
In T. Pequeno, F. Carvalho (Eds.), Proceedings of the XI Brazilian Symposium on Arti�cial Intelli-

gence, Fortaleza, pp. 493{506, 1994.

MANTRA: A Multi-Level Hybrid

Knowledge Representation System

G. Bittencourty, J. Calmetz, K. Homannz, A. Lulayz

z Universit�at Karlsruhe

Institut f�ur Algorithmen und Kognitive Systeme

Am Fasanengarten 5

76128 Karlsruhe � Germany

fcalmet,homann,lulayg@ira.uka.de

y Universidade Federal de Santa Catarina

Laborat�orio de Controle e Microinform�atica

88049-900 Florian�opolis � SC � Brazil
gb@lcmi.ufsc.br

Abstract

The intelligent behavior of a system is based upon its represented knowledge

and inference capabilities. In this paper we report on a knowledge represen-

tation and reasoning system, developed at the University of Karlsruhe, called

Mantra. The system provides four di�erent knowledge representation methods

{ �rst-order logic, terminological language, semantic networks, and production

rules { distributed into a three levels architecture. The �rst three methods form

the lowest level of the architecture, the epistemological level. The supported

hybrid inferences as well as the management of knowledge bases form the second

level, called logical level. Finally, the third level, the heuristic level, provides

representation of procedural knowledge of a domain, and the introduction of ad

hoc rules. This knowledge is represented in terms of production rules which are

processed by a Ops5-like rule interpreter. This paper mainly describes the in-

troduction of this level into the hybrid system. The semantics of the knowledge

representation methods of the epistemological level is de�ned according to a four-

valued logic approach. This de�nition insures that all inference algorithms are

sound, complete and decidable. The system has been implemented in Common

Lisp using the object-oriented extension CLOS, and the graphical user interface

was implemented in C with XToolkit.

1 Introduction

One of the characteristics of research in the �eld of reasoning about knowledge is the
lack of a uni�ed theory. Therefore, some philosophical controversies in this domain

have arisen, e.g. proceduralists versus declaratives or symbolics versus connectionists.

A central problem, when specifying an \intelligent" system, is to determine which

knowledge representation formalism is more adequate to the intended problems. The

implementation of a given formalism usually implies the compromise between expres-

sivity and e�ciency. The analysis of how e�ciency is a�ected, when the expressivity

increases, is an active research �eld.

Two solutions are available if one needs a large choice of knowledge representation

formalisms: (i) to dispose of a large number of system building tools, or (ii) to use a

hybrid system (e.g. [4]). We report onMantra1, a system that supports hybrid know-

ledge representation which has been designed at the University of Karlsruhe during the

last years and is still under development.

The system was implemented according to the following design principles: (i) se-

veral cooperating formalisms are better than a unique representation formalism,

(ii) a clear semantics explaining the meaning of the knowledge representation lan-

guage is fundamental and (iii) all algorithms involved must be decidable and reasona-

bly fast. From a knowledge engineering point of view MANTRA could also be regarded

as a general-purpose shell for building large knowledge-based systems.

The system provides four di�erent representation formalisms which can interact
through hybrid inference algorithms. The motivation is that several cooperating for-
malisms ought to enhance the expressiveness and inference power of the system. We

adopt a knowledge representation approach consisting of a representational theory, ex-
plaining which knowledge is to be represented by which formalisms, and of a common
semantics to de�ne the relationship between expressions of di�erent formalisms in a
semantically sound manner. The decidability of all algorithms involved is achieved
by adopting a four-valued semantics based on the works of Belnap [2] Patel-Schneider
[12] [13], Frisch [9] and Thomason et al. [14]. The system supports four di�erent

knowledge representation formalisms { �rst order logic, frames, semantic nets and pro-
duction systems { with their associated inference mechanisms { assertional reasoning,
terminological reasoning, inheritance with exceptions and heuristic programming. The
architecture of the system is shown in �gure 1.

RBase Management

Rule Interpreter

Logic Frames SNetsEpistemological Level

Logical Level

Heuristic Level

KBase Management

Inference

Figure 1: The Architecture of the System

The paper is organized as follows: In section 2, the theoretical background of a

1Modular Assertional, semantic Network and Terminological Representation Approach

decidable �rst-order logic, relying on the notions described in [12], is presented. This

approach is used to de�ne the semantics of the logic, frame and semantic network for-

malisms. In section 3, the di�erent methods of the epistemological level are de�ned.

In section 4, the logical level, that supports inference mechanisms and knowledge base

management { creation, modi�cation and query { is presented. In section 5, the in-

troduction of production systems in the heuristic level is described, the rules provide

the system capabilities for representing procedural knowledge and ad hoc rules for the

hybrid inferences. In section 6, the implementation is commented upon and, �nally in

section 7, some applications and conclusions are presented.

2 The Semantics

One of the main characteristics of Mantra is the de�nition of a uni�ed semantics for

knowledge representation and reasoning methods and their interaction. This semantics

is based upon a four-valued logic [2] [12] [13] [9] [14].

Many knowledge representation systems support standard �rst-order logic due to
its naturality and expressive power. However, when reasoning about some formulae,
these systems may never stop due to the fact that �rst-order logic is undecidable. This
situation is higly unsatisfatory if we intend to use this logical knowledge representation

in a working system. Possible solutions are to restrict the expressive power of the
logic, to change the inference methods, and to limit the length of derivations or the
elapsed time. The four-valued semantics proposed by Patel-Schneider [12] [13] has been
adopted because it does not restrict the expressiveness of the language and supports
an inference mechanism, called t-entailment, that is decidable and semantically sound.

Initially, we briey introduce propositional tautological entailments | a simple
type of propositional relevance logic. The syntax of the logic of propositional tauto-

logical entailment is the same as that of standard propositional logic, but without an
implication operator. Besides the standard two-valued assignment, formulae can also
be assigned neither true nor false or both true and false. Its semantics is based on the
four-valued setups of propositional relevance logic [2], i.e. B = ffTg; fFg; fT;Fg;fgg.
The propositional tautological entailment is de�ned as follows: � entails �, written

� ! �, i� � is true whenever � is and � is false whenever � is. This entailment is a

much weaker notion than implication as known in standard propositional logic due to

the four-valued setups which include the set of two-valued assignments. For example,
a^:a 6! b and a 6! b_:b, which mean that the classical unsatis�ability and tautolo-

gies are not de�ned in this semantics. In this entailment modus ponens is not a valid
rule due to a ^ (:a _ b) 6! b.

De�nition 1 A situation s consists of a triplet containing a non empty set D, the

domain of the situation, a function "s, the environment function of s, and a function

�s, the extension function of s, i.e. s = hD; "s; �si. "s maps each function letter, fn
j ,

into a function from Dn to D and �s consists of a pair of functions h�
+

s ; �
�
s i associating

to each predicate a positive extension, �+s , the tuples in the domain known to possess

the property of the predicate, and a negative extension, ��s , the tuples known not to

possess this property.

De�nition 2 A variable map is a mapping from variables into some set. If v is a va-

riable map into D, x is a variable, and d is an element of D, then vxd is a variable map

into D with vxd(y) = d, if y = x, and vxd(y) = v(y), otherwise. Given a situation, s, and

a variable map, v, a mapping, v�s , from terms into domain of s can be de�ned as fol-

lows: v�s(x) = v(x), if x is a variable, v�s(f
n
j (t1; � � � ; tn)) = ("s(f

n
j))(v

�
s(t1); � � � ; v

�
s(tn)),

otherwise.

De�nition 3 The support relationships of �rst-order relevance logic for atomic formu-

lae are de�ned as follows: s; v j=t A
n
j (t1; � � � ; tn) i� (v�s(t1); � � � ; v

�
s(tn)) 2 �

+

s (A
n
j), s sup-

ports the truth of An
j (t1; � � � ; tn) under v, and s; v j=f A

n
j (t1; � � � ; tn) i� (v�s(t1); � � � ; v

�
s(tn))

2 ��s (A
n
j), s supports the falsity of An

j (t1; � � � ; tn) under v.

The relationships are extended to arbitrary �rst-order formulae | very similar to

standard tarskian semantics | by the following rules:

1. s; v j=t :� i� s; v j=f �

s; v j=f :� i� s; v j=t �

2. s; v j=t � _ � i� s; v j=t � or s; v j=t �

s; v j=f � _ � i� s; v j=f � and s; v j=f �

3. s; v j=t � ^ � i� s; v j=t � and s; v j=t �

s; v j=f � ^ � i� s; v j=f � or s; v j=f �

4. s; v j=t 8x� i� for all d 2 D s; vxd j=t �

s; v j=f 8x� i� for some d 2 D s; vxd j=f �

5. s; v j=t 9x� i� for some d 2 D s; vxd j=t �

s; v j=f 9x� i� for all d 2 D s; vxd j=f �

De�nition 4 If � and � are �rst-order sentences, � entails � i� for all situations, s,

and all variable maps, v, if s; v j=t � then s; v j=t � and if s; v j=f � then s; v j=f �.

The drawback of �rst-order tautological entailment is that it can be used to simulate
�rst-order implication and, thus, it is undecidable.

Now, we deal with a variant of relevance logic. Initially, we need to introduce

the notion of compatible sets of situations. A compatible set of situations is a set
of situations with the same domain and the same environment function. Given S, a

compatible set of situations each with domain D, and v, a variable map into D, the
two support relations for this logic, S; v j=t � and S; v j=f � are de�ned as follows.

1. S; v j=t 8x� i� for all d 2 D S; vxd j=t �

S; v j=f 8x� i� for some d 2 D S; vxd j=f �

2. S; v j=t 9x� i� for some d 2 D S; vxd j=t �

S; v j=f 9x� i� for all d 2 D S; vxd j=f �

3. S; v j=t � i� for all s 2 S s; v j=t �

S; v j=f � i� for all s 2 S s; v j=f �

The interpretation of the formula 9xPx would be: There exists a known individual

for which the P is true, i.e. for some domain element x Px is true in each situation.

There are three di�erent versions of entailment of �! �: (i) � must be true whe-

never � is, t-entailment (written !t), (ii) � must be false whenever � is, f -entailment

(written !f) and (iii) Both conditions must be ful�lled, tf -entailment (written !).

The entailments for quanti�ers can be expressed as follows:

8xPx! Pa Pa! 9xPx

8xPx!t Pa ^ Pb Pa _ Pb 6!t 9xPx

8xPx 6!f Pa ^ Pb Pa _ Pb!f 9xPx

8xPx 6! Pa ^ Pb Pa _ Pb 6! 9xPx

Thus, the t-entailment is best-suited for knowledge representation since a univer-
sal t-entails the conjunction of any number of instantiations whereas a disjunction of

instantiations does not t-entails an existential [12].

Finally, using the following theorem we are able to devise a decidable algorithm to

compute t-entailment as described above.

Theorem 1 If � and � are sentences in skolemized prenex conjunctive normal form,

i.e. � = 8~z
V
�j and � = 9~x

V
�i where ~z is some ordering of the universally quanti�ed

variables in � and ~x is some ordering of the existential quanti�ed variables in �, then

�!t � i� there exists �, a substitution for ~x, such that for each �i there exist some �j

and , a substitution for ~z, such that �j � �i� where �j and �i� are treated as sets

of literals.

The semantics of for �rst-order logic, frames and semantic network de�nitions and
inferences, as well as the hybrid inference algorithms are given in [3].

3 The Epistemological Level

The lowest level of the architecture contains three representation methods. The know-

ledge is represented as formulae, concepts and relations, as well as hierarchies and

classes, which can be speci�ed through a lisp-like syntax.

Logic

This method is intended to be used to represent logic knowledge about a particular

domain. It is adequate to domains where the knowledge is largely unstructured and
consists of a collection of independent facts. The main drawback of the logic formalism

is the inherent ine�ciency of the inference method: automatic deduction. Most of the

existing hybrid systems [4] contain a �rst-order logic method, because of its advantages:

(i) naturality of the representation, (ii) modularity and exibility of the represented

knowledge which can easily be modi�ed and extended, and additionaly, (iii) classical

logic has a formal semantics due to Tarski.

Adopting the t-entailment as de�ned above, a four-valued semantics for the �rst-

order logic of this method can be introduced. However, the syntax of the formulae

remains the same as in the classical case.

To give an idea of the results of the entailment calculation we sketch the algorithm

performing this task: Given a set of asserted facts, Fi, and a question Q =
V

iQi, the

algorithm searches for the set of all substitutions such that, for each Qi in the query,

there is at least one Fi which implies, according to the classical semantics, this Qi when

one of the substitutions is applied. Once this set is calculated the algorithm tries to

�nd a compatible subset, i.e. where the same variables are substituted by the same

terms. If this subset is not empty then we say that Fi entails Q.

Frames

This method is intended to be used to represent a terminology by means of concepts,
the categories of objects, and relations, the properties of objects. The formalism is

adequate to taxonomically structured domains where the inheritance mechanism can
be e�ciently explored. The characteristics of technical knowledge - such as machine
descriptions, process descriptions, technical terms, troubleshooting strategies, etc -
make the frame formalism a preferential choice when building expert system knowledge
bases for those domains [8].

The notion of relations is an extension of the notion of roles, usually used in ter-

minological languages. Roles are binary relations and relations are arbitrary n-place
relations. The main idea of extending roles is that it provides a better integration of
this method with the logic method: The correspondence of n-place relations to n-ary
predicates. The principal operation in this method is the subsumption relation which
veri�es whether a concept or relation subsumes another concept or relation.

The terminological language embedded into the system has some additional charac-

teristics usually not possessed by the terminological languages or hybrid systems: (i) It

possesses a rich set of primitives, including disjunction and negation of both concepts

and relations, (ii) It provides special symbols for the universal concept and for the
bottom concept as well as for the universal relation and for the bottom relation and

(iii) It includes tests for subsumption and for equality between concepts and between
relations.

Semantic Nets

A semantic network consists of a set of nodes connected by a set of links. Its main in-

ference mechanism is inheritance through the network. The exibility of the formalism

makes it a good choice for expert system knowledge representation, but the user must

follow some discipline in order not to misuse the formalism capacities. The method

manipulates the notions of classes and hierarchies. The hierarchies can be explicitly

created by de�ning links among classes. Two types of links are provided: Default links

and Exception links. The hierarchies are used as inheritance paths between classes.

The main inference procedure of this method calculates the Subclasses relation taking

into account the explicit exception.

4 The Logical Level

One of the main features of Mantra is to allow the de�nition of powerful hybrid infe-

rence algorithms which enlarge the deductibility power of any of the single formalisms

available in the epistemological level. The two main functions are Tell and Ask.

The queries to the knowledge bases can be formed either by using a speci�c method

or by using one of three combinations of the methods currently available: logic+frame,
logic+snet and frame+snet. The idea of the interaction between the three methods is
that the functionalities of one method can be used in order to increase the inference
power of another method. For example, to bypass the invalidity of modus ponens in the

logic method one can use the frame or the semantic networks method to represent the
chaining of a predicate in an appropriate way. In this way, the user is given a possibility
not only to represent a speci�c domain by means of several knowledge representation
methods but the user can also make use of the hybrid reasoning in order to get a
semantically motivated answer from a speci�c knowledge base.

Using the logic method and the terminological method one can make use of the

hybrid reasoning possessed by the system. The idea of the interaction algorithm is
to determine all the frame entities subsumed by the predicates appearing in a logical
question and to use this subsumed entities as they were predicates t-entailed by the
original predicates.

The interaction algorithm for the logic and semantic network methods is very si-
milar to the frame case, but in the present case a hierarchy is used to represent an
explicit entailment between �rst-order logic predicates according to the subclass rela-

tion represented in the hierarchy.

The next hybrid reasoning is the interaction between frame and semantic network
methods. The idea of this algorithm is to explicitly construct the subsumption graph of

the frame hierarchy, and to use the union of this graph and of the given hierarchy graph
to calculate subsumptions of primitive concepts during the subsumption calculation.

The next example presents this hybrid reasoning.

As mentioned previously, the three inference problems, t-entailment, subsumption

and subclass, and their combinations are decidable. The following simple examples

illustrates some of the capabilities.

Logic (robin tweety)
(size tweety small)
(circus-elephant clyde)
(size clyde big)

Frames

herbivore
8 food : plant

- animal

bird
8 blood : warm
8 repro : ovipar

A
AK

robin
8 size : small
9 organ : wing

6

mammal
8 blood : warm
8 repro : vivipar

��
���*

elephant
8 food : plant
9 organ : trunk

6

SNet �
�

�
�elephant

�
�

�
�

african
elephant

�
�

�
�

royal
elephant

�
�

�
�

circus
elephant

��
�*

HH
HY

6

�
�

�
�gray

�
�

�
�elephant

�
�

�
�

royal
elephant

��
�*

HH
HY

circus:

color:

The content of a knowledge base is de�ned at the epistemological level. These

knowledge bases can be managed, manipulated and interrogated by using the inference
algorithms of the logical level. Given the previous example, one can ask the following
questions:

(Ask 'kbase '(Exist x (And (size x small) (robin x))))

--> yes (x . tweety)

(Ask 'kbase '(Subsume-concept herbivore elephant))

--> yes

(Ask 'kbase '(Sub-class (Union circus color) circus-elephant gray))

--> no

(Ask 'kbase '(Union circus color)

'(Exist x (And (size x big) (Not (gray x)))))

--> yes (x . clyde)

(Ask 'kbase 'circus '(Subsume-concept animal african-elephant))

--> yes

5 The Heuristic Level

To combine the advantages of both declarative and procedural knowledge we introduce
another paradigm into the system: production rules. They allow the de�nition of

procedural knowledge of a domain using the represented declarative knowledge [10].

At this level, the primitives that allow the de�nition of production systems for the
automatic manipulation of knowledge bases are de�ned. The syntax of the language

at this level is given below. A rule of a rule base is made up of the following parts:
(i) rule identi�er, (ii) a list of variables, (iii) condition part and (iv) action part. The

condition and the action parts mainly rely on the Tell and Ask primitives as de�ned

at the logical level. We allow the user to encapsulate a set of rules in a context, i.e.
the rules are valid or can �re if the context is active. Activating, or deactivating, a

context can be performed by an appropriate primitive embedded in the action part.

The major goal of introducing such contexts is to exclude \redundant" rules while the

rule interpreter is selecting rules to be executed, i.e. to minimize the set of conict

rules.

The interpretation of rules is performed by invoking the primitive Execute. Pre-

sently, the interpretation is performed by means of forward chaining. The conict

resolution strategy can explicitly be given by the user. Three kinds of strategies, which

are embodied by the following three �lters, are currently available and given in �gure 2.

Recency-�lter

Uniqueness

Recency

Generality

Rule Order

6

6

6

Context-�lter

Uniqueness

Context Order

Recency

Generality

Rule Order

6

6

6

6

Rule-�lter

Rule Order

Uniqueness

Recency

6

6

Figure 2: Conict Resolution Strategies

The meaning of each strategy, e.g. recency or generality, is de�ned as usual [1].

Moreover, the user can explicitly determine the ow strategy which is either all-
rules (breadth-�rst search) or �rst-rule (depth-�rst search).

The lisp-like syntax of the language at this level including the explanation facilities
is the following:

heuristic-level ::= rbase-declaration j rbase-statement

rbase-query j

interpret j

explanation

rbase-declaration ::= (Decl-rbase identi�er � � � identi�er)

rbase-statement ::= (Tell-rbase identi�er context � � � context) j
(Tell-rbase identi�er identi�er) j

(Remove-rbase identi�er � � � identi�er) j

(Remove-context identi�er identi�er � � � identi�er) j
(Remove-rule identi�er identi�er � � � identi�er) j
(Rule-order identi�er identi�er � � � identi�er) j

(Context-order identi�er identi�er � � � identi�er)

rbase-query ::= (Ask-rbase identi�er) j
(Ask-context identi�er identi�er) j

(Ask-rule identi�er identi�er)

interpret ::= (Execute identi�er identi�er) j

(Execute identi�er identi�er goal) j

(Execute identi�er identi�er ow-strategy goal) j

(Execute identi�er identi�er goal ow-strategy conict-strategy)

ow-strategy ::= all-rules j

�rst-rule

conict-strategy ::= context-�lter j

recency-�lter j

rule-�lter

context ::= (identi�er rule � � � rule) j

(rule � � � rule)

goal ::= (condition-part)

rule ::= (identi�er variables condition-part action-part) j
identi�er

variables ::= (identi�er � � � identi�er) j ()

condition-part ::= condition � � � condition

condition ::= identi�er : kbase-rule-quest j
kbase-rule-quest

action-part ::= action � � � action

action ::= identi�er : kbase-de�nition restriction j

identi�er : kbase-de�nition j

kbase-de�nition restriction j

kbase-de�nition j

(to-lisp lisp-expression) j
(activate identi�er � � � identi�er) j

(deactivate identi�er � � � identi�er)

restriction ::= (to-context identi�er � � � identi�er)

explanation ::= (Explain how identi�er) j

(Explain when identi�er) j

(Explain why identi�er) j
(Explain history)

kbase-rule-quest and kbase-de�nition coincide with the language of Ask and Tell

primitives, respectively.

However, in opposite to usual rule-based systems the database consists of powerful

inference algorithms of the logical level as shown in �gure 3.

Common Lisp

Rule Interpreter

6?

RBases

6?

Management

Inference

6?

6?

SNet

Frames

Logic

SNet

Frames

Logic
KBase1 KBasen

KBases (Data Memory)

�

�
	Solve Conicts9 rule to

execute ?
HH

H
���

��
�

HHH

no

yes

RBases

KBases

6

��

�
�

�
Match Goal

Conditions

no

yes

9 goals ? H
HH
���

��
�

HHH

yes8 goals
achieved ?H

HH
���

��
�

HHH
no

�
�

�
Build New

Conict Set

�

�
	Execute Rules

-

-
-

Start

��

?

- -

	�

6

�-

�-

-

Figure 3: Rule based systems with Mantra & Mantra's recognize-act cylce

Furthermore, ad hoc rules for the utilisation of the primitives of the logical level

can be introduced. The rule interpreter consists of the recognize-act-cycle.

An important question concerns the e�ciency to set up the matching rules to re-

solve conicts. To avoid to match every condition of every rule in each cycle, three
methods are available. First, rules may be grouped into contexts which may be activa-
ted and deactivated. This reduces the number of applicable rules. Secondly, common
conditions are detected and tested only once. This reduces the number of applicable
conditions. Finally, the execution of rules changes only the stored knowledge incre-

mentally. For this reason, only those conditions have to be matched, whose underlying
predicates, concepts, hierarchies ... have changed. This reduces the amount of possible
new conditions drastically.

As for the knowledge bases, rules are stored as rule bases which can be managed,
manipulated and executed using the heuristic level primitives. Additionaly, explanati-
ons about the history of the applications of rules are provided.

6 The Implementation

Due to the interconnections among the di�erent epistemological methods a single data

abstraction consisting of directed graphs has been selected. The system has been

implemented in Common Lisp and uses the object-oriented extension CLOS to de�ne
and manipulate the knowledge bases. This increases the modularity of the system and

makes it easy to modify.

In the earlier version of this system, the interface had been developed using KYACC-

KLEX, an interface between KCL and the compiler generator YACC and LEX. Due

to the portability di�culty of YACC and LEX we have replaced this part by an LALR

syntax analyzer that we have implemented directly in KCL. The use of an object-

oriented programming paradigm increases the modularity of the system and makes is

easy to modify. To facilitate the interconnection between the di�erent methods a single

data abstraction has been adopted. This data abstraction consists of a set of Directed

Graphs. Directed graphs subsumes several of the most commonly used data structures

and is also suitable to be used in an interactive system due to their inherent graphical

character. The system Grasp, a graph manipulation package, has been adopted as the

programming tool implementing this data abstraction.

The e�cient uni�cation algorithm of Martelli and Montanari [11] is at the core of

each inference procedure.

A graphical user's interface allowing the visualization and de�nition of knowledge

is provided. It has been implemented in C with XToolkit, is very fast, and interacts

withMantra through a C$Lisp interface. A graph editor allows to browse concepts,

frames and hierarchies, and a syntax-driven mask editor allows easily the correct spe-

ci�cation of new knowledge.

7 Conclusion

The main characteristics of Mantra are the interactions between di�erent represen-

tation formalisms, and the embedded semantics which is sound and complete. Addi-
tionaly, the introduction of production rules allows the construction of expert systems
using the knowledge through powerful inference algorithms.

One of many important enhancements to be achieved concerns the user interface.
We are implementing a cooperative graphical user interface for MANTRA based on
X-Windows. A graph editor which can be used to visualize, for instance, hierarchies
or terminologies would aid the user for representing expert's knowledge by means of

frames or semantic networks. The other possible interactions among the methods
are also being implemented. The theoretical studies of these interactions have shown
that the algorithms being implemented are sound and complete according to the four-
valued semantics. The rule interpreter, in the heuristic level, is also being extended to
be capable of performing backward chaining.

The semantic soundness is mandatory for one of the application of MANTRAwhich

is to design an environment for mathematical knowledge representation suitable for
Computer Algebra Systems [7] [6]. Considering the fact that mathematical domains of
computation are inherently modular and that there are inter-relationships among the

domains computer algebra is seen , in this environment, as another sort of knowledge

that is called mathematical knowledge. The proposed representation of mathematical
domains of computation is based on the notion of abstract computational structures.

In this way we make use of all knowledge representation methods in order to represent
mathematical domains, e.g. the logic method to represent the laws of an abstract

domain, the frame method to represent the terminologies of a domain and the semantic

network method for representing the whole hierarchy.

This application to symbolic computation in Mathematics is an on-going project

where one represents and manipulate highly non-trivial knowledge. MANTRA is pro-

ving itself to be very well suited to such an elaborated application. The shell concept

on which MANTRA is based enables also to use it to develop expert systems. Another

possible application lies in teaching Knowledge Representations to students since it

encompasses several cooperating formalisms.

The soundness of the semantics was necessary for one of our applications which is

to use the system as part of an intelligent environment, where computer algebra and

theorem proving techniques can be combined. The mathematical knowledge can be

speci�ed as abstract computational structures [5] [6] [7] and is represented using the

di�erent formalisms. The development of this environment is an ongoing project.

Another application just under way is to use the decidability features of the four-

valued semantics in the domain of distibuted AI.

References

[1] A. Barr, E.A. Feigenbaum, The Handbook of Arti�cial Intelligence, William
Kaufmann, 1982.

[2] N.D. Belnap, A Useful Four-Valued Logic, in \Modern Uses of Multiple-Valued
Logic", ed. G. Epstein and J.M. Dunn, Boston: Reidel, 1977.

[3] G. Bittencourt, An Architecture for Hybrid Knowledge Representation, Ph.D.

Dissertation, University of Karlsruhe, Department of Computer Science, 1990.

[4] R.J. Brachman, V.P. Gilbert, H.J. Levesque, An Essential Hybrid Reaso-

ning System: Knowledge and Symbol Level Accounts of KRYPTON , Proceeding
of IJCAI 9, 1985.

[5] J. Calmet, K. Homann, I.A. Tjandra, Uni�ed Domains and Abstract Com-

putational Structures, Proceedings of Conference on Arti�cial Intelligence and
Symbolic Mathematical Computations, LNCS 737, Karlsruhe, August 3 { 6, 1992,
Springer.

[6] J. Calmet, I.A. Tjandra, An AI Environment for Computer Algebra, in J.

Johnson (Ed.), Proceedings of International Conference on Arti�cial Intelligence
in Mathematics, Glasgow, 1991 (to appear in 1994).

[7] J. Calmet, I.A. Tjandra, G. Bittencourt, A Framework for Representing

Algebraic Knowledge Using a Hybrid Knowledge Representation System, Procee-
ding of The Fourth International Symposium on Knowledge Engineering, 1990.

[8] R.E. Fikes, T. Kehler, The Role of Frame-Based Representation in Reasoning,

Communications of the ACM, Vol. 28, No. 9, pp. 904-920, September 1985.

[9] A.M. Frisch, Knowledge Retrieval as Specialized Inference, Report No. 214,
University of Rochester, Department of Computer Science, 1987.

[10] A. Lulay, K. Homann, Entwurf und Implementierung der heuristischen

Ebene eines hybriden Wissensrepr�asentationssystems, Diplomarbeiten, Univer-

sit�at Karlsruhe, 1991.

[11] A. Martelli, U. Montanari, An E�cient Uni�cation Algorithm. ACM Tran-

sactions on Programming Languages and Systems, Vol. 4, No. 2, April 1982.

[12] P.F. Patel-Schneider, A Decidable First-Order Logic for Knowledge Repre-

sentation, Proceeding of IJCAI 9, 1985.

[13] P.F. Patel-Schneider, A four-Valued Semantics for Frame-Based Description

Languages, Proceeding of AAAI-86, 1986.

[14] R.H. Thomason, J.F. Horty, D.S. Touretzky, A Calculus for Inheritance

in Monotonic Semantic Nets, Technical Report CMU-CS-86-138, Carnegie-Mellon

University, Department of Computer Science, 1986.

