
1

A Case Study: Assumptions and
Limitations of a Problem-Solving Method

Dieter Fensel
Department SWI, University of Amsterdam, Roeterstraat 15, NL-1018 WB Amsterdam, The Netherlands

phone: +31-20-5256791, e-mail: dieter@swi.psy.uva.nl

Institu AIFB, University of Karlsruhe, 76128 Karlsruhe, Germany

Subject of the paper: Expert systems, knowledge acquisition, knowledge engineering

Summary. The paper attempts a step in the direction ofcompetence theories of

reusable problem-solving methods for knowledge-based systems. In fact, we

examine a variant of the psmpropose-and-revise. The variant was developed as a

solution to the current Sisyphus task (VT-task) which defined an elevator

configuration problem. We decompose the entire method into its individual

subtasks and examine each subtask for its underlying assumptions concerning the

available domain knowledge. By doing this, we determine assumptions and

limitations of the entire method. In addition, we examine how different control

flows between these subtasks can influence the efficiency and effectiveness of

the method. Again, we show how these differences are related to the assumptions

of the method. Making these assumptions explicit defines interesting goals for

validation and verification efforts: First, we show that under some circumstances

two variants of a problem-solving methods behave equally well or that one is

more suitable than another. Second, we have to prove for a given domain

knowledge whether it fulfils the assumptions of a selected problem-solving

method. We believe that such studies are necessary to allow the reuse of problem-

solving methods and, conversely, that the reuse of psm`s justifies the effort of

such activities.



2

Introduction

Two important requirements can be postulated forsecond generation expert systems (see

David, Krivine and Simmons,  Eds., 1993 for a survey): First, the separation of symbol level

and knowledge level by using a set of models to describe a system independently from its

implementation. Significant for knowledge-based systems is the model of expertise which

describes the different types of knowledge required by such a system (see Schreiber,

Wielinga, Akkermans, Van de Velde and de Hoog, 1994). Second, the use and reuse of

generic problem-solving methods to describe the reasoning process of a knowledge-based

system (see Breuker & Van de Velde, Eds., 1994).

In the past years, significant progress has been made to support the specification of a model

of expertise (a survey is given in Fensel and van Harmelen, 1994). Several knowledge

specification languages have been developed which can be used to formally (and

operationally) describe a model of expertise or similar types of conceptual models. These

languages allow a precise and unambiguous specification of knowledge-based systems at the

knowledge level and support the evaluation of a specification by testing and theorem proving.

Compared to the amount of work which has been done in formal foundations of conceptual

descriptions of knowledge-based systems less research effort has been spent in supporting the

reuse of generic problem-solving methodsby formal methods. Since Clancey´s (1985)

description of the problem-solving method heuristic classification several additional generic

problem-solving methods have been abstracted from different applications but they are either

represented by implemented pieces of code or by informal textual descriptions.

The most popular approach on reusing generic problem-solving methods with several

applications is therole-limiting method approach. For example, MOLE, SALT, SIZZLE ( see

Marcus, Ed., 1988), D3/CLASSIKA (Puppe, 1993), or PROTÉGÉ (Musen, 1989) are expert-

system shells with a fixed problem-solving method. These expert-system shells can be



3

applied to a fixed type of tasks. The problems of this approach are:

• A high effort is required to develop a knowledge acquisition tool for every problem-

solving method, i.e., for every type of task.

• Tasks that require the combination of several problem-solving methods are not

supported.

To overcome these shortcomings of application generators, Chandrasekaran and Johnson

(1993); Marques, Dallamagne, Klinker, McDermott and Tung (1992); Musen (1992); Poeck

& Gappa (1993), and Steels (1990) propose libraries of reusable methods or generic tasks.

These methods have a finer grain size than conventional expert system shells. A complete

problem-solving process must be modelled by several methods. These approaches are

analogous to thesource-code libraries idea in software engineering (see Krueger, 1992). The

main characteristics of these approaches is that currently these methods are only described by

code and by informal descriptions of the code. Therefore, there is little support for the

selection, specialization, and integration of these methods. The lack of descriptions that

abstract from implementational details, but do not lead to imprecise natural-language

descriptions, makes it difficult to compare such methods, and to provide a precise description

of their problem-solving ability.

A different level of reuse is provided by the results of the KADS-I and CommonKADS

projects. Libraries ofsemiformally specified reusable problem-solving methods for a broad

variety of tasks are given in Breuker, Wielinga, van Someren, de Hoog, Schreiber, de Greef,

Bredeweg, Wielemaker & Billault (1987); Breuker & Van de Velde, Eds. (1994); and

Benjamins (1993). As these problem-solving methods are only described informally reuse is

provided only at a conceptual level. In addition, natural language descriptions lack from

preciseness and disambiguity which makes it very hard to judge the semantics of a specific

problem-solving methods as well as its applicability for a given task and domain.



4

For reusing these problem-solving methods, one must be aware of the assumptions

underlying such a method. Each method defines requirements on the available domain

knowledge and the given task. These requirements can concern the effect of the method (i.e.,

its correctness) and the efficiency of it. Making these assumptions explicit several

advantages:

• First, the can be use to prove properties of a specification. The formal specification of a

method together with the specification of its assumptions should enable to formally

prove correctness and efficiency of such a method. Only reliable components can be

reused.

• Second, these assumptions must be proven to hold in a given domain if the method

should be applied to it. Otherwise, reuse of given methods is very questionable as it is

not at all clear whether they will produce a correct result (in an efficient manner).

• Third, these assumptions can be used to index the reusable components and so support

the selection and adoption of methods for a given domain and task.

A progress in this area requires two different research activities. First, a conceptual

framework for describing the functionality, the efficiency, the dynamic behavior, and the

assumptions of reusable building blocks. Second, as for validation and verification of formal

specifications, a proof calculus is required which enable proofs like:

• Correctness proof:

φassumptions∧ φmethod-description |= φfunctionality

• Applicability proof:

φdomain-layer |= φassumptions

• Efficiency proof:

φassumptions∧ φmethod-description |= Effort(φmethod-description) < α



5

The paper is aimed at being a step toward determining acompetence theory of a problem-

solving method (see Akkermans, Wielinga and Schreiber, 1993; Wielinga, Akkermans and

Schreiber, 1995) by analysing the psmpropose-and-revise. Akkermans et al. (1993) and

Wielinga et al. (1995) propose a general framework for developing reusable problem-solving

methods by successive conceptual refinement. Starting from a task description, the final

problem-solving method is derived in a top-down manner by introducing additional

assumptions about the available knowledge and the precise nature of the task. But still, these

proposal lack from significant detail. Therefore, we want to add more preciseness to this

enterprise by re-engineering an existing specification of propose-and-revise and by analysing

its implicit and explicit assumptions.

In fact, we used the KARL specification of propose-and-revise as given by Poeck, Fensel,

Landes and Angele (1994) as an input for our study. We tried to detect as many assumptions

of this method as possible. It is clear that many of them are not related to the propose-and-

revise method in general, but to the task-specific (and domain-specific) variant we specified.

Otherwise, it is hard to justify the assumptions of a method described only informally as in

Marcus (1988) and Marcus, Stout and McDermott (1988). In fact, one of the results of this

paper is to outline the way in which different variations of the same psm have different

assumptions or, conversely, how different assumptions holding in a domain can be used to

derive the appropriate variant of propose-and-revise for a given application. By making

assumptions explicit, it becomes possible to check whether an application domain really fits

to an available psm and, conversely, which of the several variants of the methods fits (best) to

it. We assume such a description as an absolute necessity, especially if the psm`s are

designed for reuse.

The KARL specification which we used as an empirical resource for our case study was the

result of a reengineering activity. First, a configurable-role-limiting-method shell (Poeck and

Gappa, 1993) forpropose-and-exchange (see Poeck and Puppe, 1992) was adopted to



6

propose-and-revise according to its informal description by Yost (1992). Then a formal

specification of the reasoning process of this shell was provided in KARL (see Fensel, 1995).

Finally, we examined the KARL specifications for assumptions which are implicitly encoded

in it. These assumptions which we detected do not reflect specific features of KARL, but are

based on (implicit) decisions which were made by the shell authors Poeck & Puppe (1992) or

by the VT-task description in Yost (1992). The KARL specification was just a precise and

unique description of the problem-solving process which abstracted from implementational

details. As the analysis of hidden assumptions in the specification was mainly a conceptual

activity, the conceptual model underlying a KARL specification was very helpful. Again, it

was theintegration of a specification at the conceptual level (based on the KADS model of

expertise) and at the formal level (which eliminates ambiguity and impreciseness of informal

specifications) which provided the necessary input for our undertaking.1

The paper is organized as follows. First we give a conceptual description of our variant of

propose-and-revise which we calledSelect-Propose-Check-Revise Method (SPCR-Method).

Then we examine the different assumptions underlying each of these four steps. Finally we

provide an look at further work. The reader is assumed to be familiar with the propose-and-

revise method as described by Marcus et al. (1988) and Yost (1992).

Asked to give the message of the paper in a nutshell, we would answer:

• We show several assumptions and limitations of the psm.Making these assumptions

explicit is necessary for the reuse of psm`s. First, a given domain and task must be

checked to see whether these assumptions are fulfilled. Second, these assumptions can

also be used to solve the indexing problem of problem-solving method as they can be

1.  Fensel, Eriksson, Musen and Studer (1993) started this undertaking for theBoard-game method. This method

can be applied to similar tasks.



7

used as guidance for selecting a suitable psm for a given application.

• We show how assumptions about the available domain knowledge lead to different

control flows (task layers) for the same psm (i.e., for the same inference structure).

These assumptions can therefore be used to derive variants of a psm. Or in other words:

The defined control flow of a method is just an (implicit) way to express its

assumptions about the domain knowledge.

A similar study is reported by Zdrahal and Motta (1995). Their in-depth analysis of propose-

and-revise elicits assumptions of the method which will also be discussed in our paper. The

main difference between the two papers lies in their interests. Zdrahal and Motta (1995) focus

on how to improve the efficiency of a propose-and-revise method by combining it with

constraints-satisfaction techniques. They examine the application of efficient algorithms and

generic heuristics for individual inference steps and for the entire method. From our point of

view this is an issue which is more related to the design activity of an expert system.2 The

purpose of the model of expertise is to establish a conceptual framework for eliciting and

interpreting the expert knowledge required for effective and efficient problem solving. The

purpose of the design activity is to develop an efficient realization by adding appropriate

algorithms and generic heuristics (see Landes, 1995). But it should be clear that it is not

possible to determine the exact borderline between the two activities.

1 A Knowledge Level Sketch of The Select-Propose-Check-Revise
Method

The SPCR-Method is applicable for assignment tasks where values are to be given to a set of

parameters fulfilling several constraints. Examples for this type of task are:

2.  Landes (1995) introduces a Design model for KARL. For example, declarative descriptions of elementary

inference steps likepropose are replaced by efficient algorithms and data structures which achieve the same

functionality in an efficient manner.



8

• Sisyphus-I (see Linster, 1994), where employees are assigned to places (i.e., values).

• ECAI´92 workshop example (see Treur & Wetter, 1993): a simple scheduling task

where activities have to be assigned to time slots (i.e., values)

• Sisyphus-II or VT-task (Yost, 1992; Schreiber & Birmingham, 1994), where an

elevator is configurated by choosing components and assigning values. Actually the

problem is viewed as a parametric design problem. That is, the design artefact is

describedby a set of parameters and the design process must determine a value each of

them which fulfill requirements and constraints.

The entire method decomposes the whole task of assigning values to a set of parameters in

four subtasks (see Figure 1):

• A select subtask chooses the parameter which should be processed next.

• A propose subtask proposes a value for the selected parameter.

parameters &

selected
parameter

SELECT

PROPOSE

CHECK

REVISE

paramter

violations

-value pairs

Fig. 1    dataflow diagram of the SPCR-Method

Legend

knowledge
role

primitive inference
action

subtask
data flow

& derivation
rule

derivation rules



9

• A check subtask checks the currently given partial assignment (i.e., the old one which is

enriched by the new parameter-value pair) as to whether it fulfils the given constraints.

• A revise subtask corrects the partial assignment if constraint violations were detected

by thecheck step.

Figure 1 gives a dataflow diagram of the entire method. We modelselect, propose, andcheck

using primitive inferences. That is, we are neither interested in breaking them down into

subtasks of finer grain size nor do we want to impose internal control on these steps.Revise is

a more complex subtask. We therefore want to model its internal subtasks and their control at

the knowledge level.Revise is modelled by a composed inference which will be refined later.

The question may arise as to whether check is really an inference step or more a kind of

branching condition for the control flow which is represented at the task layer. But it fulfils a

twofold purpose:

• If constraint violations can be detected, the method must apply therevise step. If not,

the method can go on by choosing the next parameter in theselect step.

• This step collects all violated constraints and provides this as an input for therevise

step. Therefore, there is a dataflow from thecheck step to therevise inference step and

we chose to model it using an inference action.

The control flow of the SPCR-Method is shown in Figure 2. It consists of a loop over the four

subtasks and a branch depending on the necessity of revising a partial solution. Written in

dynamic logic (cf. Harel, 1984; Kozen, 1990) enriched with some syntactical sugar, we

obtain the following expression:

while ¬all? do select; propose; check;if  violations?then revisefi od (1)

It should be noted that (1) is not the only possible control flow. Another possibility is given



10

by (2).

while ¬all? do select; proposeod check;while violations? do reviseod (2)

Zdrahal and Motta (1995) call (1)Extend Model then Revise and (2)Complete Model then

Revise. The obvious difference between (1) and (2) concerns the select and propose step.

Whereas (1) selects and derives only one parameter and its value, (2) selects and proposes all

parameters and their values before starting the revision activity. That is, (1) revises

incomplete assignments whereas the revision step in (2) only works on the complete (but

incorrect) assignment. A further possibility, which has not been mentioned yet, lies between

those given above. In this model theselect step would not deliver one or all, but some

parameters. The select step would select all parameters which can be given a value in the next

step. That is, it would regard all parameters with a propose rules which only depends on

SELECT

PROPOSE

REVISE

all parameters
are derived ?

yes

no

Fig. 2    Control flow of the SPCR-Method

CHECK

some violations
found?

yesno

Legend

subtask conditional branch
sequence



11

already derived parameter values.

It should become clear that it would be very helpful to have proven lemmas in regard to the

relationships of the different variants of the SPCR-Method as sketched above. How are the

effect and efficiency of the different methods related? Based on a particular assumption one

could show that some variants lead to the same results (but differ in their efficiency) and

some produce different outputs. Making these assumptions explicit provides us with a strong

guidance in selecting or differentiating an appropriate variant of the method for a given task

and application domain.

In the following, we will examine each subtask and its assumptions about the available

knowledge in more detail. In fact, we will have to examine four different types of knowledge.

• Select knowledge:

We need knowledge to select a parameter. In our case, we assume a network formed by

propose rules. This domain-specific meta-knowledge must fulfil some requirements if

our method is to function correctly. This knowledge is meta-knowledge as each propose

rule presents a piece of (domain-specific) object-knowledge, whereby we use the

knowledge which is encoded in the relationship of these rules.

• Propose knowledge:

We need knowledge which enables us to derive a value for a given parameter. Our

method assumes a user input or a propose rule for this purpose.

• Check knowledge:

We require knowledge which can be used to check a partial solution to determine

whether it is correct. In our case, we assume a set of constraints over the parameter

values.

• Revise or repair knowledge:



12

We require knowledge which can be used to repair a partial solution if constraint

violations were detected. In our case, we assume a set of fixes.

2 Assumptions About the Select Knowledge

The select step selects the parameters which should receive a value next. In addition, the

derivation rule which can be applied for this parameter must be selected. This derivation rule

can be either a user input or a propose rule.

In our case, we select one parameter per time. For this purpose we need generic and domain-

specific knowledge.We use the followinggeneric heuristics:

• Select non-deterministically a (not already chosen) parameter for which user input is

given;

• if no further parameter of this kind exist, choose non-deterministically a (not already

chosen) parameter for which a propose rule is given whose premises depend only on

already derived values

Two assumptions appear.3 First, we show which implicit assumptions are encoded by our

generic heuristics. Second, we need to know the relationship between the propose rules and

user input parameters to select the parameters. This isdomain-specific meta knowledge. Our

method makes some strong explicit assumptions about this knowledge:

2.1 Assumptions of the Generic Heuristics

As we select one possible parameter in a non-deterministic manner, we do not require any

3.  Actually, two shortcomings of our specification language KARL also became visible. KARL could neither

specify non-deterministic choice nor domain-specific meta-knowledge in an elegant manner (see Poeck et al.,

1994).



13

knowledge for this step. This also means that we could not use just any available knowledge

for this step. In fact, we implicitly assume that the selection of the next parameter neither

influences the effect nor the efficiency of the problem-solving process.

An initial alternative is to regard all parameters which can be given a value in one step. This

value can either be provided by a user input or by a propose rule, which can be applied as all

its premises have given values. Instead of choosing one out of all those which can be

determined next, we would deal with them parallel. We could give all of them a value in the

propose step and thencheck andrevise their constraint violations. Actually we believe that

this a very meaningful method as there is no real reason for selecting exactly one parameter

for the next step. The only reason is perhaps that the psm was derived by an expert (see

Marcus et al., 1988) and that humans tend to (artificially) sequentialize activities, as they are

not very good at parallel problem-solving. However, computers are great in doing several

things parallel, and sequentiality should be eliminated when not required by the problem.4

The second alternative to non-deterministic choice would be to assume any domain-specific

heuristics which guide the selection process of the next parameter. Such a heuristics would be

a reason for selecting not all possible parameters which can be given a value in the next step

but just some (or one) of them.5

2.2 Assumptions About the Domain-specific Meta-knowledge

Our method makes assumptions about the available domain-specific meta knowledge. An

4.  In fact, we see here how assumptions about the agent which will carry out the computation at the symbol

level (i.e., whether humans or computers are the agents) influence the knowledge level model of expertise.

5.  We already mentioned the third alternative, which would apply thepropose step several times as long as all

values are derived. But this does not only concern thepropose step but also the control flow of the entire

method.



14

initial straightforward restriction would be to allow only one propose rule or user input per

parameter. We could then depict each propose rule by a set of directed arcs which connects

the premises of a rule with its conclusion (see Figure 3). The nodes of the directed graph

would be the parameters and one start node would be theuser. The user inputs would be

directed arcs from the user-node to parameter nodes. The assumptions of thepropose step can

now be related to that graph:

• (1) The user must give an input for each parameter he is assigned by the graph.

• (2a) It is forbidden to have two or more propose rules for the same parameter.

• (2b) It is forbidden to have a user input and a propose rule for the same parameter.

• (3) Each node must be reachable (strongly connected).

• (4) The graph formed by the propose rules must be non-cyclic.

(1) relates the graph with the external world. The user has to give a value if he is assigned.

The method can therefore not work with incomplete input. The user does not have to assign a

value to all parameters, but to all parameters he is assumed to do. (2a+b) should prevent

par3

par1 par2

par4

one propose rule

user input

user

user input

Fig. 3    The restricted graph of propose rules

Legend

parameter user
used-for-derivation relationship



15

contradictions. Only one propose rule or the user should be used to derive a value for a

parameter. In fact, we could not even present two different propose rules in our graph, as this

difference would disappear. It is easy to statically check assumption (2a+b). Assumption (3)

can also be checked statically. We just have to check, whether each node has an input arc.

Assumptions (4) can also checked statically, but requires more computational effort. We have

to ensure that each permissible path through the graph does not include cycles. (4) allows us

to stratify the set of parameters to get an order in which we select and propose values for

them. A parameter which depends on user input is at level equal zero. A parameterp is at

level i

level(p) = i with i > 0

if it is not given by a user input and if it depends on parameter p1,..., pn with

max({level(pj) | j = 1,...,n}) = i - 1.

This stratification is not possible if a parameter depends directly or indirectly on itself.

Parameters which directly or indirectly depend on themselves would never be selected by our

psm.

A significant restriction of this representation is that only one propose rule per parameter can

be given. This is not fulfilled by the VT-domain. Different derivation rules for further

elevator parameters exist depending on the selected subcomponent of an elevator [Yos92].

For example, if we have chosen the motor model10HP then

 1.25 *M, if M ≤ 40

(1) peak =  1.333 *M - 3.333, if 40 <M ≤ 62.5

 1.6 * M - 20, otherwise

but in the case of the motor model15HP we have the propose rule

 1.286 *M, if M ≤ 70

(2) peak =  1.4 * M - 8, if 70 <M ≤ 120



16

 1.6 * M + 60, otherwise.

M denotes the maximum motor torque.

There are several propose rules for the same parameter and the applicability of a propose rule

depends on the values of other parameters. Therefore, we have to use a different

representation of the domain-specific meta-knowledge which makes less strong assumptions

about this knowledge. Figure 4 shows a Petri net representation of the propose rules where

each rule corresponds to a transition and each parameter is represented by a node. Actually,

we have to use predicate-transition nets, as the transitions are labelled by conditions and the

tokens are of different types.

We still require that the propose rules can be used to define a partial ordering on the

parameters so as to guide the order in which they are selected, but proving this assumption

now requires more effort. Now we have to prove the behavior of a predicate-transition net.

We no longer have to only regard static properties, but we have to reason in accordance to

already selected parametersand their derived values if we want to prove this assumption. The

question as to whether all parameter are reachable is also much more complicated. We have

to check whether under some circumstances (chosen parameter values) a path in the Petri net

will never be reached and parameters will remain without a value. We now have to consider

all possible admissible executions of the Petri net formed by the propose rules. This is the

price we have to pay for relaxing the very strong assumptions of the first graphical

representation.

2.3 Guidance of the Knowledge Acquisition Process by Assumptions: Creating Fixes
to Resolve Cycles

We assume the graph of propose rules to be non-cyclic. A parameter should neither directly

nor indirectly depend on its own value, as this would lead to an inconsistency in regard to its

value.6 This assumption can be used as guidance in the course of knowledge acquisition. If



17

we detect such direct or indirect cycles we can ask the expert about them. In general, one

alternative exists:

• Our chosen variant of our (chosen) psm makes assumptions which are not fulfilled by

6.  Not in general, but given the way in which our method would process the case. A parameter which depends

directly on itself would not be assigned a value at all. A parameter which indirectly depends on itself is a

candidate in twopropose steps and is assigned a second value. This would lead to an inconsistency if the later

value differs from the former one.

peak

rule2

motor model maximum motor torque

rule1

Fig. 4    The representation of the propose rules graph by a Petri net.

10HP 50

63.333

x=10HP
x=15HP

Legend

parameter

rule input = condition or premisex
parameter
value propose

rule

rule output = conclusion of the rule

par3

par1 par2

par4

propose
rulefix

Fig. 5    Resolving cycles in the propose graph.

Legend

parameter derivation dependencies



18

the domain. Then we have to choose a different variant.7

• We have to resolve the conflict. We delete one propose rule, or we realize that one rule

was not intended so much as a propose rule, but more as a fix which can be used to

repair an assignment when constraint violations appear (see Figure 5). In that way, the

assumption would be used as a guidance for reformulating parts of the domain

knowledge during knowledge elicitation and interpretation.

3 Assumptions about the Propose Knowledge

After having selected the next parameter we have to give it a value. For this we need a user

input or a propose rule. More precisely, the result of the selection step is not only the

parameter which should obtain a value next, but also the selected propose rule (or the user

input) which can be used for this purpose. The main assumption of the propose step concerns

theuniqueness in the graph of the propose rules: there must be only one admissible path (i.e.,

propose rule) in our graph to reach the current parameter. This assumption ensures that the

propose step delivers a unique value for the parameter.

We could easily assume a different domain where this assumption does not hold. That is,

several possible propose rules which are applicable for a parameter and we have to choose

one of them. Again, this could be done non-deterministically, we could assume the existence

of some heuristic knowledge, or we could regard several different assignments parallel.

Again, if we were to make aweaker assumption then the question, for example, of whether

under all circumstances all parameters still remain reachable would become evenmore

difficult.

7.  We could also choose a different application domain.



19

4 Assumptions about the Check Knowledge

The check knowledge is formed by constraints over the parameter values. Our first

assumption is that there exists a solution. That is, the constraints define a solvable problem.

This can be proven by showing that at least one possible combination of parameter values

exists which fulfils every constraint.

Actually, the scope of our psm is much more limited. As we do not search completely, we

cannot guarantee that we will find a solution even if one exists. In fact, we assume that the

constraints define a problem which can be solved by our limited search. We use hill-climbing

with limited (i.e., goal-directed or knowledge-based) backtracking by fix knowledge. This

assumption does not define a requirement for the constraints alone but for the relationship

between constraints and fixes. The fixes must be strong enough to find a solution and the

constraints must be “weak” enough to enable us to find such a solution.

A strong limitation of our methods concerns the way we deal with constraints. All constraints

are viewed as strong constraints. It is neither possible to express weak constraints which may

be violated nor to place a penalty function on them. We cannot differentiate between an

assignment which violates one unimportant constraint slightly and an assignment which

violates several important constraints significantly.

A second strong shortcoming of our check step is that we do not assume the existence of

knowledge which would enable us to distinguish between different solutions. We have no

knowledge as to whether one of them is more preferable than the other. We only check

whether an assignment fulfils all constraints. But it is clear that, in general, different solutions

which fulfil all constraints exist but that they are of different quality.

5 Assumptions of Revise Knowledge

Figure 6 shows the refinement of therevise subtask. It consists of five subtasks where four



20

are solved by primitive inferences and one is again a composed inference action. The

substeps of therevise step are:

• Select one violated constraint from the set of all violated constraints.

• Derive all fix combinations for the selected violation.

• Select one fix combination.

parameters

selected
param...

SELECT

PROPOSE

CHECK

REVISE

paramter

violations

-value ...

DERIVE all

violations

fix combinations

fix
combinations

Check & Copy

SELECT
one violation

selected
violation

new values SELECT one
fix combination

fix
combination

& deriv ...

APPLY a fix
combination

Fig. 6    Data flow of the revise subtask.

parameter
-value pairs

Legend

knowledge
role

primitive inference
action

subtask
data flow



21

• Apply the fix combination.

• Check the new derived assignment to see whether it only violates a subset of the

original violated constraints. If yes, regard it as a new assignment with new violations.

The control flow of therevise step is defined in Figure 7. First a violated constraint is chosen.

Second, all possible fix combination which can be use to repair this violation are derived.

Third, a fix combination is selected and applied until the violation is repaired (or until no

further applicable fix combination exists). Then the new values and constraint violations are

used as a starting point for the next iteration until all conflicts are resolved. An implicit

assumption is that we can always find a solution. The search process is complete in the sense

that it tries to resolve a violation as long as a further possible fix combination exists. But the

search is incomplete as it does not backtrack behind the selection of the currently investigated

constraint violation.8 The selection cannot be undone even if the search runs into a dead end.

Also, a successful fix application cannot be undone. The implicit assumption is that this

restricted search is powerful enough to find a solution (because of the available domain

knowledge) and that more powerful search strategies would reduce the efficiency of the

problem-solver. On the other hand, if no solution can be found at all, backtracking behind the

selection step (i.e., the investigation of different orders in which the violations are chosen)

should be possible.

In the following, we will examine the different assumptions of the single steps of the entire

revise subtask.

5.1 Assumptions of Select-a-Violation Knowledge

We select non-deterministically a constraint from all violations. Again, no assumption is

8.  In fact, as we will see in the apply-a-fix-combination step, the search is also incomplete in the sense that only

the first successful fix combination can be applied.



22

made about available knowledge but we implicitly assume that the sequence has no influence

on the effect and efficiency of the psm. As there is no backtracking behind this selection step,

this is a very crucial assumption.

5.2 Assumptions of Derive-All-Fix-Combinations Knowledge

For each (violated) constraintc a set of applicable fixesFc = {f1,..., fn} must be given which

can be used to repair the violation. In the VT-domain, we had three types of fixes: replace a

component by another, change a value, increment or decrement a value. As increment or

decrement fixes can be applied several times,Fc is actually the transitive closure of the given

fixes, i.e.,

Fc = {(f1)*,..., (fn)*}

A repair activity is defined by any possible (non-empty) subset ofFc. An example from

[Yos92] should illustrate this.

Counter weight over travel: For safety reasons, the counter weight overtravel must be

at leastR + 1.5 *S + 6 inches, whereR is thecar runby andS is thecar buffer stroke. If

it is not, four fixes are possible:

• F1: Decrease thecounterweight bottom reference by the amount by which the

while ¬empty-violations?do
Select one violation;
Derive all fix combinations;
Select the first fix combination;
Apply the fix combination;
while ¬Check?do

Select the next fix combination;
Apply the fix combination

od
Copy;

od

Fig. 7    Control flow of the revise subtask.



23

overtravel falls short of its minimum. This is a change-a-value fix.

• F2: Decrease thecounterweight frame heightin one inch steps. This is a decrease fix.

• F3: Increase theoverhead by the amount theovertravel falls short of its minimum. This

is a change-a-value fix.

• F4: Decrease thepit depthin one inch steps. This is a decrease fix.

F = {F1, 1 * F2, 2 * F2, 3 * F2,...,F3, 1 * F4, 2 * F4, 3 * F4,...}

A strong assumption of our psm is that there must befinitely many fix combinations and each

fix combination must be finite. This is due the fact, that we derive all possible fix

combinations and this can only be done in finite time under the two given assumptions. In the

VT case, additional constraints which restrict the legal domain of a parameter value were

introduced for this purpose. These constraints are handled differently from normal

constraints. Normal constraints are used to determine whether a partial assignment is valid.

The new introduced constraints are used in the Derive-All-Fix-Combination step to define

upper and lower bounds for the application of increment and decrement fixes.

In [Yos92] a constraint is given to define a lower bound for the application ofF2.

Counterweight frame height: Thecounterweight frame height must be between 90 and

174 inches, inclusive. The maximal number of times fixF2 can be applied is therefore

determined by the difference between the current value of thecounterweight frame

height and 90 inches. Such additional constraints, which ensure finiteness of fix

applications, have no fixes of their own (i.e., they are always assumed to be true). A

similar constraint is given the constraint fixF4.

5.3 Assumptions of Select-one-Fix-Combination Knowledge

In this step, we select one fix combination out of all possible fix combinations for one



24

constraint violation. For this purpose, we used a cost model of the VT-domain. Therefore, we

do not have to non-deterministically choose an element but we can use this domain-specific

heuristics. Actually, there were ten cost levels for grouping the fixes. Examples are [Yos92]:

• level one: no problem in applying the fix;

• level two: applying such a fix increases maintenance requirements;

• ...

• level nine: changing the building dimensions;

• level ten: changes major contract specification.9

After having assigned each fix to a cost level we have to determine the total cost of a fix

combination and define an order for them which we then use to determine the cheapest fix

combination. Each fix combinationf is described by a ten-tuple (c1,..., c10) whereci is the

number of fixes at cost leveli which are contained in the fix combinationf. A lexicographical

ordering of these fix combinations is defined by:

A fix combinationf´ with (c´1,...,c´10) is more costly thanf if there is ani with

ci < c í and

noc j́ < cj for eachi < j.

This cost model can be modelled by ordinal numbers {o1,...,o10} where

• n * oi < oj for eachi < j

• n * oi < m * oi if n < m.

9.  Therefore, preference knowledge concerning solutions is expressed as preference during for revision steps.



25

In the following, we will discuss how different assumptions about this selection heuristics

lead to differences in effect and efficiency of different control flows for therevise subtask. In

Figure 7 we already gave one possible control flow for therevise subtask. An alternative flow

is given in Figure 8. The method with the second control flow has thesame effect but ismuch

more efficient as it does not derive all possible fix combination  but only those which are

required. Actually, here was the only significant difference between the KARL specification

of the SPCR-Method and its implementation by a configurable role-limiting shell10 (see

Poeck et al., 1994). This kind of efficiency was regarded as a non-functional requirement

which can be added during design and implementation but which is of no concern during the

10.  See Poeck and Gappa (1993).

while ¬empty-violations?do
Select one violation;
Derive one fix combination;
Apply the fix combination;
while ¬Check?do

Derive next fix combination;
Apply the fix combination;

od
Copy;

od

Fig. 8    Alternative control flow of the revise subtask.

cost-level (1,...,10)

number of fixes at each level

Fig. 9    An alternative cost model for the select-a-fix-combination step.

cost =
oi

210-i
i = 1

10
3

2

1

1 2 3 4 5 6



26

knowledge acquisition step. But if we slightly modify the assumption about the available

domain-specific selection heuristics, we can show that the methods not only differ in their

efficiency but also in their effect. In Figure 9 we show a cost model which would use the

different cost levels not as ordinar numbers but as weight factors. The alternative control flow

would enable therevise subtask to deal with cases with infinitely many fix combinations and

possible fix combinations with infinitely many fixes. The alternative method is able to do so

as it does not try to derive all fix combinations but it only derives one fix combination at a

time until a correct one is found. Suddenly, the difference between the two control flows

changes from a question of efficiency to a question of effect in general. Naturally, questions

arise like:

APPLY a fix

fix
combination

parameter SELECT fix

PROPAGATE

new value

COPY

DERIVE all

violations

fix combinations

fix
combinations

Check & Copy

SELECT
one violation

selected
violation

new values
SELECT one
fix combination

fix
combination

APPLY a fix
combination

parameter
-value pairs

Fig. 10    Data flow of the Apply-a-fix-combination subtask.

onefix

a fix

value-pairs

new values

Legend

knowledge
role

primitive inference
action

subtask
data flow



27

• under which assumption about the available domain knowledge are two methods equal

in effect (or efficiency);

• does domain knowledge fulfil specific assumptions or not?

5.4 Assumptions of Apply-a-Fix-Combination Knowledge

This subtask consists of four primitive inferences. First, we must create an internal copy of

the partial assignment which is done bycopy. Then we select one fix, apply the fix to a

parameter value, and, finally, propagate the consequences of the fix application. The data

flow diagram of this subtask is given in Figure 10. A fix can look like:

Upgrade the machine groove model or increase the car supplement weight in 100

pound steps.

The control flow of this subtask is defined in Figure 11. Again, we will see how specific

assumptions are related to the individual steps and their control.

The selection of a fix is done non-deterministically. Again, we make no assumption about

available domain knowledge which could guide the selection process, but assume that the

sequence in which we choose fixes influences neither the effect nor efficiency of the method.

In fact, we assume that the sequence in which fixes are applied does not matter. This includes

the assumption that fixes neither directly nor indirectly interact. Direct interaction of two

fixes would mean that they refer to the same parameter. In that case, the application of the

latter would probably destroy or at least counteract the effect of the former. Indirect

Copy;
while ¬empty-fix-combination?do

Select one fix;
Apply a fix;
Propagate a fix;

od

Fig. 11    Control flow of the Apply-a-fix-combination subtask.



28

interaction could take place in thepropagate-a-fix step. In this step, a modification by a fix is

forward-propagated through the network formed by the propose rules. If we modify a

parameter value we modify all parameter values for which it is used as a premise of a propose

rule. Therefore, fixes can easily interact in this propagate step. In fact, they do so in the VT-

domain. This implicit assumption of the psm is therefore violated and the “non-deterministic”

order in which we choose fixes influences the outcome of the method. Figure 12 gives an

illustration for indirect fix interaction and how this influences—together with the order of

their application—the outcome. Iffix1 is applied and propagated first, then its effect is deleted

when fix2 is applied. Iffix2 is applied first, its effect is deleted whenfix1 is applied and

propagated. This indirect interaction of fixes can also lead to the violation of constraints

which were used to define range restrictions for parameter values to prevent the infinite

application of decrement and increment fixes. In theDerive-all-fix-combination step, we

include an increment-fix for a parameterp at mostn times if the current value ofp is m and

m+n is the upper bound as defined by the according constraint. If a second fix directly or

indirectly influences the same parameterp we can obtain a violation of the range restriction

even if it was assumed to be legal.

The assumption of theApply-a-fix-combination step that fixes do not interact is very hard to

prove. The violation of the assumption can be shown by an example where two fixes interact.

Based on the no-interaction-assumption, an alternative control flow can be defined as shown

in Figure 13, but it should be clear that the two control flows differ significantly in their effect

Par2

Par1 Fix1

Fix2

Propose rule

Fig. 12    An example for indirectly interacting fixes.



29

if this assumption is violated.

The Propagate-a-fix inference is again a composed inference which is refined further by

elementary inferences, but due to limited space we will not deal with this refinement. We

want to point out just one property of this step. The changed value obtained by applying a fix

is only forward-propagated through the network of propose rules. That is, if a propose rule

for other parameters exists which uses the parameter as a premise (i.e., input value) then the

propose rule is applied again with the changed parameter value. In fact, this is only done for

parameters which already have a value. Parameters which will processed in a further iteration

of the whole psm are not regarded. This strategy of forward-propagation (i.e.,without

backward-propagation) of changes makes a strong assumptions about the nature of the

knowledge which is encoded by the propose rules. The propose relationship between

parameters has to be a one-way functional relation where one parameter functionally depends

on another but not vice versa. When we have two parametersp1, p2 so that:

p2 := 2 * p1 * π (i.e.,p1 is the radius andp2 the circumference of a circle)

we cannot apply a fix to p2. Parameters to which fixes are applied are implicitly assumed not

to be in a two-way functional dependency to the parameters which are used to calculate their

initial values by means of propose rules.

Copy;
while ¬empty-fix-combination?do

Select one fix;
Apply a fix;

od
refill fix-combinations;
while ¬empty-fix-combination?do

Select one fix;
Propagate a fix;

od

Fig. 13    Alternative control flow of the Apply-a-fix-combination subtask.



30

• One could argue that it would be possible to capture a two-way functional relationship

between two parameters using two propose rules. But this would lead to a cycle in the

graph of propose rules and would therefore violate an assumption about the propose

knowledge.

• One could also argue that we can model one functional dependency using a propose

rule and the other using a constraint. But applying the fix to one parameter would then

lead to a new constraint violation and the fix application would be redone by the

problem-solving process.

5.5 General Assumptions and Limitations of the Entire Revise Step

It still remains for us to look at two further assumptions or limitations of the entirerevise

subtask. First, it treats user input and propose rules as defaults and, second, it processes a

very restricted search strategy.

Propose Rules and User Inputs are Defaults

Fixes can change user input values as well as values which were derived by applying propose

rules. The assumption is that user inputs and proposed values are only defaults. The psm uses

all initial values given by the user only as a starting point for the search process. As it tries to

apply the cheapest fixes first, it tries to remain as close to them as possible. But there is no

explicit way for the user to indicate which rewrites he accepts and which he does not want.

The same holds for the values derived by propose rules. They are just treated as defaults

which can be modified by fix application.

Only One-step Look-ahead Search

The application of a fix combination is withdrawn if it leads to the violation of new

constraints. Therefore, it is not possible to apply a sequence of fix combination which would

bypass a possible dead end of the search process. A sequence like



31

constraintc1 is violated;F1 repairsc1 but violatesc2, F2 repairsc2.

is not possible with our limited search approach. In addition to the fact that it is not possible

to backtrack over the selection of violated constraints it also heavily restricts the search

space.

6 Outlook

In the paper, we analyzed a formal specified knowledge level model of a variant of the psm

propose-and-revise to determine its underlying assumptions and limitations. We believe that

such an activity is a necessity forreusing psm´s. Only if their assumptions are made explicit

can we prove whether a psm can be used to solve a given task in a given application domain.

That is, a method can only be applied to a task and domain if its assumptions hold for the

given application. Conversely, these assumptions can be used to guide the process of

selecting andcombining psm`s out of a library. They can be used as features which describe

them. Additionally, these assumptions can be used to derive the variants of a psm which best

fit a given application (i.e., tomodify or differentiate them according to domain and task

circumstances). To examine the reuse of psm`s and the degree of differentiation we will

examine our solutions (Angele, Fensel, Landes & Studer, 1992; Angele, Fensel and Landes,

1992) to the Sisyphus-I task (the so-called office assignment problem), our solution to the

ECAI-workshop task (Landes, Fensel & Angele, 1994), and our specification of the Board-

game method (see Fensel et al., 1993).

The described work defines a strong link to the validation and verification effort of

knowledge-based systems. Two different types of tasks generally arise in this context. First,

we have to examine the formal specifications of psm`s for their assumptions. In addition, we

can vary them, their control flow, for example, and study how this influences their

assumptions and limitations. As part of this effort, a language for formally defining such

properties has to be developed. A promising step is achieved by Aben (1995). He describes a



32

library of formally specified standard inference actions. Each inference is described by a

body, a preconditions and a postconditions. The body is used to specify the logical inference,

the preconditions define assumptions on the input, and the postconditions capture significant

features of the result, which is derived by the inference. He also discuss the combination of

inference actions but his concept ofcompatibility abstracts from all dynamics (i.e., from any

control flow between the inferences). Therefore, he can only formulate assumptions which

must hold for all possible control flows.

In addition to the conceptually oriented effort, there is a need to develop formal and

automatic techniques for supporting the derivation and checking of assumptions. Support is

required for showing that different variants of a psm are equal or unequal in their effect and

efficiency under some assumptions. We have to determine, whether a given domain

knowledge fulfils the assumptions of a psm. More precisely, we have to find conditions

which ensure these assumptions. For example, they need not hold true for every possible (and

meaningless) user input but only for the relevant input. So the task becomes a search for

meaningful preconditions which, together with the given domain knowledge, entail

postconditions which cover these assumptions.

Still an open problem is whether a list of assumptions or limitations is complete for a given

psm. The list we mentioned in the paper is by no means complete. For example, assumptions

and limitations which we did not mention are: The number of parameters has to be constant.

Each property of the desired solution is expressible as constraints over some parameters and

as user input values. The user is treated as a source of input data but not as a helpful agent for

problem-solving. An alternative approach would be to view him as an active agent who

solves the problem in interaction with and assisted by the system. The problem-solving

process is modelled by viewing the expert system “as an autistic problem solver” (de Greef

and Breuker, 1992) It is clear that these are different types of assumptions and it appears

necessary to derive a typology of such assumptions/limitations in order to take an initial step



33

toward dealing with the question of completeness.

Acknowledgement

I would like to thank Frances Brazer, Frank van Harmelen, Dieter Landes, Remco

Straatman for helpful comments and especially Karsten Poeck for delivering a rich

input for the case study. Jeffrey Butler worked hard on improving the English of the

paper.

References

Aben, M. (1995). Formal Methods in Knowledge Engineering, Ph D dissertation, University

of Amsterdam.

Angele, J., Fensel, D. Landes, D. (1992). An Executable Model at the Knowledge Level for

the Office-Assignment Task. Linster, M., Ed. Sisyphus ´92: Models of Problem

Solving, Arbeitspapiere der GMD, no 663.

Angele, J., Fensel, D. Landes, D. & Studer, R. (1992). An Assignment Problem in Sisyphus -

No Problem with KARL.   Linster, M., Ed. Sisyphus ´91: Models of Problem Solving,

Arbeitspapiere der GMD, no 630.

Akkermans, H., Wielinga, B. & Schreiber, G. (1993). Steps in Constructing Problem-Solving

Methods. Aussenac, N. et al., Eds., Knowledge Acquisition for Knowledge-based

Systems. Proceedings of the 7th European Workshop (EKAW´93), Toulouse and

Caylus, France, September 6-10, Lecture Notes in Artificial Intelligence (LNAI), no

723, Springer-Verlag, Berlin.

Benjamins, R. (1993). Problem Solving Methods for Diagnosis, PhD dissertation, University

of Amsterdam.

Breuker, J. & Van de Velde, W., Eds. (1994). CommonKADS Library for Expertise



34

Modelling, IOS Press, Ohmsha.

Breuker, J. A., Wielinga, B., van Someren, M., de Hoog, R., Schreiber, G., de Greef, P.,

Bredeweg, B., Wielemaker, J. & Billault, J.-P. (1987). Model-Driven Knowledge

Acquisition: Interpretation Models. In ESPRIT project P1098, report, University of

Amsterdam.

Chandrasekaran, B. & Johnson, T. R. (1993). Generic Tasks and Task Structures: History,

Critique and New Directions. David, J.-M. , Krivine, J.-P. & Simmons, R., Eds.

Second Generation Expert Systems, Springer-Verlag, Berlin..

Clancey, W. J. (1985). Heuristic Classification. Artificial Intelligence, vol 27, 1985.

David, J.-M., Krivine, J.-P. & Simmons, R., Eds. (1993). Second Generation Expert Systems,

Springer-Verlag, Berlin.

Fensel, D. (1995). The Knowledge Acquisition and Representation Language KARL, Kluwer

Academic Publ., Boston, to appear.

Fensel, D., Eriksson, H., Musen, M. A. & Studer, R. (1993). Description and Formalization of

Problem-Solving Methods for Reusability: A Case Study. Complement Proceedings of

the 7th European Knowledge Acquisition Workshop (EKAW´93), Toulouse, France,

September 6-10.

Fensel, D. & van Harmelen, F. (1994). A Comparison of Languages which Operationalize and

Formalize KADS Models of Expertise. The Knowledge Engineering Review, vol 9, no

2.

de Greef, P. & Breuker, J. A. (1992). Analysing System-User Cooperation in KADS,

Knowledge Acquisition, vol 4, no 1.



35

Harel, D. (1984). Dynamic Logic. Gabby, D. et al., Eds., Handook of Philosophical Logic, vol.

II, Extensions of Classical Logic, Publishing Company, Dordrecht (NL).

Kozen, D. (1990). Logics of Programs. Van Leeuwen, J., Ed., Handbook of Theoretical

Computer Science, Elsevier Science Publ., B. V., Amsterdam.

Krueger, C. W. (1992). Software Reuse. ACM Computing Surveys, vol 24, no 2.

Landes, D. (1995). Die Entwurfsphase in MIKE. Methode und Beschreibungssprache, Ph D

dissertation, University of Karlsruhe.

Landes, D. Fensel, D. & Angele, J. (1993). Formalizing and Operationalizing a Design Task

with KARL. Treur, J. & Wetter, T., Eds. Formal Specification of Complex Reasoning

Systems, Ellis Horwood, New York.

Linster, M., Ed. (1994). Sisyphus ´91/92: Models of Problem Solving. International Journal of

Human Computer Studies, vol 40, no 3.

Marcus, S., Ed., (1988). Automating Knowledge Acquisition for Experts Systems, Kluwer,

Boston.

Marcus, S.,  Stout, J. & McDermott, J. (1988). VT: An Expert Elevator Designer That Uses

Knowledge-based Backtracking. AI Magazine, vol 9, no 1.

Marques, D., Dallamagne, Klinker, G., McDermott, J. & Tung, D. (1992). Easy Programming.

Emporing People to Build Their Own Applications. IEEE Expert, vol 7, no 3.

Musen, M. A. (1989). Automated Generation of Model-Based Knowledge-Acquisition Tools,

Morgan Kaufmann Publisher, San Mateo, CA.

Musen, M. A. (1992). Overcoming the Limitations of Role-Limiting Methods. Knowledge

Acquisition, vol 4, no 2.



36

Poeck, K. & Gappa, U. (1993). Making Role-Limiting Shells More Flexible. N. Aussenac et

al., Eds., Knowledge Acquisition for Knowledge-Based Systems, Proceedings of the

7th European Workshop (EKAW´93, Toulouse, France, September 6-10, 1993),

Lecture Notes in AI no 723, Springer-Verlag, Berlin.

Poeck, K., Fensel, D., Landes, D. & Angele, J. (1994). Combining KARL and Configurable

Role Limiting Methods for Configuring Elevator Systems. Proceedings of the 8th

Banff Knowledge Acquisition for Knowledge-Based System Workshop (KAW´94),

Banff, Canada, Januar 30th - February 4th.

Poeck, K. & Puppe, F. (1992). COKE: Efficient Solving of Complex Assignment Problems

With the Propose-And-Exchange Method. Proceedings of the 5th International

Conference on Tools with Artificial Intelligence, Arlington, Virginia, November 10-

13.

Puppe, F. (1993). Systematic Introduction to Expert Systems: Knowledge Representation and

Problem-Solving Methods, Springer-Verlag, Berlin.

Schreiber, G. & Birmingham, B., Eds. (1994). Proceedings of the 8th Banff Knowledge

Acquisition for Knowledge-based Systems Workshop (KAW´94), vol III, Sisyphus II

- VT Elevator Design Problem, Banff, Canada, January 30 - February 4.

Schreiber, G., Wielinga, B., Allermans, H., Van de Velde, W., de Hoog, R. (1994).

CommonKADS. A Comprehensive Methodology for KBS Development. IEEE

Expert, vol 9, no 6.

Steels, L. (1990). Components of Expertise. AI Magazine, vol 11, no 2.

Treur, J. & Wetter, Th., Eds. (1993). Formal Specification of Complex Reasoning Systems,

Ellis Horwood, New York.



37

Wielinga, B., Akkermans, J. M. & Schreiber, A. Th. (1995). A Formal Analysis of Parametric

esign Problem Solving. Proceedings of the 9th Banff Knowledge Acquisition for

Knowledge-based Systems Workshop (KAW´94), Banff, Canada, February 26 -

March 3.

Yost, G. R. (1992). Configuring Elevator Systems, Technical report, Digital Equipment Co.,

Marlboro, Massachusetts.

Zdrahal, Z. & Motta, E. (1995). An In-Depth Analysis of Propose & Revise Problem Solving

Methods. Proceedings of the 9th Banff Knowledge Acquisition for Knowledge-based

Systems Workshop (KAW´94), Banff, Canada, February 26 - March 3.


