how good or how useful the individual

is to solve the considered problem.

2

� creation of o�spring: the user has to specify operators (e.g. crossover or mutation)

that allow the creation of new individuals given one or two parent individuals. Very

often these operators need repair functions to ensure that the o�spring is a valid trial

solution, or they include local hill climbing to speed up the local �ne tuning.

In recent years, various schemes for combining evolutionary algorithms and neural net-

works have been proposed and there is a large body of literature on the �eld. This article

attempts to give an overview on the subject and to point out the general considerations

that have to be made when working in that area.

The focus lies on problem speci�c aspects, not so much on the applications or test

problems used or GA-design features that do not directly relate to the neural network

problem.

Also, the article does not claim to be complete. For supplementary overviews on the

subject, the reader is referred to [61, 65, 74] or [7] (taxonomy and guide to literature). A

bibliography with 510 related articles can be found in [2].

In most cases, Evolutionary Algorithms have been used to either train the network or

to �nd a suitable topology. This is re
ected in the outline of the paper:

Section 2 is concerned with evolutionary approaches to �nd the weights for a network,

whereas Section 3 focuses on using evolutionary algorithms to �nd the network topology.

In Section 4, evolutionary algorithms to simultaneously develop weights and structure are

covered. Further interesting approaches that do not �t into these categories are dealt with

in Section 5.

In all of the above sections, it is tried to point out di�erent possibilities to deal with

the issues of representation, performance evaluation and reproduction operators.

Finally, Section 6 is concerned with a problem that frequently arises when applying

evolutionary algorithms to neural networks, the so called competing conventions problem.

The paper concludes with some general remarks.

2 Evolutionary Algorithms for Neural Network Training

Given a �xed topology, specifying the weights of a network can be seen as an optimization

process with the goal to �nd a set of weights that minimizes the network's error on the

training set. Unfortunately, the problem's error surface is highly dimensional and usually

contains many local minima.

Nevertheless, the most widely used algorithm for that problem is the backpropagation

algorithm [62] which is a local gradient search method. As such, it is prone to get stuck

in local minima and it needs gradient information. Also, the success of backpropagation

methods very much depends on good, problem speci�c parameter settings.

On the other hand, evolutionary algorithms usually avoid local minima by searching

in several regions simultaneously (working with a population of trial solutions). And the

only information they need is some performance value that determines how good a given

set of weights is (no gradient information). Furthermore, evolutionary algorithms place no

restrictions on network topology because they do not require backward propagation of an

error signal.

Thus, to apply evolutionary algorithms seems to be advantageous at least to problems

where gradient information is di�cult to obtain, e.g. to recurrent networks, to networks with

3

non di�erentiable transfer functions or non di�erentiable optimality criteria, to product

neurons [34] or threshold neurons.

One drawback of genetic algorithms is that they seem to have di�culties to �ne tune the

parameters [39]. And there is the problem of competing conventions discussed in Section

6.

So far, evolutionary algorithms in this area do not seem to be competitive with improved

gradient decent methods like quickprop or cascade correlation, see [39, 65].

For some work in that area see e.g. [13, 34, 52, 69, 76, 77, 78, 81].

In [15, 41], recurrent nets are trained.

2.1 Representation

The straightforward genotype representation is simply a concatenation of all the network's

weights in a string.

Since the standard single point crossover operator is more likely to disrupt genes that

are far apart on the chromosome than to disrupt genes located close to each other, it may be

useful to place functional units tightly together on the genotype. For that reason, Thierens

et al. [69] suggest to place the incoming and outgoing weights of a hidden node next to

each other. Yoon et al. [81] place side by side all incoming weights of a node, and all nodes

of a layer.

Taking this idea one step further one might consider a whole functional unit as one gene,

or as the smallest unit of a genotype the reproduction operators act upon. See Section 2.3

for some ideas in this direction.

Perhaps the most fundamental decision is the choice between binary and real valued

encoding. Whereas standard genetic algorithms use binary encoding (e.g. [13, 34, 76]), real

valued encoding seems to become dominating in the current literature (e.g. [41, 52, 69, 81]).

For larger problems, binary encodings result in very large strings (thousands of bits) which

can slow down the evolution process [3, 78]. Maniezzo [45, 46] (optimizing weights and

structure at the same time) used binary encoding, but additionally included a granularity

parameter in the genotype to simultaneously optimize how many bits should be used to

encode one weight value.

2.2 Performance Evaluation

The quality of a set of weights usually is de�ned as the corresponding network's mean

squared error (mse) on a given training set. Since the goal is to minimize this error, it

does not directly translate into a �tness value which have to be the larger the better the

individual. One way to handle this transformation is to use rank based selection [34, 77].

Alternatively, one can transform the error by using 1

mse
[47] or 1

1+mse
[34] as �tness value.

If some maximum mse is known, max mse - mse is yet another alternative [51].

As no gradient information is needed, nondi�erentiable functions like the percentage of

correct answers (classi�cation accuracy) on the training set could also be used. However,

it is advantageous if the performance measure is continuous, not just discrete, since this

allows the genetic algorithm to better discriminate between the performance of di�erent

individuals.

4

2.3 Reproduction Operators

Of course, on a population of weight strings, conventional crossover and mutation would

be applicable. However, it has already been suggested in Section 2.1 that one has to decide

on which level the operators are allowed to act on, i.e. on what constitutes a gene. For

the training of a recurrent XOR-network, Kohlmorgen et al. [41] concluded from their

experiments that combining all outgoing weights of a unit to one gene was most useful.

In several approaches [52, 53], the collection of ingoing weights to a unit is considered as

one gene (and not disrupted by crossover). Thierens et al. [69] have the crossover operator

exchange hidden units with all incoming and outgoing weights in a feed-forward-network

with only one hidden layer.

Montana and Davis [52] did not �nd signi�cant di�erences between an operator that

always transferred all incoming weights of a node to the o�spring and one that worked on

single weight values. However, they found a mutation operator that acts simultaneously on

all ingoing weights of a node to be more helpful than an operator acting on single weight

values.

In a multi-layer network, Yoon et al. [81] found it advantageous to �x the weights of

some layers (res. the corresponding parts of the genotype) during the evolution. That is,

while at the beginning the whole genotype is subject to mutation and crossover, later on,

parts of the genotype are kept constant.

2.4 Hybrid Approaches

Since standard evolutionary algorithms are very e�cient for global search, but relatively

slow in local �ne tuning, it seems natural to integrate back-propagation, a local gradient

method, as local hill climber.

The rationale behind this is that it restricts the search space to locally �t individuals.

How those hybrid approaches work in practice is still unclear. In [8] and [30] successful

results are reported, whereas Kitano's experiments [39] suggest that hybrid GA/BP ap-

proaches do not provide any advantage over a randomly initialized, multiple application of

quickprop, at least for shallow networks and easy �tness functions.

As reported in [30], a strategy that switches from the evolutionary algorithm to back-

propagation after convergence might be advantageous for large networks.

3 Evolutionary Algorithms to Determine the Structure of a

Neural Network

A neural network's structure greatly in
uences its performance. Most neural networks

today have one or two fully connected hidden layers. But this might not be the best

possible choice: it could well be appropriate to use more hidden layers, partially connected

or with direct connections from input to output [75, 78].

If the topology is too small (in terms of units and connections) the network might not

be able to represent or even learn the desired input/output mapping. On the other hand,

if it is too large, the network very often generalizes poorly to inputs previously unseen (for

some theoretical aspects on generalization see e.g. [1]).

5

Besides, the topology in
uences speed and accuracy of backpropagation learning, fault

tolerance and representational comprehensibility.

But although structure is a very important aspect in neural network design, it is not

only still impossible to determine an optimal structure for a given problem, it is even

impossible to prove that a given structure is optimal.

And apart from some construction/destruction heuristics (e.g. [18, 58, 67]) and some

rules of thumb, today most often a suitable structure is created by intuition and time

consuming trial and error.

Evolutionary algorithms there seem to be a promising approach to perform an automa-

ted search method for an optimal topology.

For some work in this area see for example [16, 29, 28, 38, 44, 51, 66, 72].

3.1 Representation

Representing the structure of a neural network is not as straightforward. Considerations

have to be made as to

� whether the optimal or at least many quasi-optimal solutions can be represented,

� whether
awed or meaningless network structures should be excluded,

� whether the reproduction operators yield valid o�spring and

� how the representation scales up to larger networks.

Ideally we would like a genetic space of network structures which does not contain any

unviable network genotypes, but which spans the space of all potentially useful network

genotypes.

The tradeo� between expressive power and the exclusion of
awed or meaningless net-

works is di�cult: neither does one wish to overly constrain the architecture, nor should it

grow out of control.

Basically there are two general paradigms to design a representation of a network's

structure: the strong, direct or low-level encoding [51, 66, 72] and the weak, indirect or

high-level encoding [29, 28, 38, 44].

Low level encodings specify each connection individually, while high level encodings

are more like growth rules, that may specify many units and connections simultaneously,

perhaps stochastically. Examples of both schemes are given in Figure 1 and 2.

In most cases, direct encodings specify the connections only. To remove a whole unit

from the network the algorithm would have to remove all ingoing or outgoing weights. An

exemption is for example [60] where the GA determines the number of hidden layers and

the number of nodes in each hidden layer with the layers being fully connected. A rather

restricted view is taken by Arena et al. [5, 6]. In the �rst paper, only the number of hidden

units in a one hidden layer network, and in the second paper the distribution of a �xed

number of hidden units into layers is optimized.

The �rst high level encoding scheme has probably been proposed by Harp, Samad and

Guha [28, 29]. They specify three-dimensional areas and for each area the number of

nodes and the connection densities to some other areas. In addition, the backpropagation

learning rate is a parameter of an area. Note that this representation allows variable string

6

1

4

0 0 1 1 0 0 0 1 0 0 0 00 0 11)(

3

2

4321

1

2

3

4

0 0

0 0

0 0 0

0 0 0 0

1 1

1 1

1

Figure 1: Example of a low level encoding as proposed in [51]. The chromosome directly

translates into the adjacency matrix, after which the network can be constructed.

 Area l Area i Area n... ...

 area
 parameters

projection
 parameters

 start -of-area
marker

start-of-projection
marker

end-of-area
marker

Figure 2: Example of a high level encoding according to [38]. Here, each area de�nes a

set of neurons, their spatial arrangement and their connections to other areas (density and

projection �eld).

7

length. Mandischer [45] proposed a somewhat related representation, where for every layer

receptive as well as projective connections are speci�ed on the chromosome.

Another high level encoding scheme is the graph generation system used by Kitano [38].

Here, the genetic algorithm is used to develop the rules of a context free and deterministic

graph grammar according to which the network structure can be generated. Kitano's

experimental results indicate that this encoding is almost not a�ected by the network size

and that the nets created are very regular.

Voigt et al. [73] used a stochastic graph generation grammar and had an evolution

strategy adapt the control parameters.

The obvious drawback of the low level encoding is the explosive increase in genotype

length as the network grows. Many researchers conclude that therefore this encoding has

bad scaling properties and is useful for relatively small networks only (e.g. [38]). The

maximum topology and thus the space of topologies to be searched is limited by the user.

On the one hand, that prevents the network from growing to an arbitrarily large size

and it allows to evolve networks with special connectivity patterns by constraining the

representation. On the other hand, this may exclude the �ttest structures from the search

space.

In high level encodings, not every structure is equally probable, but usually regular

networks are favored. Whereas sometimes this is desired, one has to be aware of the

human design bias that might exclude �t structures from the search.

Researchers using high level encodings usually explain that with their better scalability,

desired regularities and biological plausibility.

No matter which encoding is used, similar to the case when evolving the weights, one

may try to pack genes comprising functional units closely together on the chromosome.

3.2 Performance Evaluation

It is yet impossible to evaluate a network structure's quality directly. Only after having

been trained, the network as a whole can be evaluated and the result can be used as an

estimation of the structure's quality.

Since the result may depend on the training algorithm and since several runs usually

lead to di�erent local minima, this estimate can be biased, or at least be noisy. However,

evolutionary algorithms proved to be relatively noise tolerant in practice.

Usually, the net is trained for some �xed number of epochs and then the performance

on the training set is measured. Most common performance measure is the mean squared

error [66], but also the integral of the error over the epochs has been used [29, 28].

A very big advantage of evolutionary algorithms compared to other optimization me-

thods is that heuristics can be incorporated into the evaluation. For example, the evaluation

function may prefer smaller networks as those are expected to exhibit a better generali-

zation behavior. Whitley, Starkweather and Bogart [75, 78] introduced a bias towards

smaller networks by allocating the more training time the smaller the network. That way,

the smaller nets are not actually rewarded unless they are able to exploit the opportunity.

Other researchers [17, 14] as well successfully applied this reward scheme.

Dodd [16] used a combination of reached accuracy and network complexity for evalua-

tion, Harp et al. [28] additionally included the speed of learning.

8

In [40], Kitano extended his earlier work [38] to include the evolution of the initial

weight distribution for backpropagation. This approach lies somewhere in the middle of

Sections 3 and 4 as it includes evolution of initial weights, but still uses backpropagation

to train the networks.

In several approaches [6, 12, 45, 47, 60, 80] the net, after having been trained on a

training set, is evaluated on a separate "evaluation set" to determine the �tness of the

structure. Dodd et a. l. [17] used a convex combination of the net's performance on eva-

luation and training set as performance measure. By using di�erent sets for training and

evaluation, it is hoped to evolve structures with better generalization abilities. However,

for a fair comparison the evaluation set should be considered as an additional training set

as it is used to �nd the optimized network. To test the generalization abilities, yet another

test set would be necessary. Whether it is actually bene�cial to divide the available training

set into one set used for backpropagation learning and one used for evaluation remains to

be seen.

As each evaluation of an individual involves training, the computational cost is quite

large. Therefore, and since evolutionary algorithms are inherently parallel, it can be ex-

pected that parallel implementations will gain ground [17, 68].

3.3 Reproduction Operators

The most common operators are simple or uniform crossover and mutation that changes

single values.

As Utrecht and Trint [71] point out, a good mutation operator should adhere to the

principle of strong causality, i.e. it should in most cases cause small di�erences in quality.

Also, it should allow short transition paths between any pair of structures. In their paper,

Utrecht and Trint propose a number of heuristic structure mutation operators and test

them for these two qualities.

Schi�mann [66] restricts mutation to adding or deleting weak connections.

The crossover operator in [51] can only exchange whole sets of incoming connections to

a unit. But although this intuitively makes sense (transfering whole functional units), the

operator did not prove to be advantageous in experiments reported by [72].

Some speci�c representations, of course, need suitable operators that take into account

the representation's peculiarities.

3.4 Backpropagation Control Parameters

It has already been mentioned that evaluating a structure involves training the corre-

sponding network and thus requires large computational power. Obviously, speeding up

training would greatly reduce the required e�ort. Thus, many researchers try to optimize

back-propagation parameters by the genetic algorithm along with the optimization of the

structure.

To do this, the backpropagation parameters most often are just added to the chromo-

some as additional values.

The most common parameters to be optimized are learning rate [8, 29, 28, 47, 60, 80],

momentum [8, 47, 80] and initial weight range [8, 47].

9

In the approach by Harp et al. [28] the learning rate can vary among groups of neurons

and exponentially decays during the training according to a slope parameter also set by

the genetic algorithm. The learning rates found by the EA seem to be high compared to

human choices [28].

Further parameters to be optimized by an evolutionary algorithm could be the acti-

vation function, the learning strategy, a weight decay term [47] or the number of training

epochs [47].

4 Evolutionary Algorithms to Simultaneously Determine

Weights and Structure of a Neural Network

Instead of using back-propagation to train the networks over and over again, it seems

to be a valid idea to have the evolutionary algorithm search for structure and weights

simultaneously [11, 12, 14, 32, 36, 48, 63].

The works of Potter [56] and Karunanithi et al. [35] also use an evolutionary algorithm

to determine structure and weights of the network. However, their approaches are inspired

by Fahlman's cascade-correlation algorithm that starts with a minimal network and dyna-

mically builds a suitable cascade structure by training and installing one hidden unit at a

time until the problem is successfully learned. Thus the structure is not directly optimized

by the evolutionary algorithm but rather a result of the cascade algorithm.

In [4, 9, 64, 68, 70] the weights and topology of recurrent neural networks are determi-

ned, Zhang [82] optimizes Sigma-Pi networks

A quite unusual approach has been proposed by Oliker et al. [55] where the search for

the optimal neural network is done separately for every single neuron, i.e. separately in

di�erent genetic algorithms working together to �nally build an optimal network structure.

The underlying idea is that the search space is drastically reduced in comparison to genetic

algorithms that are responsible for the whole network. The proposed evaluation scheme is

rather complex and takes into account the network's error and an estimation for the net-

work's convergence capabilities. To reduce the complexity of the evaluation, the networks

have been restricted to feed-forward topologies with binary linear threshold units.

As to representation, �tness evaluation and genetic operators, most of the aspects

presented in Sections 2 and 3 are also valid for this Section and shall not be repeated.

However, there are some special facets that shall be described in the following.

4.1 Representation

As in the case with mere topology optimization, here again direct or low level encodings

(e.g. [11, 12, 14, 48, 68, 70]) and high level encodings (e.g. [21]) can be distinguished.

An example of a typical low level encoding is given in Figure 3

Koza and Rice [42] also used a direct encoding, but theirs is in terms of Lisp-S-

expressions.

Saha and Christensen [63] chose as representation a �xed length binary string with a

prede�ned space per neuron on which in- or outgoing connections from or to other neurons

as well as their weight could be speci�ed explicitly.

10

1 111 0 110 1 010 1 000 0 100 1 110

weight encoding bits

connectivity bits

Figure 3: Low level encoding for structure and weights of a neural network as suggested

by [46]. Each connection of a maximal network structure is speci�ed by two parameters:

the connectivity bit (existence/non-existence) and the connection weight.

Sometimes (e.g. [48, 68, 70]), only two bits are used to encode a weight which is then

restricted to be either excitatory (1), exhibitory (-1) or non-existing.

Inspired by Kitano [38], Gruau [21] used a grammatical encoding of structure and

weights (restricted to � 1 for boolean functions). But instead of rewriting matrix elements,

Gruau proposed a cell rewriting process. Koza [43] suggested an approach that uses LISP-

S-expressions for representation. In both cases, the chromosomes used can be depicted

as syntactic trees similar to those in Genetic Programming (cf. Koza [42]) and the same

specialized recombination operators exchanging subtrees of the individuals are applied.

Dasgupta and McGregor [14] designed a two-level representation where the front part

of a chromosome (high level) encodes the connectivity pattern and the rest of the chromo-

some (low level) represents the weights and biases. High level genes can activate sets of

lower level genes, i.e. if a connection is labeled non-existent, the weight of that connection,

though still in the chromosome, is not used. Maniezzo [46] also used connectivity bits to

indicate whether a connection would be used, but he located them directly in front of the

corresponding weight bits on the chromosome.

The aspect of encoding functional units together on the chromosome is addressed in

Marti [48], where the ordering of the links on the genotype is optimized by an additional

"outer" genetic algorithm.

4.2 Performance Evaluation

Optimizing recurrent networks, Bornholdt and Graudenz [9] included the number of up-

date cycles until the network reaches a stable state in the evaluation of their genetically

constructed networks.

Kendall and Hall [36, 37] used an estimation for the description length (according to

the Minimum Description Length Principle, [59]) for evaluation. This takes into account

the network structure, the distribution of weights and the residual error on the training

set.

11

Another complexity measure based on the number of weights, units and layers is con-

sidered for evaluation in [82].

4.3 Reproduction Operators

Angeline et al. [4] have the severity of weight mutations dictated by how close the network

is to being a solution for the task. For structural mutations, they try to avoid radical jumps

by initializing new links with zero and only adding hidden units without connections to

other units (links can be added by future structural mutations). Deletion of nodes and

links is done without any further modi�cations.

To reduce the computation time Braun and Zagorski [12] and Braun and Weisbrod [11]

suggest to inherit the weights from the parents but to train them with backpropagation

to a local optimum. This approach stands somewhat between those of Section 3 and

Section 4 as for weight �nding backpropagation and genetic algorithm work together. All

the weights optimized by backpropagation are inherited to the o�spring along with the

connections. Seen from a genetic viewpoint, this restricts the search space to locally �t

individuals. Seen from a back-propagation standpoint, initializing the o�spring with parent

weights drastically reduces the training time. In their experiments with this strategy,

Braun and Zagorski not only observed a speedup of 1 to 2 orders of magnitude but also

noted that the found structures could not be trained from scratch, but only with the

inherited initialization. In addition to back-propagation, Braun and Zagorski [12] used

weight elimination and pruning of small connections as local hill climbers.

The crossover operator suggested by Braun and Weisbrod [11] assigns to the o�spring

every connection that exists in both parents. If the connection is only used by one parent

net, the o�spring will get that connection with some user-speci�ed probability. The weight

of inherited connections is a user de�ned fraction of the relating parent weight. Of course

this crossover operator needs to be seen together with the method to take care of the

competing conventions problem (cf. Section 6).

To soften the rather strong e�ect of unit mutations, Braun and Zagorski [12] initialized

new units with small random weights, preferably deleted units with few connections and

"bypassed" units (introducing connections from predecessors to successors) before deleting

them.

5 Further Work

Three authors suggested training algorithms for one-hidden-layer networks in which the

input to hidden connections are determined by an evolutionary algorithm whereas the

hidden to output connections are trained by a perceptron learning algorithm.

� In the approach proposed by Wilson [79], the hidden units compute the AND function.

A genetic algorithm is used to determine the connectivity of input to hidden units

where a connection can be non existent or, if it exists, either transfer the input signal

or its complement.

� Munro [53] uses real-valued weight encodings. It is ensured that all hidden units ac-

tually discriminate between the input patterns in the training set (i.e. do not respond

identically for every input pattern). If this is not the case, the thresholds are adapted.

12

� Obradovic and Srikumar [54] use a genetic algorithm to incrementally construct a

set of hyper planes (corresponding to hidden units) which partition the training set

into regions such that almost all training examples belonging to the same region

are of one class. These regions are called "resolved" and the training examples in

those regions are ignored for the construction of further hyper planes. Hyper planes

are added one after the other by subsequent genetic algorithms. For evaluation of

trial hyper planes, the percentage of correctly classi�ed training examples by the

hyper plane is taken. Rather uncommon is the representation: for an m dimensional

input space, each individual consists of m concatenated binary substrings of equal

length. Each substring encodes a point on the line between a positive and a negative

training example of the same region. The m substrings together de�ne the hyper

plane from which the corresponding hidden unit weights can then be constructed.

After all regions have been resolved, the connections from hidden to output layer are

determined by a pocket algorithm which is similar to simple perceptron learning. It

can be shown that the proposed algorithm will always converge.

Whitley, Starkweather and Bogart [75, 78] used a genetic algorithm to prune networks.

Starting with a fully connected and already trained (starting) network, the genetic algo-

rithm was used to �nd links that could be eliminated. The representation was direct and

contained a zero or one for every possible link. Considerable training time was saved by

initializing the pruned network with the weights from the starting network. Selective pres-

sure towards smaller networks was introduced by allowing more training cycles for smaller

networks. Hancock [25] made similar experiments but gradually added noise to the starting

weights in order to obtain nets that are capable of learning from random weights.

An approach to reduce the number of di�erent weights in the network (i.e. to introduce

weightsharing) by means of a genetic algorithm has been suggested by Branke et al. [10].

Ari H�am�al�ainen developed a genetic algorithm to determine the topology of a self-

organizing (Kohonen-) map [22]. In his �tness function he included a measure of the

disorder of the map.

Alba et al. [3] suggested a 3-level genetic algorithm: the top level is used to determine

an appropriate number of nodes in each layer, the intermediate level to �nd a suitable

connectivity and the lowest level to set the weights of the network. Each level uses the

next lower level for evaluation which of course makes the whole procedure extremely time

consuming.

Merelo et al. [50] devised a two layer network for classi�cation problems where the �rst

(hidden) layer is trained following a competitive learning algorithm and the second layer is

trained by perceptron learning. The genetic algorithm is used to �nd learning parameters,

the number of units in the �rst layer and a set of initial weights for the network.

Happel and Murre [27] focus on modularity as a basic design principle. Instead of

forming the structure from single neurons, in that paper the evolutionary algorithm arran-

ges "categorization and learning modules" (CALMs) and speci�es their interconnectivity

pattern. The smallest of such modules already contains 6 neurons with a �xed internal

structure.

13

6 Competing Conventions Problem

A neural network property that makes neural network optimization di�cult for evolutionary

algorithms is that the same functional mapping from input to output can be implemented by

a number of di�erent neural networks. The group of functionally equivalent but structurally

di�erent networks can be de�ned by two simple transformations [23, 69].

First, permuting the hidden units of a network does not alter the function of the net-

work. Consider the two simple neural networks in Figure 4. The only di�erence between

them is that the two hidden nodes A and B are exchanged. Clearly, both networks im-

plement the same functional mapping. With n hidden neurons, a total of n! functionally

equivalent networks are de�ned by this transformation.

b3

b1

b2

b1

b3
b2

a2

a3

a1

b3

b1

b2

b1

b3
b2

Crossover

Output

Input

B

a1

a2
a3

A A B

a1a2a3a1a2a3 b1b2b3b1b2b3

Output

Input

B A

a1a2a3b1b2b3 b1b2b3a1a2a3

a1

a2

a1

a3
a2

a3

A B

genotypic representation

phenotypic representation

genotypic representation

Figure 4: Phenotypic and genotypic representation of two functionally equivalent but struc-

turally di�erent neural networks (top). If a crossover operator is applied to them, the output

is likely to be useless (bottom), since it probably contains more than one copy of the same

neuron.

Second, if the activation function is odd,
ipping the signs of all incoming and outgoing

weights of a hidden node has no e�ect on the overall function of the network. As one

14

can choose any combination of the n hidden neurons to
ip their weight signs, there areP
n

i=0

�
n

i

�
= 2n structurally di�erent but functionally identical networks generated by this

transformation.

The problem is that the evolutionary algorithm knows nothing about those symmetries.

It works on genotypes which represent the structural de�nition of a network. Structurally

di�erent networks are represented by di�erent genotypes, even if the functional mapping

they de�ne is the same. If the crossover operator is applied to two functionally similar

but structurally very di�erent (di�erent conventions) parent networks, it very often yields

totally inappropriate o�spring as is illustrated in Figure 4.

From another viewpoint the problem can be seen as an explosion of the search space:

each convention (e.g. ordering of the hidden units) is an extra region in the search space,

and only recombination of individuals of the same region is promising. Figure 5 illustrates

this view: assume there are two networks similar to those depicted in Figure 4. Assume

further network X has perfectly learned role A, but not role B, whereas network Y has

perfectly learned role B, but not A. Without the competing conventions problem, chances

would be high that crossover produced a perfect network. But due to di�erent conventions

(node A is the left unit / node A is the right unit) the search space is increased drastically

and the e�ciency of the crossover operator is severely e�ected.

The situation is actually worse than this, because there is often more than one way of

solving a problem. One net might have roles A and B, another, roles C and D. Crossover

will now combine imcompatible roles which will lead to problems similar to competing

conventions.

It is yet unclear how severe the competing conventions problem does a�ect the genetic

algorithm's search abilities. Theoretically, the problem scales exponentially (n!2n) with the

number of hidden units. Hancock [24, 26] suggests that it may be less of a problem than

one might suppose. Most probably, the e�ect will depend on parameters like network size

and population size, and it may be reasonable to avoid it if possible.

The simplest way to avoid the problem is to not use the crossover operator at all [4, 9,

12]. Using smaller population sizes and more aggressive selection and mutation reduces the

risk of exploring several competing conventions in parallel. Braun and Weisbrod [11] tried

to prevent permuted internal representations by making long connections less probable than

short connections and thus preferring for each functional mapping the structural mapping

with the shortest connection lengths. Radcli�e [57] suggested a matching recombination

operator based on the pattern of connections of the hidden units. This and some similar

recombination operators are critically compared in [24] (see also [72] for some experiments).

Montana and Davis [52] matched hidden units before crossover by their responses to a

number of trial inputs applied to the net. In Munro [53], the crossover operator exchanges

hidden units that have similar but nonidentical response patterns to the training set. Alba

[3] used the Hamming distance of two individuals to prevent crossover between two very

di�erent individuals. Thierens et al. [69] argue that the position of the hyper plane de�ned

by a hidden neuron is predominantly determined by the weight signs. Therefore, prior

to crossover, they reorder the genetic string of the parents such that the genes of hidden

neurons with a similar amount of positive and negative weights are at the same position in

the gene string. Also, to break the weight sign symmetry, they simply
ip the signs of the

incoming and outgoing weights of a hidden neuron whenever the neuron has less positive

than negative weights.

15

fi
tn

es
s

fi
tn

es
s

search space

search space

networks with node A on right sidenetworks with node A on left side

X

X

Y

Y

Figure 5: Fitness landscape with (bottom) and without (top) competing conventions.

16

Using genetic algorithms to set the weights in the cascade correlation algorithm auto-

matically solves the permutation problem because the hidden units are trained and added

one at a time [35, 56].

7 Conclusion

An overview on the important aspects when using evolutionary algorithms to neural net-

work design and training has been presented. A number of di�erent approaches has been

reported, but a qualitative comparison has been omitted: there is not enough reliable

experimental data to make de�nite statements on which method is preferable.

Probably, the most promising areas are those of topology optimization and those of

�nding the weights if no gradient information is available, simply because no other reliable

method exists to solve those problems.

Especially for topology optimization, large computing power is needed. Thus, parallel

implementations will become more and more important as the networks grow from toy

problems to real world applications.

Altogether, work in the cross-section of evolutionary algorithms and neural networks

bears great opportunities - but needs to become better founded and comparable.

References

[1] Y. S. Abu-Mostafa. The vapnik-chervonenkis dimension: Information versus complexity in learning.
Neural Computation, 1:312{317, 1989.

[2] J. T. Alander. An indexed bibliography of neural networks and genetic algorithms: Years 1985-1994.
Available via ftp at ftp.uwasa.�: cs/report94-1/gaNNbib.ps.Z, 1995.

[3] E. Alba, F. Aldana, and J. M. Troya. Full automatic ANN design: a genetic approach. In J. Mira,
J. Cabentany, and A. Prieto, editors, Proceedings of the International Workshop on Arti�cial Neural

Networks, pages 399{404. Springer Verlag, June 1993.

[4] P. J. Angeline, G. M. Saunders, and J. B. Pollack. An evolutionary algorithm that constructs recurrent

neural networks. IEEE Transactions on Neural Networks, 5(1):54{65, January 1994.

[5] P. Arena, R. Caponetto, L. Fortuna, and M. G. Xibilia. Genetic algorithms to select optimal neural

network topology. In Proceedings of the 35th Midwest Conference on Circuits and Systems, pages

1381{1383, 1992.

[6] P. Arena, R. Caponetto, L. Fortuna, and M. G. Xibilia. M. l. p. optimal topology via genetic algorithms.
In Proceedings of the Conference on Arti�cial Neural Nets and Genetic Algorithms, pages 670{674.

Springer Verlag, 1993.

[7] K. Balakrishnan and V. Honavar. Evolutionary design of neural architectures - preliminary taxonomy

and guide to literature. Technical Report CS TR #95-01, Arti�cial Intelligence Group, Iowa State

University, January 1995.

[8] R. K. Belew, J. McInerney, and N. N. Schraudolph. Evolving networks: Using the genetic algorithm

with connectionist learning. Technical Report CS90-174, Computer Science and Engineering Depart-
ment, UCSD (La Jolla), 1989.

[9] S. Bornholdt and D. Graudenz. General asymmetric neural networks and structure design by genetic
algorithms. Neural Networks, 5:327{334, 1992.

[10] J. Branke, U. Kohlmorgen, and H. Schmeck. A distributed genetic algorithm improving the genera-

lization behavior of neural networks. In Nada Lavrac and Stefan Wrobel, editors, Machine Learning:

ECML-95 (Proc. European Conf. on Machine Learning, Lecture Notes in Arti�cial Intelligence 914,
pages 107{121. Springer Verlag, 1995.

17

[11] H. Braun and J. Weisbrod. Evolving neural feedforward networks. In Proceedings of the Conference
on Arti�cial Neural Nets and Genetic Algorithms, pages 25{32. Springer Verlag, 1993.

[12] H. Braun and P. Zagorski. Enzo-ii - a powerful design tool to evolve multilayer feed forward networks.

In Proceedings of the �rst IEEE conference on evolutionary computation, volume 2, pages 278{283,

June 1994.

[13] T. P. Caudell and C.P. Dolan. Parametric connectivity: Training of constrained networks using genetic

algotithms. In J. D. Scha�er, editor, Proceedings of the 3rd International Conference on Genetic
Algorithms, pages 370{374, Arlinghton, 1989.

[14] D. Dasgupta and D. R. McGregor. Designing application-speci�c neural networks using the struc-
tured genetic algorithm. In Proceedings of the International Workshop on Combinations of Genetic

Algorithms on Neural Networks, pages 87{96, 1992.

[15] H. de Garis. Building nanobrains with genetically programmed neural network modules. In Proceedings

of the International Joint Conference on Neural Networks, pages 511{516, 1990.

[16] N. Dodd. Optimisation of network structure using genetic techniques. In Proceedings of the Interna-

tional Joint Conference on Neural Networks, pages 965{970, 1990.

[17] N. Dodd, D. Macfarlane, and C. Marland. Optimisation of arti�cial neural network structure using

genetic techniques implemented on multiple transputers. In Proceedings of the Conference on Trans-
puting, pages 687{700, 1991.

[18] S. E. Fahlmann. The cascade correlation learning architecture. Technical report, 1988.

[19] D. B. Fogel. On the philosophical di�erences between evolutionary algorithms and genetic algorithms.
In Proceedings of the Second Annual Conference on Evolutionary Programming, 1993.

[20] D. B. Fogel. An introduction to simulated evolutionary optimization. IEEE Transaction on Neural
Networks, 5(1):3{14, January 1994.

[21] F. Gruau. Genetic synthesis of boolean neural networks with a cell rewriting developmental process. In

Whitley and Scha�er, editors, Proceedings of the International Workshop on Combinations of Genetic

Algorithms and Neural Networks, pages 55{74, June 1992.

[22] A. H�am�al�ainen. Using genetic algorithms in self-organizing map design. In to appear in: Proceedings

of the International Conference on Arti�cial Neural Networks and Genetic Algorithms, April 1995.

[23] P. J. B. Hancock. Coding Strategies for Genetic Algorithms and Neural Nets. PhD thesis, Department

of Computing Science and Mathematics, University of Stirling, 1992.

[24] P. J. B. Hancock. Genetic algorithms and premutation problems: a comparison of recombination
operators for neural net structure speci�cation. In Proceedings of the IEEE Workshop on Combinations

of Genetic Algorithms and Neural Networks, pages 108{122, 1992.

[25] P. J. B. Hancock. Pruning neural nets by genetic algorithms. In Aleksander, I. and Taylor, J.G.,

editors, Proceedings of the International Conference on Arti�cial Neural Networks, pages 991{994.

Elsevier, 1992.

[26] P. J. B. Hancock. Recombination operators for the design of neural nets by genetic algorithm. In

Maenner, R., and Manderick, B., editors, Proceedings of the Conference on Parallel Problem Solving

from Nature, volume 2, pages 441{451. Elsevier Science Publishers B. V., 1992.

[27] B. L. M. Happel and J. M. J. Murre. Design and evolution of modular neural network architectures.

Neural Networks, 7(6/7):985{1004, 1994.

[28] S. A. Harp, T. Samad, and Guha A. Towards the genetic synthesis of neural networks. In J. D. Scha�er,

editor, Procedings of the 3rd International Conference on Genetic Algorithms, pages 360{369, 1989.

[29] S. A. Harp, T. Samad, and A. Guha. Designing application-speci�c neural networks using genetic

algorithm. In Advances in Neural Information Processing Systems II. Touretzky, D. S., 1989.

[30] J. Heistermann. Di�erent learning algorithms for neural networks - a comparative study. In Y. Davidor,

H.-P. Schwefel, and R. M�anner, editors, Parallel Problem Solving from Nature, Workshop Proceedings,
pages 368{396. Springer Verlag, 1994.

[31] J. Hertz, A. Kogh, and R. G. Palmer. Introduction to the Theory of Neural Computation. Addison-
Wesley, 1991.

18

[32] K. J. Hintz and J. J. Spo�ord. Evolving a neural network. In Proceedings of the 5th IEEE International
Symposium on Intelligent Control, pages 479{484, Philadelphia, PA, September 1990.

[33] F. Ho�meister and T. B�ack. Genetic algorithms and evolution strategies - similarities and di�erences.

In H.-P. Schwefel and R. Maenner, editors, Parallel Problem Solving from Nature - Proceedings of the

1st Workshop PPSN, pages 447{461. Springer, October 1991.

[34] D. J. Janson and J. F. Frenzel. Training product unit neural networks with genetic algorithms, 1993.

[35] N. Karunanithi, R. Das, and D. Whithley. Genetic cascade learning for neural networks. In Scha�er and

Whitley, editors, Proceedings of the International Workshop on Combinations of Genetic Algorithms

and Neural Networks, pages 134{144, 1992.

[36] G. D. Kendall and H. J. Hall. Improving generalisation with Ockham's networks: Minimum description

length networks. In Proceedings of the 3rd International Conference on Arti�cial Neural Networks, May
1993.

[37] G. D. Kendall and T. J. Hall. Optimal network construction by minimum descreption length. Neural
Computation, 1993.

[38] H. Kitano. Designing neural networks using genetic algorithms with graph generation system. Complex

Systems, (4):461{476, 1990.

[39] H. Kitano. Empirical studies on the speed of convergence of neural network training using genetic

algorithms. In Proceedings AAAI, pages 789{795, 1990.

[40] H. Kitano. Neurogenetic learning: an integrated method of designing and training neural networks

using genetic algorithms. Physika D, (75):225{238, 1994.

[41] U. Kohlmorgen, H. B. Penfold, and H. Schmeck. Deriving application-speci�c neural nets with a

massively parallel genetic algorithm. In this volume.

[42] J. R. Koza. Genetic Programming. MIT Press, 1991.

[43] J. R. Koza and J. P. Rice. Genetic generation of both the weights and architecture for a neural network,

1991.

[44] M. Mandischer. Representation and evolution of neural networks. In Proceedings of the Conference on

Arti�cial Neural Nets and Genetic Algorithms, pages 643{649. Springer Verlag, 1993.

[45] V Maniezzo. Searching among search spaces: hastening the genetic evolution of feedforward networks.

In Proceedings of the Conference on Arti�cial Neural Nets and Genetic Algorithms, pages 635{642.

Springer Verlag, 1993.

[46] V. Maniezzo. Genetic evolution of the topology and weight distribution of neural networks. IEEE

Transactions on Neural Networks, 5(1), January 1994.

[47] S. J. Marshall and R. F. Harrison. Optimization and training of feedforward neural networks by genetic
algorithms. In Proceedings of the 2nd International Conference on Arti�cial Neural Networks, pages

39{43, 1991.

[48] L. Marti. Genetically generated neural networks II; searching for an optimal representation. In Pro-

ceedings of the International Joint Conference on Neural Networks, volume 2, pages 221{226, 1992.

[49] W. S. McCulloch and W. Pitts. A logical calculus of ideas immanent in nervous activity. Bulletin of

Mathematical Biophysics, 5:115{133, 1943.

[50] J. J. Merelo, M. Paton, A. Canas, A. Prieto, and F. Moran. Optimization of a competitive learning

neural network by genetic algorithms. In J. Mira, J. Cabestany, and A. Prieto, editors, Proceedings of

the International Work shop on Arti�cal Neural Networks, pages 185{192. Springer-Verlag, June 1993.

[51] G. F. Miller, P. M. Todd, and S. U. Hegde. Designing neural networks using genetic algorithms.

In J. Scha�er, editor, Proceedings of the 3rd International Conference on Genetic Algorithms, pages

379{384, Arlington, 1989.

[52] D. J. Montana and L. Davis. Training feedforward neural networks using genetic algorithms. In

Proceedings of the International Joint Conference on Arti�cial Inteligence, pages 762{767, 1989.

[53] P. W. Munro. Genetic search for optimal representations in neural networks, 1991.

19

[54] Z. Obradovic and R. Srikumar. Evolutionary design of application tailored neural networks. In Pro-
ceedings of the �rst IEEE conference on evolutionary computation, volume 1, pages 284{289, June

1994.

[55] S. Oliker and M. Furst. A distributed genetic algorithm for neural network design and training. Complex

systems, 6:459{477, 1992.

[56] M. A. Potter. A genetic cascade-correlation learning algorithm. In Scha�er and Whitley, editors, Pro-

ceedings of the International Workshop on Combinations of Genetic Algorithms and Neural Networks,
pages 123{133, 1992.

[57] N. Radcli�e. Genetic set recombination and its application to neural network topology optimization.
Technical Report EPCC-TR-91-21, Edinburgh Parallel Computing Centre, University of Edinburgh,

1991.

[58] R. Reed. Pruning algorithms - a survey. IEEE Transactions on Neural Networks, 4(5):740{747,

September 1993.

[59] J. Rissanen. Modelling by shortest data description. Automatica, (14):465{471, 1978.

[60] P. Robbins, A. Soper, and K. Rennolls. Use of genetic algorithms for optimal topology determination in

back propagation neural networks. In Proceedings of the International Conference on Arti�cial Neural

Nets and Genetic Algorithms, pages 726{730. Springer Verlag, 1993.

[61] M. Rudnick. A bibliography of the intersection of genetic search and arti�cial neural networks. Tech-

nical report, Oregon Graduate Institute, Department of Computer Science and Engineering, January
1990.

[62] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-propagating
errors. Nature, (323):533{536, 1986.

[63] S. Saha and J. P. Christensen. Genetic design of sparse feedforward neural networks. Information
Sciences, (79):191{200, 1994.

[64] J. Santos and R. J. Duro. Evolutionary generation and training of recurrent arti�cial neural networks.

In Proceedings of the �rst IEEE conference on Evolutionary Computation, volume 2, pages 759{763,

June 1994.

[65] J. D. Scha�er, D. Whitley, and L. J. Eshelman. Combinations of genetic algorithms and neural

networks: A survey of the state of the art. In Whitley and Scha�er, editors, Proceedings of the
International Workshop on Combinations of Genetic Algorithms and Neural Networks, pages 1{37,

June 1992.

[66] W. Schi�mann, M. Joost, and R. Werner. Performance evaluation of evolutionarily created neural

network topologies. In H.-P. Schwefel and R. M�anner, editors, Parallel Problem Solving from Nature,

pages 274{283. Springer Verlag, October 1990.

[67] F. J. Smieja. Neural network constructive algorithms. trading generalization for learning e�ciency?

Arbeitspapiere der GMD 636, GMD, 1992.

[68] P. Spiessens and J. Torreele. Massively parallel evolution of recurrent networks: An approach to
temporal processing. In Varela, F., and Bourgine, P., editors, Proceedings of the �rst Conference on

Arti�cial Life, pages 70{77, 1991.

[69] D. Thierens, J. Suykens, J. Vandewalle, and B. De Moor. Genetic weight optimization of a feedforward

neural network controller. In Proceedings of the Conference on Arti�cial Neural Nets and Genetic

Algotithms, pages 658{663. Springer Verlag, 1993.

[70] J. Torreele. Temporal processing with recurrent networks: An evolutionary approach. In Belew, R.K.

and Booker, L. B., editors, Proceedings of the Fourth International Conference on Genetic Algorithms,
pages 555{561. Morgan Kaufmann, San Diego, CA, USA, 1991.

[71] U. Utrecht and K. Trint. Mutation operators for structure evolution of neural networks. In R. Maenner
Y. Davidor, H.-P. Schwefel, editor, Parallel Problem Solving from Nature, Workshop-Proceedings, pages

492{501. Springer, 1994.

[72] E. van Wanrooij. Evolving sequential neural networks for time series forecasting. Master's thesis,

Department of Computer Science, University of Utrecht, Netherlands, November 1994.

20

[73] H. M. Voigt, J. Born, and I. Santibanez-Koref. Evolutionary structuring of arti�cial neural networks.
Technical report, Technical University Berlin, Bio- and Neuroinformatics Research Group, 1993.

[74] G. Weiss. Neural networks and evolutionary computation. part i; hybrid approaches in arti�cial in-

telligence. In Proceedings of the �rst IEEE Conference on Evolutionary Computation, pages 268{277,

June 1994.

[75] D. Whitley and C. Bogart. The evolution of connectivity: Pruning neural networks using genetic

algorithms, 1990.

[76] D. Whitley and T. Hanson. Optimizing neural networks using faster, more accurate genetic search. In

J. D. Scha�er, editor, Proceedings of the 3rd International Conference on Genetic Algorithms, pages
391{395, 1989.

[77] D. Whitley and T. Starkweather. Optimizing small neural networks using a distributed genetic algo-
rithm, 1990.

[78] D. Whitley, T. Starkweather, and C. Bogart. Genetic algorithms and neural networks: optimizing
connections and connectivity. Parallel Computing, (14):347{361, 1990.

[79] S. W. Wilson. Perceptron redux: Emergence of structure. Physica D, (42):249{256, 1990.

[80] F. Wong. Genetically optimized neural networks. Technical report, NIBS Pte Ltd., Singapore, 1994.

[81] B. Yoon, D. J. Holmes, G. Langholz, and A. Kandel. E�cient genetic algorithms for training layered

feedforward neural networks. Information Sciences, 76:67{85, 1994.

[82] B.-T. Zhang. E�ects of occam's razor in evolving sigma-pi neural nets. In R. Maenner Y. Davidor,

H.-P. Schwefel, editor, Parallel Problem Solving from Nature, Workshop Proceedings, pages 462{471.
Springer Verlag, 1994.

21

