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Abstract

Qualitative modeling of technical processes may be accomplished by dynamic fuzzy systems. A

new inference method with interpolating rules is proposed as an essential basis for the analysis of

this class of systems. Using this approach, the system output is dependent on both an

interpolating rule derived from the fuzzy input and the fuzzy input itself. A simple example shows

the typical behavior of such dynamic fuzzy systems and leads to a stability definition.
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1 Introduction

Most control engineering applications of fuzzy logic are based on a set of rules with fuzzy premises and fuzzy

conclusions. To describe complex processes qualitatively, a fuzzy output dependent on fuzzy input variables

has to be calculated. There exist various reasoning methods [1,4] with particular interpretation of the fuzzy

rules.

The shape of the membership function of the fuzzy output calculated with the commonly used reasoning

methods (e.g. "max-min-inference" or "max-prod-inference") is generally different from the shape of the

membership functions of the premises and conclusions. If, for instance, all membership functions of the

conclusions are fuzzy numbers, the membership function of the fuzzy output is generally not a fuzzy number.

An inference method is expected to evaluate a set of fuzzy rules corresponding to the human way of

approximate reasoning. Due to the fact that human beings are able to process only such fuzzy sets that might

be properly adjoined to linguistic values, only this kind of fuzzy sets are appropriate inputs of fuzzy systems.

Since the membership functions of the premises and conclusions are user-defined to mark linguistic values e.g.

as fuzzy numbers, they might be viewed as understandable fuzzy sets. Considering in particular dynamic fuzzy

systems that feedback the fuzzy output, it has to be guaranteed that the inference maps understandable fuzzy

inputs onto an understandable fuzzy output.

In the following, a new fuzzy inference method called "inference with interpolating rules" is presented that

guarantees an output of a fuzzy system belonging to the same class of fuzzy sets as the fuzzy inputs. In this

contribution, triangular fuzzy numbers are chosen as understandable fuzzy sets. In the last chapter, it is shown

that dynamic fuzzy systems feedbacking the fuzzy output produce suitable results with this new inference

method. Furthermore, a new stability definition for dynamic fuzzy systems and an approach for stability

analysis are presented.
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2 Inference with interpolating rules

The rules of the fuzzy rule set are considered as "fundamental rules". Together with the fuzzy inputs the

fundamental rules allow to determine interpolating rules. An interpolation between premises and conclusions

of the fuzzy rule set yields the interpolating premise and the interpolating conclusion of the interpolating rule.

Finally, the fuzzy output results from the interpolating rule considering the fuzzy input.

2.1 Assumptions

The membership functions of all premises, conclusions, and inputs have to belong to a class of functions that

can be described with a finite number of parameters. In this contribution triangular fuzzy numbers

ν ν ν0 1 2; ,  are used that are clearly defined with their center ν0 and the coordinates ν1 and ν2 of their left

and right foot, respectively. An interpolation is only possible if the coordinates of the left and right foot as well

as the center of the adjacent premise membership functions are different. Furthermore, it is presupposed that

the centers coni
0  of all conclusions Coni  with the coordinates con con coni i i

0 1 2; ,  are different from each

other and that con coni j
1 1≤  as well as con coni j

2 2≤  follows from con coni j
0 0<  with i j≠ . These last two

conditions represent no restriction to the method and are only introduced to avoid the consideration of some

special cases affecting the transparency of this contribution.

2.2 Determination and evaluation of an interpolating rule

The following two fuzzy rules with one input and one output are used to explain the new inference mechanism,

the extension to multiple input multiple output systems is straightforward:

IF "Input is small" THEN "Output is large" (1)

IF "Input is large" THEN "Output is small"

The membership functions of the linguistic values "small" and "large" of the input are triangular fuzzy

numbers A < >is is is0 1 2; ,  and B < >il il il0 1 2; , , the linguistic values "small" and "large" of the output are the

triangular fuzzy numbers C < >os os os0 1 2; ,  and D < >ol ol ol0 1 2; , , respectively. Considering a fuzzy input

Inp < >inp inp inp0 1 2; , , the parameters of the interpolating premise IP < >p p p0 1 2; ,  and the interpolating

conclusion  IC < >c c c0 1 2; ,  of the rule set (1) have to be determined. A measure for the distance between two

fuzzy numbers
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are introduced. The proportion of the two rules IF "Input is small" THEN "Output is large" and IF "Input is

large" THEN "Output is small" to the interpolating rule IF "Input is IP" THEN "Output is IC" correspond to

the related distances %a  and % %b a= −1 . Thus, the parameters of IP and IC are

( ) ( ) ( )
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The center of the input inp0  is always equivalent to the center of the interpolating premise IP. If INP is

included in IP, INP is a fuzzy set with the same center and at least the same specificity (defined in [4]) as IP.

Therefore, it is straightforward to choose the output Out < >out out out0 1 2; ,  equivalent to IC (fig. 1).

µ µ

Figure 1. Input is included in the interpolating premise

If the fuzzy input Inp is not included in the interpolating premise (see e.g. fig. 2), one or both feet are outside

of the support of IP. Hence, the parameter of an outlying output foot is appropriately calculated by

interpolation between the feet of the membership functions of the linguistic values "small" and "large" of the

output as follows:
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Figure 2 depicts the output Out in case of an input Inp with only its right foot inp2  outside of the support of

IP. Consequently, the left foot out1  of the output membership function is outside the support of IC, whereas

the right foot out2  of the output is equivalent to the right foot c2  of IC. Obviously, moving the right foot of

Inp causes a relocation of the left foot of Out due to the cross-over of the rules (1).

µ µ

Figure 2. Input is not included in the interpolating premise

Two adjacent membership functions of the input define an interpolation domain. In order to avoid that the

transition of the input from one interpolation domain to another is not continuous, fuzzy interpolation domains

have to be established by allocating continuous membership functions to each interpolation domain. To sum

up this section, the presented inference method guarantees a continuous mapping of understandable fuzzy

inputs onto an understandable fuzzy output.

3 Stability Analysis of Fuzzy Systems

In this section, dynamic fuzzy systems feedbacking the fuzzy output (fig. 3) are considered. The inference

method described above is used to map the fuzzy input u y yk k k n, ,...− −1  onto the fuzzy output yk according to

a set of rules like

IF uk  is "small" AND yk−1 is "large" AND ... yk n−  is "medium" THEN yk is "large".
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F

Figure 3. Dynamic Fuzzy System

To show the basic behavior of such a fuzzy system and to come to an appropriate stability definition, it is

sufficient to look at a simple undriven fuzzy system only described by the following two rules

IF yk−1 is "negative" THEN yk is "positive"

IF yk−1 is "positive" THEN yk is "negative".

The interpolation domain spanned by the two linguistic values "yk−1 is positive" and "yk−1 is negative" is the

universe of discourse of the linguistic variable yk−1. The membership functions defined on the input domain

are shown in figure 4. Depending on the output membership functions, the system shows different dynamic

behavior. Given the output membership functions of figure 5a, we obtain system 1 which is stable since the

fuzzy output converges to the fuzzy number y∞ = −0 2 2; ,  for any initial fuzzy state. Figure 5b depicts the

fuzzy output resulting from a crisp initial state y0 2 2 2= ; , .

Figure 4. Membership functions of the input domain

µ µ

     Figure 5a. Output domain membership functions     Figure 5b. Simulation of the fuzzy system 1

The output membership functions of system 2 shown in figure 6 cause an unstable system behavior. Although

the center of the output converges to 0 for any initial state, its left and right foot move to infinity (fig. 7). Since

the output is getting fuzzier with every step, the specificity of the output vanishes for k → ∞.

µ

Figure 6. Too fuzzy output membership functions cause an unstable system behavior for system 2
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Figure 7. Specificity of the fuzzy output decreases with each step

These simple examples suggest the following stability definition for dynamic fuzzy systems:

An equilibrium point of a fuzzy system marked by a crisp value R0  is (asymptotically) stable iff

• R0  is an (asymptotically) stable equilibrium point for the center of the output yk

• the feet of the fuzzy output stay in a bounded environment of R0 .

The equilibrium point of the two examples above is marked by R0 =0. System 1 has one asymptotically stable

equilibrium point, whereas the equilibrium point of system 2 is unstable.

Since it is sufficient to examine the mapping of the crisp parameters of the fuzzy input onto the crisp

parameters of the fuzzy output, usual methods for the stability analysis of nonlinear systems can be applied. If

the membership functions defined on the input domain of the linguistic values y yk k n− −1,...  are fuzzier than the

membership functions defined on the output domain of the linguistic value yk, it is only necessary to analyze

the mapping of the centers of the fuzzy input onto the fuzzy output. With a constant fuzzy uk  it results a

discrete nonlinear system described by

( )y y , yk
0

k-1
0

k-n
0= f �

with the centers y ,y , yk
0

k-1
0

k-n
0

�  of the fuzzy output yk and its delays y yk k n− −1,... . To analyze such a system,

methods based on common stability analysis approaches may be used. The "Convex Decomposition" [2,3] as

an efficient numerical stability analysis method has been successfully applied to dynamic fuzzy systems.

Further investigations will concentrate on analysis (e.g. controllability) and the synthesis of fuzzy logic

controllers with dynamic fuzzy systems as qualitative process models.
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